MJPAS

MUSTANSIRIYAH JOURNAL OF PURE AND APPLIED SCIENCES

Journal homepage: https://mjpas.uomustansiriyah.edu.iq/index.php/mjpas

RESEARCH ARTICLE - MATHEMATICS

On Fuzzy Nano ζ-Generalized Closed Set in Fuzzy Nano Symmetric Topology

Gazwan Haider Abdulhusein^{1*}, Dalia raad abd²

¹Department of Mathematics, Open Educational College, Ministry of Education, Baghdad, Iraq

² Department of Mathematics, College of Education, Mustansiriyah University, Baghdad, Iraq

Article Info.	Abstract
Article history:	In this paper we introduced new types of fuzzy nano open sets is said to fuzzy ζ - nano open set and studied some properties of fuzzy ζ - nano generalized closed set in fuzzy nano symmetric
Received 15 November 2024	topology also we studied some separation axioms is called (FN $\zeta - T_0 S$, FN $\zeta - T_{\frac{1}{2}}S$, FN $\zeta -$
Accepted 15 January 2025	T_1 S) and we studied the relationship between of them under the condition of fuzzy nano ζ -symmetric topology and proof the converse relations which was studied for the first time, and obtained several important properties.
Publishing 30 March 2025	
	This is an open-access article under the CC BY 4.0 license (<u>http://creativecommons.org/licenses/by/4.0/</u>) The official journal published by the College of Education at Mustansiriyah University
	y ζ-nano open set (FN ζ-OS), fuzzy ζ- nano generalized closed set (FNG ζ-CS), fuzzy nano symmetric gy (FNSYT), FN ζ – T_0 S, FN ζ – $T_{\frac{1}{2}}$ S, FN ζ – T_1 S

1. Introduction

Nano topology is substantial science in engineering also in medical science. had become applications of Nano science and Nano structures very important. This concept introduced by L.Thivagar and C.Richard [1] [2] in 2013. On the other hand C. L. Chang [2] [3]in 1968, introduced and study the topological spaces based on the fuzzy set introduced by Zadeh in its paper. In (2011) S.S.Benchalli and Kandil, R. lowen [4], [5], [6] introduce the definition of fuzzy regular open set in fuzzy topological space. And in (2014) Bhuvaneswari K [7], [8], [9][[10] introduced the nano generalized closed set in nano topological space. So in this work we extended the fuzzy topological group to fuzzy Nano topological group and we introduced new types of fuzzy nano open set is called fuzzy ζ - nano open set and studied some properties of fuzzy ζ -nano generalized closed set in fuzzy fuzzy nano symmetric topology also we study some separation axioms is called (FN $\zeta - T_0S$, FN $\zeta - T_1S$) and

we studied the relationship between of them under the condition of fuzzy nano ζ -symmetric topology and proof the converse relations which was studied for the first time, and obtained several important properties.

2. Some Definitions:

Definition 2.1 [9], [12]:

Let $X \neq \emptyset$, a fuzzy set \hat{S} in X is characterize by a function $\mu_{\hat{S}} : X \to I$, where I = [0,1] and write as $\hat{S} = \{(x, \mu_{\hat{S}}(x)) : x \in X, 0 \le \mu_{\hat{S}}(x) \le 1\}$, the collection of all fuzzy set in X refer as I^X , that is $I^X = \{\hat{S} : \hat{S} \text{ is a fuzzy sets in } X\}$ where $\mu_{\hat{S}}$ is called the memberships functions.

Definition 2.2 [10], [14]:

Let \widehat{Q} and \widehat{W} be fuzzy sets in X with memberships μ_Q and μ_W , then $\forall x \in X$:

1.
$$\hat{Q} \subseteq \widehat{W} \iff \mu_{\widetilde{Q}}(x) \le \mu_{\widehat{W}}(x)$$
.

2.
$$\hat{Q} = \hat{W} \iff \mu_{\widetilde{Q}}(x) = \mu_{\widehat{W}}(x)$$

3.
$$\hat{S} = \hat{Q} \cap \widehat{W} \iff \mu_{\hat{S}}(x) = \min\{ \mu_{\tilde{Q}}(x), \mu_{\widehat{W}}(x) \}.$$

4. $\hat{E} = \hat{Q} \cup \hat{W} \iff \mu_{\hat{E}}(\mathbf{x}) = \max\{ \mu_{\widetilde{Q}}(\mathbf{x}), \mu_{\widehat{W}}(\mathbf{x}) \}.$

Definition 2.3 [12], [13] [14]:

A fuzzy points x_p is a fuzzy sets such that:

 $\mu_{\mathbf{x}_{\mathbf{p}}}(\mathbf{y}) = \mathbf{p} > 0$ if $x \doteq y$, for all $\mathbf{y} \in \mathbf{X}$, and

 $\mu_{x_n}(y) = 0$ if $x \neq y$, for all $y \in X$

The collections of fuzzy points of X will be sympliczed By FP(X).

Definition 2.4 [15]:

Let $\mathfrak{U} \neq \emptyset$ be a finite of obj. said to be universes and \widehat{R} be fuzzy equivalent relations on U said to fuzzy discernibility's relation. Then the pair $(\mathfrak{U}, \widetilde{R})$ is called fuzzy approximations space.

Remark 2.5 :

Element belonging the same fuzzy equivalence class are said to be fuzzy indiscernibility with one another

Definition 2.6 :

Let \widehat{X} be a fuzzy set and $\widehat{R}[x]$ be the fuzzy equivalence class determine by $x \in U$, then

1- The fuzzy lower approximation of \widehat{X} is defined by $L_R(\widehat{X}) = \{ \max_{x \in U} \{ \widehat{R}[x] : \mu_{\widehat{R}[x]} \leq \mu_{\widehat{X}}(x) \}$

2- The fuzzy upper approximation of \widehat{X} is defined by $U_R(\widehat{X}) = \max_{x \in U} \{\widehat{R}[x] : \min\{\mu_{\widehat{R}[x]}, \mu_{\widehat{X}}(x) \neq 0\}$

3- The fuzzy boundary region of \widehat{X} is defined by $\widehat{B}_{R}(\widehat{X}) = U_{R}(\widehat{X}) - L_{R}(\widehat{X})$

Definition 2.7 :

take \mathfrak{U} be a nonempty finite sets, \widehat{R} be fuzzy equivalences relations on \mathfrak{U} , $\widehat{X} \leq \mathfrak{U}$ be a fuzzy subset then

 $\tilde{T}_R(\widehat{X}) = \{\widehat{X}, \widetilde{\varphi}, L_R(\widehat{X}), U_R(\widehat{X}), B_R(\widehat{X})\}$ is named be fuzzy nanotopology on \widehat{X} if hold

1. $\acute{X}, \acute{\phi} \in \widetilde{T}_{R}(\widetilde{x})$ 2. If $\acute{Q}, \widehat{M} \in \widetilde{T}_{R}(\widetilde{x})$, then $Q \cap \acute{M} \in \widetilde{T}_{R}(\widetilde{x})$ 3. If $\acute{Q}_{\alpha} \in \widetilde{T}_{R}(\widetilde{x})$, then $\bigcup_{\alpha} \acute{Q}_{\alpha} \in \widetilde{T}_{R}(\widetilde{x})$ $(\hat{X}, \tilde{T}_R(\tilde{x}))$ is said to be Fuzzy nano topological space (FNTS) and every element of $\tilde{T}_R(\tilde{x})$ is said to be fuzzy nano open set (FNOS) in \hat{X} and its complement is a fuzzy nanoclosed set (FNCS).

Definition 2.8 [16] [17] [18] [19]

suppos Q, M be a fuzzy nano set in a FNTS $(\hat{X}, \tilde{T}_R(\tilde{x}))$ then :

- A fuzzy points x_p is called quasi coincidente (QC) with the fuzzy nanoset Q if $x_p + Q > 1$ and write as $x_p q Q$, and if $x_r + Q \le 1$, then x_p isn't quasi coincidente with a fuzzy nano set Q and write as $x_p \bar{q} Q$.
- A fuzzy nano set Q is said to be quasi coincidente with a fuzzy nano set M if Q + M > 1 and write as Q q M, and if $Q + M \le 1$, then Q isn't quasi coincidente with a fuzzy nano set M and write as $Q \tilde{q} M$.

3. Fuzzy Nano ζ -Generalized Closed Set

Definition 3.1 :

A fuzzy subset $\widehat{\mathfrak{D}}$ in a FNTS $(\widehat{X}, \widetilde{T}_R(\widehat{x}))$ is called fuzzy nano regular open set (FNROS) if

 $\widehat{\mathfrak{D}} = \text{NInt}(\text{NCl}(\widehat{\mathfrak{D}}))$ and the fuzzy nano complement of fuzzy nano regular open set is fuzzy nano regular close set (FNRCS).

Definition 3.2 :

If $\widehat{\mathfrak{D}}$ be a fuzzy nano in a FNTS $(\widehat{X}, \widetilde{T}_R(\widetilde{x}))$

Nano R-Int $(\widehat{\mathfrak{D}}) = \bigcup \{ \ \widehat{\mathfrak{T}} \in (\text{FNROS}) : \ \widehat{\mathfrak{T}} \subseteq \widehat{\mathfrak{D}} \}$ is called the fuzzy nano regular interior of $\ \widehat{\mathfrak{D}}$ (FNR-Int $(\widehat{\mathfrak{D}})$) and Nano R-Cl $(\widehat{\mathfrak{D}}) = \bigcap \{ \ \widehat{\mathfrak{T}} \in (\text{FNRCS}) : \ \widehat{\mathfrak{T}} \supseteq \widehat{\mathfrak{D}} \}$ is called the fuzzy nano regular closure of $\ \widehat{\mathfrak{D}}$ (FNR-Cl $(\widehat{\mathfrak{D}})$)

Definition 3.3 :

A fuzzy subset $\widehat{\mathfrak{D}}$ in a FNTS $(\widehat{X}, \widetilde{T}_R(\widetilde{x}))$ is called fuzzy nano ζ -open set (FN ζ -OS) if

 $\widehat{\mathfrak{D}} \subseteq \text{FNInt}(\text{FNCl}(\text{FNR-Int}(\widehat{\mathfrak{D}})))$ and the fuzzy nano complements of fuzzy nano ζ -open set is fuzzy nano ζ -close set (FN ζ -CS).

Definition 3.4 :

A $\widehat{\mathfrak{D}}$ be a fuzzy nano in a FNTS $(\widehat{X},\,\widetilde{T}_R(\widehat{X}))$

Nano ζ -Int $(\widehat{\mathfrak{D}}) = \bigcup \{ \widehat{\mathfrak{T}} \in (FN \zeta - OS) : \widehat{\mathfrak{T}} \subseteq \widehat{\mathfrak{D}} \}$ is called the fuzzy nano ζ -interior of $\widehat{\mathfrak{D}}$ and

Nano ζ -Cl $(\widehat{\mathfrak{D}}) = \bigcap \{ \widehat{\mathfrak{T}} \in (FN \zeta$ -CS) : $\widehat{\mathfrak{T}} \supseteq \widehat{\mathfrak{D}} \}$ is called the fuzzy nano ζ -closure of $\widehat{\mathfrak{D}}$ and denoted by

FN ζ-Int $(\widehat{\mathfrak{D}})$ (resp. FN ζ-Cl $(\widehat{\mathfrak{D}})$)

Theorem 3.5 :

Let $(\widehat{X}, \widetilde{T}_R(\widehat{X}))$ be a FNTS and let $\widehat{\mathfrak{B}}$, $\widehat{\mathfrak{D}}$ be two fuzzy nano sets in \widehat{X} .

Then these hold;

1- $\widehat{\mathfrak{B}} \subseteq \operatorname{FN} \zeta$ -Cl ($\widehat{\mathfrak{B}}$)

2- $\widehat{\mathfrak{B}} \in \text{FN } \zeta\text{-CS}$ if and only if $\widehat{\mathfrak{B}} = \text{FN } \zeta\text{-Cl}(\widehat{\mathfrak{B}})$

3- if $\widehat{\mathfrak{B}} \subseteq \widehat{\mathfrak{D}}$ then FN ζ -Cl $(\widehat{\mathfrak{B}}) \subseteq$ FN ζ -Cl $(\widehat{\mathfrak{D}})$

4- FN ζ -Cl $(\widehat{\mathfrak{B}} \cup \widehat{\mathfrak{D}}) =$ FN ζ -Cl $(\widehat{\mathfrak{B}}) \cup$ FN ζ -Cl $(\widehat{\mathfrak{D}})$

5- FN ζ -Cl $(\widehat{\mathfrak{B}} \cap \widehat{\mathfrak{D}}) \subseteq$ FN ζ -Cl $(\widehat{\mathfrak{B}}) \cap$ FN ζ -Cl $(\widehat{\mathfrak{D}})$

Theorem 3.6 :

Let $(\widehat{X}, \widetilde{T}_R(\widehat{X}))$ be a FNTS and let $\widehat{\mathfrak{B}}$, $\widehat{\mathfrak{D}}$ be fuzzy nano ζ -open sets in \widehat{X} , then $\widehat{\mathfrak{B}} \cap \widehat{\mathfrak{D}}$ is fuzzy nano ζ -open set

Proof:-

Let $\,\widehat{\mathfrak B}$, $\widehat{\mathfrak D}$ be a fuzzy nano $\zeta\text{-open sets},$ then

 $\widehat{\mathfrak{B}} \subseteq \mathrm{FNInt}(\mathrm{FNCl}(\mathrm{FNR}\operatorname{-Int}(\widehat{\mathfrak{B}}) \quad \text{and} \quad \widehat{\mathfrak{D}} \subseteq \mathrm{FNInt}(\mathrm{FNCl}(\mathrm{FNR}\operatorname{-Int}(\widehat{\mathfrak{D}})))$

 $\widehat{\mathfrak{B}} \cap \widehat{\mathfrak{D}} \subseteq \mathrm{FNInt}(\mathrm{FNCl}(\mathrm{FNR}\text{-}\mathrm{Int}(\widehat{\mathfrak{B}}) \cap \mathrm{FNInt}(\mathrm{FNCl}(\mathrm{FNR}\text{-}\mathrm{Int}(\widehat{\mathfrak{D}})))$

 $\subseteq FNInt(FNInt(FNCl(FNR-Int(\widehat{\mathfrak{B}}) \cap (FNCl(FNR-Int(\widehat{\mathfrak{D}})))))$

 $\subseteq \text{FNInt}(\text{FNCl}(\text{FNInt}(\text{FNCl}(\text{FNR-Int}(\widehat{\mathfrak{B}}))) \cap (\text{FNR-Int}(\widehat{\mathfrak{D}})))))$

 $\subseteq \mathrm{FNInt}(\mathrm{FNR}\text{-}\mathrm{Int}(\mathrm{FNR}\text{-}\mathrm{Int}(\widehat{\mathfrak{B}}\;))) \cap (\mathrm{FNR}\text{-}\mathrm{Int}(\widehat{\mathfrak{D}}\;)))))$

 $= FNInt(FNCl(FNR-Int(FNR-Cl(FNR-In(\widehat{\mathfrak{B}} \cap \widehat{\mathfrak{D}})))))$

 $= FNInt(FNCl(FNR-Int(\widehat{\mathfrak{B}} \cap \widehat{\mathfrak{D}})))$

Hence $\widehat{\mathfrak{B}} \cap \widehat{\mathfrak{D}} \subseteq \operatorname{FNInt}(\operatorname{FNCl}(\operatorname{FNR-Int}(\widehat{\mathfrak{B}} \cap \widehat{\mathfrak{D}})))$ and $\widehat{\mathfrak{B}} \cap \widehat{\mathfrak{D}}$ is fuzzy nano ζ -open set

Definition 3.7 :

A fuzzy nano subset $\widehat{\mathfrak{D}}$ of FNTS $(\widehat{X}, \widetilde{T}_R(\widehat{X}))$ is called fuzzy nano ζ -Symmetric if for every fuzzy points x_p , y_t in $\widehat{X}, x_p \in FN \zeta$ -Cl (y_t) implies $y_t \in FN \zeta$ -Cl (x_p) (i.e. $x_p \in FN \zeta$ -Cl (y_t) implies FN ζ -Cl $(y_t) = FN \zeta$ -Cl (x_p))

Definition 3.8 :

A fuzzy nano subset $\widehat{\mathfrak{D}}$ of FNTS $(\widehat{X}, \widetilde{T}_R(\widehat{X}))$ is called fuzzy nano ζ -generalized closed set (FN ζ -gC) in \widehat{X} , if FN ζ -Cl $(\widehat{\mathfrak{D}}) \subseteq \widehat{U}$, whenever $\widehat{\mathfrak{D}} \subseteq \widehat{U}$ and $\widehat{U} \in$ FN ζ -OS.

Theorem 3.9 :

A FNTS $(\hat{X}, \tilde{T}_R(\hat{X}))$ is fuzzy nano ζ -Symmetrics if and only if for every fuzzy point x_p in \hat{X} is fuzzy nano ζ -generalized close set.

Proof:-

let $(\widehat{X}, \widetilde{T}_R(\widehat{X}))$ is fuzzy nano ζ -Symmetric and suppose that $x_p \in \widehat{U} \in FN \zeta$ -OS

And FN ζ -Cl(x_p) $\not\subseteq \hat{U}$. This yiled that there is fuzzy point y_t in \hat{X} such that

 $y_t \in FN \zeta$ -Cl(x_p) $\cap \widehat{U}^c$, then $y_t \in FN \zeta$ -Cl(x_p) and $y_t \in \widehat{U}^c$, that is

FN ζ-Cl(y_t) ⊆ FN ζ-Cl(\hat{U}^c) = \hat{U}^c , since (\hat{X} , $\tilde{T}_R(\hat{X})$) is fuzzy nano ζ-Symmetric and

 $y_t \in FN \zeta$ -Cl(x_p), then $x_p \in FN \zeta$ -Cl(y_t) $\subseteq \hat{U}^c$. But this contradiction with $x_p \in \hat{U}$

Hence FN ζ -Cl(x_p) $\subseteq \widehat{U}$

let for any fuzzy point x_p in \hat{X} is fuzzy nano ζ -generalized close set.

Suppose that $x_p \in FN \zeta$ -Cl(y_t) and $y_t \notin FN \zeta$ -Cl(x_p), that is $y_t \in 1$ -FN ζ -Cl(x_p)

Since 1- FN ζ -Cl(x_p) \in FN ζ -OS, and y_t fuzzy nano ζ -generalized closed set, then

FN ζ -Cl(y_t) \subseteq 1- FN ζ -Cl(x_p). this implies that $x_p \in$ 1- FN ζ -Cl(x_p) \in 1- x_p , this is a contradiction, hence $(\hat{X}, \tilde{T}_R(\hat{X}))$ is fuzzy nano ζ -Symmetrics.

Theorem 3.10 :

If $(\widehat{X}, \widetilde{T}_R(\widehat{X}))$ be a FNTS and let $\widehat{\mathfrak{B}}$, $\widehat{\mathfrak{D}}$ be two fuzzy nano ζ -generalized closed sets in \widehat{X} , then $\widehat{\mathfrak{B}} \cup \widehat{\mathfrak{D}}$ is fuzzy nano ζ -generalized closed sets

Proof:-

let $\widehat{\mathfrak{B}}$, $\widehat{\mathfrak{D}}$ be two fuzzy nano ζ -generalized close sets in \widehat{X} , then FN ζ -Cl($\widehat{\mathfrak{B}}$) $\subseteq \widehat{U}$, whenever $\widehat{\mathfrak{B}} \subseteq \widehat{U}$ and

 $\widehat{U} \in \text{FN } \zeta$ -OS and FN ζ -Cl $(\widehat{\mathfrak{D}}) \subseteq \widehat{U}$, whenever $\widehat{\mathfrak{D}} \subseteq \widehat{U}$ and $\widehat{U} \in \text{FN } \zeta$ -OS.

Since $\widehat{\mathfrak{B}}$ and $\widehat{\mathfrak{D}}$ are subset of $\widehat{\mathcal{U}}$, $\widehat{\mathfrak{B}} \cup \widehat{\mathfrak{D}}$ are subset of $\widehat{\mathcal{U}}$ and $\widehat{\mathcal{U}} \in \mathrm{FN} \zeta$ -OS

Then FN ζ -Cl($\widehat{\mathfrak{B}} \cup \widehat{\mathfrak{D}}$) = FN ζ -Cl($\widehat{\mathfrak{B}}$) \cup FN ζ -Cl($\widehat{\mathfrak{D}}$) $\subseteq \widehat{U}$, which implies that $\widehat{\mathfrak{B}} \cup \widehat{\mathfrak{D}}$ is fuzzy nano ζ -generalized closed sets.

Theorem **3.11** :

Let $(\widehat{X}, \widetilde{T}_R(\widehat{X}))$ be a FNTS and let $\widehat{\mathfrak{B}}$ be fuzzy nano ζ -generalized closed set and $\widehat{\mathfrak{B}} \subseteq \widehat{\mathfrak{D}} \subseteq FN \zeta$ -Cl $(\widehat{\mathfrak{B}})$, then $\widehat{\mathfrak{D}}$ is fuzzy nano ζ -generalized closed set

Proof:-

 $\widehat{\mathfrak{D}} \subseteq \widehat{\mathcal{U}}$ and $\widehat{\mathcal{U}} \in \text{FN } \zeta$ -OS in a fuzzy nano topological space $(\widehat{X}, \widetilde{T}_R(\widehat{X}))$, then $\widehat{\mathfrak{B}} \subseteq \widehat{\mathfrak{D}}$ implies

 $\widehat{\mathfrak{B}} \subseteq \widehat{U}$, since $\widehat{\mathfrak{B}}$ be fuzzy nano ζ -generalized closed, FN ζ -Cl $(\widehat{\mathfrak{B}}) \subseteq \widehat{U}$, and $\widehat{\mathfrak{D}} \subseteq$ FN ζ -Cl $(\widehat{\mathfrak{B}})$

Then FN ζ -Cl($\widehat{\mathfrak{D}}$) \subseteq FN ζ -Cl($\widehat{\mathfrak{B}}$), thus FN ζ -Cl($\widehat{\mathfrak{D}}$) $\subseteq \widehat{U}$, $\widehat{U} \in$ FN ζ -OS, hence $\widehat{\mathfrak{D}}$ is FN ζ -gC.

Theorem 3.12 :

In a fuzzy nano topological space $(\hat{X}, \tilde{T}_R(\hat{X}))$ every FN ζ -CS is FN ζ -gC

Proof:-

Let $\widehat{\mathfrak{B}} \subseteq \widehat{\mathcal{U}}$ and $\widehat{\mathcal{U}} \in \text{FN } \zeta$ -OS, since $\widehat{\mathfrak{B}}$ is FN ζ -CS, then FN ζ -Cl $(\widehat{\mathfrak{B}}) \subseteq \widehat{\mathfrak{B}}$, that is

FN ζ -Cl $(\widehat{\mathfrak{B}}) \subseteq \widehat{\mathfrak{B}} \subseteq \widehat{\mathcal{U}}$, hence $\widehat{\mathfrak{B}}$ is FN ζ -gC.

4. Fuzzy Nano $\zeta\text{-}T_i$, i = 0 , 1 , 1/2 , In Fuzzy Nano $\zeta\text{-}Symmetric Topology$

Definition 4.1 :

A FNTS $(\widehat{X}, \widetilde{T}_R(\widehat{X}))$ is said to be

1- fuzzy nano ζ - T_0 space (FN ζ - T_0 S) if for every fuzzy points x_p , y_p in \hat{X} , $x_p \neq y_p$

 $\exists \ \widehat{\mathfrak{B}} \in FN \ \zeta \text{-OS such that} \ x_p \ q \ \widehat{\mathfrak{B}} \leq 1 \text{-} \ y_p \ \text{or} \ y_p \ q \ \widehat{\mathfrak{B}} \leq 1 \text{-} \ x_p$

2- fuzzy nano ζ - T_1 space (FN ζ - T_1 S) if for every fuzzy points x_p , y_p in \hat{X} , $x_p \neq y_p$

 $\exists \, \widehat{\mathfrak{B}}, \widehat{\mathfrak{D}} \in FN \, \zeta$ -OS such that $x_p q \, \widehat{\mathfrak{B}} \leq 1$ - y_p and $y_p q \, \widehat{\mathfrak{D}} \leq 1$ - x_p

3- fuzzy nano ζ - $T_{1/2}$ space (FN ζ - $T_{1/2}$ S) if every FN ζ -gC is FN ζ -C

Theorem 4.2 :

Let $(\hat{X}, \tilde{T}_R(\hat{X}))$ be FNTS if $(\hat{X}, \tilde{T}_R(\hat{X}))$ is FN ζ - T_i S then it is FN ζ - T_{i-1} S where i=0,1

Proof;- Clear.

Theorem 4.3 :

A FNTS $(\hat{X}, \tilde{T}_R(\hat{X}))$ is FN ζ - T_0 S iff for every pair of distance fuzzy points x_p , y_p in \hat{X} , FN ζ -Cl $(x_p) \neq$ FN ζ -Cl (y_p)

Proof;- Obviouss

Theorem 4.4 :

A FNTS $(\hat{X}, \tilde{T}_R(\hat{X}))$ is FN ζ - T_1 S iff for every singleton fuzzy points x_p , in \hat{X} , FN ζ -CS

Proof:-

⇒ Suppose(\hat{X} , $\tilde{T}_R(\hat{X})$) is FN ζ- T_1S , let $y_p \le 1 - x_p$, then $\exists \hat{\mathfrak{B}}, \hat{\mathfrak{D}} \in FN \zeta$ -OS such that $x_p q \hat{\mathfrak{B}} \le 1 - y_p$ and $y_p q \hat{\mathfrak{D}} \le 1 - x_p$, if $y_p q \hat{\mathfrak{D}} \le 1 - x_p$, we have $\hat{\mathfrak{D}} \le 1 - x_p$, let $\hat{Q} = \bigcup \{\hat{\mathfrak{D}} : y_p q 1 - x_p\}$ hence $\hat{Q} = 1 - x_p$, and $1 - x_p FN \zeta$ -OS, and $x_p FN \zeta$ -CS

 $\Leftarrow \text{ let } x_p \neq y_p \text{ and } x_p, y_p \text{ are FN } \zeta\text{-CS, then } 1\text{-} x_p, 1\text{-} y_p \text{ FN } \zeta\text{-OS, hence } y_p \text{ } q \text{ } 1\text{-} x_p \leq 1\text{-} x_p \text{ and } y_p \text{ } q \text{ } 1\text{-} x_p \leq 1\text{-} x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } q \text{ } 1\text{ } 1\text{ } x_p \text{ } 1\text{ } 1\text{ } 1\text{ } x_p \text{ } 1\text{ }$

 $x_p q 1 - y_p \le 1 - y_p$, therefore $(\widehat{X}, \widetilde{T}_R(\widehat{X}))$ is FN ζ - T_1S .

Proposition 4.5 :

If a FNTS $(\hat{X}, \tilde{T}_R(\hat{X}))$ is FN ζ - T_1 then it is fuzzy nano ζ -Symmetric

Proof:-

Let $(\hat{X}, \tilde{T}_R(\hat{X}))$ is FN ζ - T_1 then by theorem 3.4 every fuzzy point is FN ζ -CS,

and by theorem 2.12 It is FN ζ -gC and by theorem 2.9 (\hat{X} , $\tilde{T}_R(\hat{X})$) is fuzzy nano ζ -Symmetric

Proposition 4.6 :

A FNTS $(\hat{X}, \tilde{T}_R(\hat{X}))$ is fuzzy nano ζ -Symmetric and FN ζ - T_0 if and only if it is FN ζ - T_1 S

Proof:-

⇒ If (\hat{X} , $\tilde{T}_R(\hat{X})$) is FN ζ-*T*₁S, then by theorem 3.2 and proposition 3.5 it is fuzzy nano ζ-Symmetric and FN ζ-*T*₀

⇐ suppose that $x_p \neq y_p$ be a fuzzy point in a FNTS ($\hat{X}, \tilde{T}_R(\hat{X})$), and since it is FN ζ- T_0

Then $\exists \, \widehat{\mathfrak{B}} \in FN \zeta$ -OS such that $x_p q \, \widehat{\mathfrak{B}} \leq 1 - y_p$, $x_p \notin FN \zeta$ -Cl(y_p), and these implies that by fuzzy nano ζ -Symmetric $y_p \notin FN \zeta$ -Cl(x_p), hence $y_p q (1 - FN \zeta$ -Cl(x_p)) $\leq 1 - FN \zeta$ -Cl(x_p) $\leq 1 - x_p$, hence $(\widehat{X}, \tilde{T}_R(\widehat{X}))$ is FN ζ - T_1S

Theorem 4.7 :

For fuzzy nano ζ -Symmetrics topological space $(\widehat{X}, \widetilde{T}_R(\widehat{X}))$, the these properties are equivalents:

1- $(\widehat{X}, \widetilde{T}_{R}(\widehat{X}))$ is FN ζ - $T_{0}S$

2- $(\widehat{X}, \widetilde{T}_R(\widehat{X}))$ is FN ζ - $T_{1/2}S$

3- $(\widehat{X}, \widetilde{T}_R(\widehat{X}))$ is FN ζ - T_1S

Proof:- Obvious.

Conclusions

This paper investigates three objectives, the first objective we introduced new types of fuzzy nano open set is called fuzzy ζ - nano open set. Also we studied fuzzy ζ -nano generalized closed set. The second objective we introduced new concept is called fuzzy nano ζ -Symmetric topological space. And the third objective we proof the equivalent relation between fuzzy nano separation axioms (FN ζ - T_0 S, FN ζ - $T_{1/2}$ S, FN ζ - T_1 S) under the condition of fuzzy nano ζ -Symmetric topological space which was studied for the first time.

Reference

- [1] C. Richard and M. Lellis Thivagar, "On Nano Forms Of Weakly Open Sets" International Journal of Mathematics and Statistics Invention (IJMSI),vol. 1, pp.31-37, 2013.
- [2] M. Lellis Thivagar and I. Geetha Antoinette, "Note on Nano Hyper Connected Space," *South East Asian J. of Mathematics and Mathematical Sciences*, vol. 15, no. 1, pp. 25–36, 2019.
- [3] Chang, C.L., "Fuzzy Topological Spaces", J. Math. Anal. Appl., Vol.24, PP. 182-190, 1968.
- [4] S.S.Benchalli, R.S.Wali, Basavaraj M.Ittanagi " On Fuzzy rw-Closed Sets and Fuzzy rw-Open Sets in Fuzzy Topological Spaces " Int .J. of math science and Application Vol.1, No.2 May 2011.
- [5] P. Wuyts and R. Lowen, "On Separation Axioms in Fuzzy Topological Spaces, Fuzzy Neighborhood Spaces, and Fuzzy Uniform Spaces, journal of mathematics analysis and applications, vol 93, pp 27-41,1983.
- [6] A. Kandil, S. Saleh, and M. M. Yakout, "Fuzzy Topology On Fuzzy Sets: Regularity and Separation Axioms," *Academic & Scholarly Research Journal*, vol. 4, no. 2, 2012.
- [7] K. Bhuvaneswari and K. Mythili Gnanapriya, "Nano Generalised Closed Sets in Nano Topological Space," *International Journal of Scientific and Research Publications*, vol. 4, no. 5, 2014.
- [8] Ps. Devi, "On Nano Regular Generalized and Nano Generalized Regular Closed Sets in Nano Topological Spaces," *International Journal of Engineering Trends and Technology*, vol. 13, no. 8, 2014.
- [9] Zadeh, L.A., "Fuzzy Sets", Inform. Control, Vol.8, PP. 338-353, 1965.

- [10] S. J. Lee and E. P. Lee, "The category of intuitionistic fuzzy topological spaces" Bull. Korean Math. Soc, vol 37, No 1, pp 63 76, 2000.
- [11] F. S. Mahmoud, M. A. Fath Alla, and S. M. Abd Ellah, "Fuzzy topology on fuzzy sets: Fuzzy semicontinuity and fuzzy semiseparation axioms," *Appl Math Comput*, vol. 153, no. 1, pp. 127–140, May 2004, doi: 10.1016/S0096-3003(03)00616-7.
- [12] M. A. Khalik Al-Khafaji and G. Haider Abdulhusein, "Fuzzy Topological Dimensions and Its Applications," in *IOP Conference Series: Materials Science and Engineering*, IOP Publishing Ltd, Nov. 2020. doi: 10.1088/1757-899X/928/4/042003.
- [13] M. Shakhatreh and M. Hayajneh, "Fuzzy equivalence classes and fuzzy partitions" international journal of applied mathematics, vol 21, No 4, pp 607-613, 2008.
- [14] Lowen, R. "Fuzzy Topological Spaces and Fuzzy Compactness" Journal of Mathematical Analysis and Application, vol. 56, No 1, pp 621-633, (1976).
- [15] Papageorgiou, N.S. "Fuzzy Topology and Fuzzy Multifunctions" Journal of Mathematical Analysis and Applications, vol 109,No 1, pp 397-425, 1985.
- [16] B. Hu'iton and I. Reilly" Separation Axioms in Fuzzy Topological Spaces" Fuzzy Sets and Systems vol 3, No 1, pp 93-104,1980.
- [17] Dontchev J. and Przemski M., " On the various decomposition of continuous and some weakly continuous functions ", Acta mathematica hungarica, vol.71, no.1-2, pp.109-120, 2006
- [18] Bai Shi Zhong , Wang Wan Liang "Fuzzy non continuous mapping and fuzzy pre semi separation axioms "Fuzzy sets and systems Vol.94 pp.261 268, 2008.
- [19] F. S. Mahmoud, M. A. Fath Alla, and S. M. Abd Ellah, "Fuzzy topology on fuzzy sets: Fuzzy semicontinuity and fuzzy semiseparation axioms," *Appl Math Comput*, vol. 153, no. 1, pp. 127–140, May 2004, doi: 10.1016/S0096-3003(03)00616-7.
- [20] Zainab Khalid Raheem Sanaa Hamdi Jasem, "nc Open- Sets in Topological Space", Mustansiriyah Journal of Pure and Applied Sciences, Vol. 2 No. 1 (2024): second volume, doi: https://doi.org/10.47831/mjpas.v2i1.104
- [21] H. Sadiq, M. A. Khalik, "Some Results on Fuzzy w-Local Covering Dimension Function in Fuzzy Topological Space", Mustansiriyah Journal of Pure and Applied Sciences, Vol. 1 No. 2 (2023): number, doi: https://doi.org/10.47831/mjpas.v1i2.26
- [22] M. A. Khalik Al-Khafaji and Dalia Raad Abd, "On Some Types of Fuzzy δ-Connected Spaces in Fuzzy Topological Space on Fuzzy Set," in *IOP Conference Series: Materials Science and Enginering*, 2020, doi: 10.1088/1757-899X/928/4/042012