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1. Introduction 

When zadeh first introduced the concept of Fuzzy set  [1] in the year  1965 several authors have proposed the same concept as 

fuzzy metric spaces via various ways [2] Gorge and Vermani proposed that a fuzzy metric is  induced by every metric  [3]. 

They modified the concept  of fuzzy metric space with the aid of t-norm and t-conorm in 1994. Many authors such as [4] [5] [6] 

[7] Provided properties representing the topological open set [8] The purpose is to clarify some properties of co fuzzy metric 

space throught the set G(X) and we created some features like the study of the two sets: open and closed balls and also features 

of co fuzzy convergence.   

. 

  2. Preliminaries 

Definition 2.1. [9]                                                                                                                                                                                                                                                                                                                               

The binary operation (⊛): [0,l] × [0,l]→ [0,l] is a continuous t-norm if it the following requirements are 

satisfied: 

(1) ց ⊛ 1 = ց 

(2)  ց ⊛ h = h  ⊗ ց                                                                                                                                                                                                                                                                                                           

(3)  𝑔1 ⊛ ℎ1 ≤  𝑔2 ⊛ ℎ2   𝑓𝑜𝑟 𝑔1 ≤ 𝑔2, ℎ1 ≤ ℎ2     

(4) (ց ⊛h) ⊛ k = ց ⊛ (h ⊛ k) 

Definition 2.2. [10]                                                                                                                                                                                                                                                                                                                              

The binary operation (⊗): [0,l] × [0,l]→ [0,l] is a continuous t-conorm if it the following requirements are 

satisfied: 
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(1) ց ⊗ 0 =  ց 

(2)  ց ⊗ h = h  ⊗ ց                                                                                                                                                                                                                                                                                                           

(3) 𝑔1 ⊗ ℎ1 ≥ 𝑔2 ⊗ ℎ2   𝑓𝑜𝑟 𝑔1 ≥ 𝑔2, ℎ1 ≥ ℎ2  

(4) (ց ⊗ h) ⊗ k = ց ⊗ (h ⊗ k). 

Example 2.1. 

Consider (⊗): [0,l]× [0,l]→ [0,l]  defined by ց ⊗ h = max {ց հ}is t conorm. 

Proof: 

Let ց, հ, Ꭵ, j ∈ [0, 1]  

(1) ց ⊗ 0 =  max (ց, 0) = ց 

(2) ց ⊗ հ = max (ց, հ) = max (հ, ց) = հ ⊗  ց 

(3) ց  ≥  Ꭵ   ,  հ  ≥  j ⇒  max (ց, հ) ≥ max (Ꭵ, j) ⇒   ց ⊗ հ  ≥  Ꭵ ⊗  j  monutone  

(4)  (ց ⊗  հ) ⊗ Ꭵ = max (ց, հ) ⊗ Ꭵ = max ((ց  հ ) Ꭵ ) = max (ց (հ  Ꭵ)) = ց ⊗  max( հ  Ꭵ) = ց ⊗ (հ ⊗ Ꭵ) 

assositive  

Definition 2.3.[11] 

The triple (X, N, ⊗)  is called a co fuzzy metric space denoted by (Co- F M S) when X represents an 

arbitrary set, ⊗ is a continuous t-conorm and N is a fuzzy set of  X × X × [0,∞) if it the following 

requirements are satisfied: 

(1) N(ց, h, 0) =1 

(2) N(ց, h, t) = 0, ∀  t > 0, ⇔  ց = h 

(3 N(ց, h, t) = N(h, ց, t),   ∀  t > 0 

(4) N(ց, k, t + s) ≤  N(ց, h, t) ⊗ N(h, k, s) 

(5) N(ց, h, .) : X × X × [0,∞) → [0,1]  is left continuous where ց, h ∈  X and t, s > 0 

given an (Co- F M S)  N(ց, h, t) we determined the open sphere 𝑆𝑁(𝑔, 𝑟, 𝑡) 𝑓𝑜𝑟 𝑔 ∈  𝑋, 𝑟 ∈ (0,1) 

And t > 0 as the set 𝑆𝑁(𝑔, 𝑟, 𝑡) = {ℎ ∈  𝑋: 𝑁 (ց, ℎ, 𝑡) < 𝑟}  

Obviously, ց ∈  𝑆𝑁(𝑔, 𝑟, 𝑡), ∀ ց ∈ 𝑋, 0 < 𝑟1 <  𝑟2 < 1, 𝑎𝑛𝑑  0 < 𝑡1 ≤ 𝑡2 𝑤𝑖𝑡ℎ 𝑢𝑠 𝑆𝑁(𝑔, 𝑟1, 𝑡1) ⊆

𝑆𝑁(𝑔, 𝑟2, 𝑡2) 

Example 2.2.  

Let 𝑁(𝑔, ℎ, 𝑡)  =  (
|𝑔−ℎ|

𝑡+|𝑔−ℎ| 
) ∀ ց, ℎ ∈  𝑋 , 𝑡 ∈  (0, ∞) and ⊗ is a continuous t-conorm  then (X, N, ⊗)  is       

(Co- F M S) . 
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Proof: 

(1) 𝑁(𝑔, ℎ, 0) =  (
|𝑔−ℎ|

𝑡+ |𝑔−ℎ|
) =  (

|𝑔−ℎ|

|𝑔−ℎ|
) = 1, ∀ 𝑡 > 0  

  

(2) ∀  t > 0 Assume that ց =  h then this implies that | ց -  h| = 0 

      𝑁(𝑔, ℎ, 𝑡)  =  (
|𝑔−ℎ|

𝑡+ |𝑔−ℎ|
) (

0

𝑡+0 
) = 0    

(3) 𝑁(𝑔, ℎ, 𝑡) = (
|𝑔−ℎ|

𝑡+|𝑔−ℎ|
) =   (

[−(ℎ−𝑔)]

𝑡+[−(ℎ−𝑔)]
) =  (

|ℎ−𝑔|

𝑡 + |ℎ−𝑔| 
) = 𝑁(ℎ, 𝑔, 𝑡).  

(4) 𝑁 (𝑔, 𝑘, 𝑡 +  𝑠) =  (
|𝑔−ℎ+ℎ− 𝑘|

(𝑡+𝑠)+|𝑔−ℎ+ℎ−𝑘|
) =   (

|𝑔−ℎ|

𝑡+|𝑔−ℎ|
) +  (

|ℎ− 𝑘|

𝑠 +|ℎ−𝑘|
).  

⟹  𝑁 (𝑔, 𝑘, 𝑡 +  𝑠) ≤ (
|𝑔−ℎ|

𝑡+|𝑔−ℎ|
) + (

|ℎ− 𝑘|

𝑠+|ℎ−𝑘|
).  

      𝑇ℎ𝑒𝑛  𝑁 (𝑔, 𝑘, 𝑡 +  𝑠) ≤  𝑁(𝑔, ℎ, 𝑡) ⊗  𝑁(ℎ, 𝑘, 𝑠). 

(5) Take a sequence {𝑡𝑛}  ∈ (0, ∞) , ∋  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {𝑡𝑛} 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 𝑡𝑜 𝑡  ∈  (0, ∞) 𝑤ℎ𝑒𝑟𝑒 (0, ∞) equipped 

with the usual metric that is | 𝑡𝑛 − 𝑡 |  =     0  

      Then every N(ց, h, . ) : (0, ∞) → [0, 1] is left continuous. 

Definitions 2.4. 

Suppose (X, N, ⊗)  represent a (Co- F M S).  

(1) lim𝑛→∞ 𝑁 (𝑥𝑛, 𝑥, 𝑡) = 0  then the sequence denote by (seq) in X is considered to be a convergent to a point           

.    ց ∈ X 

(2) ∀ t > 0  further the seq {𝑥𝑛}   in X is called a Cauchy seq in X if   

      lim𝑛→∞ 𝑁 (𝑥𝑛, 𝑥𝑛+𝑝, 𝑡) = 0,   ∀ 𝑡 >  0 𝑎𝑛𝑑 𝑝 > 0        

      When each Cauchy seq of X converges to a point in X, then the space is considered to be complete.     

Definition 2.5. 

In (CO-FMS) the function N is continuous if whenever,  

{𝑥𝑛} →  𝑥, { 𝑦𝑛} →  𝑦  𝑡ℎ𝑒𝑛 𝑙𝑖𝑚
𝑛→∞

𝑁 ((𝑥𝑛), (𝑦𝑛), 𝑡) =, 𝑁(𝑥, 𝑦, 𝑡) ∀ 𝑡 >  0 

Definition 2.6. 

              A mapping ց  from a (Co- F M S) (X, N, ⊗) to it self is continuous at x for all seq in X  if  

lim𝑛→∞ 𝑁 ((𝑥𝑛), (𝑥), 𝑡) = 0,   𝑡 >  0, 𝑖𝑚𝑝𝑙𝑖𝑒𝑠  𝑙𝑖𝑚𝑛→∞ 𝑁 (𝑔(𝑥𝑛), 𝑔(𝑥), 𝑡) = 0            

Main Results 3.  

Let G(X) be a collection of all fuzzy sets in X, where X be a non-empty set, and  

If  ց ∈ G(X) then ց = {(x, α): x ∈ X and α ∈ (0, 1]   
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Obviously, f is a bounded function for | ց (x) | ≤   1  If K is the space of real numbers, therefore G(X) 

represents a space of vectors of a field K. The definitions of addition and scalar multiplication are as 

follows:   

ց + h = {(x, α): + (y, β)} = { x + y,  α ⋀ β ): (x, α) ∈ ց, (y, β) ∈ h. And k ց = {k (x, α): (x, α) ∈ ց where k ∈  

K} 

a space of vectors G(X) is defined as a metric space if all ց ∈ G(X), a function d: G(X) × G(X) → R is 

referred to as a metric function  (distance function) on G(X) if it the following requirements are satisfied: 

(1) d (ց, h) ≥  0 ∀ ց, h ∈ G(X) 

(2) d (ց, h) = 0 iff  f = h ∀ f ,h ∈  F(x) 

(3) d (ց, h) = d (h, f), ∀ f, h ∈  F(x) 

(4) d (ց, h) ≤ d (ց, k) + d (k, h), ∀  ց, h, k ∈ G(X), Then (G(X),d) is a metric space. 

Dfinition 3.7. 

Consider a linear space G(X) on the real field K. A (Co- F) sub set N of G(X) × G(X) → R is referred to 

as a (Co- F M) function on X (or co- F M) function on G(X) iff 

 (1) N(ց, h, t)  = 0, ∀  t ∈ R  with t > 0 

 (2) N(ց, h, 0) = 1 iff  ց  and h linearly dependent, ∀  t ∈ R with t > 0   

 (3) N(ց, h, t) =  N(h, ց, t),  

 (4) N(ց, h, t + s)  ≤  N(ց, k, t) ⊗ N(k, h, s)  ∀ t, s ∈ R   

 (5) N(ց, h, .) (0, ∞)  →  [0,l] is left continuous 

 Then (G(X), N) is a (Co- F M S). ∀  ց, h, k ∈ G(X) 

Dfinition 3.8. 

Let (G(X), N, ⊗) be a (Co- F M S)., and the open sphere is defined as S(ց, r, t) with center ց ∈ G(X) and 

radius r,  0 < r < l,  t > 0,  as  S(ց, r, t) = {ց ∈  G(X) : N(ց, h, t) < r }  

Remark 3.1.    

Let (G(X), N, ⊗) be a (Co- F M S)., and let ց, h ∈ G(X), t > 0,  0 < r < l, Then if  N(ց, h, t) < r  

 we can find   𝑡0   𝑤𝑖𝑡ℎ 0 <  𝑡0   <  𝑡 ∋   𝑁(ց, ℎ, 𝑡0)  <  𝑟 

 

Theorem 3.1.  

Let the  open sphere 𝑆(ց, 𝑟1, 𝑡) 𝑎𝑛𝑑 𝑆(ց, 𝑟2, 𝑡) With a single center ց ∈ G(X) and  with radius                

0 <  𝑟1 <  1  𝑎𝑛𝑑 0 <  𝑟2 <  1  correspondingly. Then we any have 

𝑆(𝑔, 𝑟1, 𝑡 ⊂ 𝑆(𝑔, 𝑟2, 𝑡), 𝑜𝑟 𝑆(𝑔, 𝑟2, 𝑡) ⊂ 𝑆(𝑔, 𝑟1, 𝑡)         

Proof:  

  Let ց ∈ G(X),  t > 0 and consider 𝑆(ց, 𝑟1, 𝑡) 𝑎𝑛𝑑 𝑆(ց, 𝑟2, 𝑡) 𝑤𝑖𝑡ℎ 0 <  𝑟1 <  1 𝑎𝑛𝑑 0 <  𝑟2 <  1   are 

open sphere,  𝑖𝑓 𝑟1 =  𝑟2 ,then the hypothesis holds. Next, we suppose that 𝑟1 ≠ 𝑟2. We may suppose 

without waste of energy. 𝐼𝑓 0 < 𝑟1 <  𝑟2 <  1, 𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑟1 <  𝑟2 𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑎𝑛 𝑖𝑠 𝑖𝑛 𝑆(ց, 𝑟1, 𝑡), it follows 

that  𝑁(𝑎, ℎ, 𝑡)  <  𝑟1 <  𝑟2. Assuming a belongs to 𝑆(ց, 𝑟2, 𝑡), Attempts to demonstrate that 

S(ց, r1, t) is less than S(ց, r2, t). Assuming 0 <  r2 <  r1  <  l, we may show that  S(ց, r2, t ⊆ S(ց, r1, t). 

Definition3.9. 

Let A be a subset of the (Co- F M S). and let the collection (G(X), N, ⊗) considered open such that           

0 < r < 1 if given any point a ∈ A and t > 0 then S(a, r, t)  ⊆ A. 
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Theorem 3.2. 

In a (Co- F M S). (G(X), N, ⊗), each open sphere represents an open set. 

Proof: 

Suppose an open sphere S(ց, r, t),  Now y ∈  S(x, r, t) infers that  N(ց, h, t) < r             

Since N(ց, h, t) < r  by remark(3.l) it is possible to find a point  𝑡0,   0 <  𝑡0  <  𝑡  ∋  𝑁(ց, ℎ, 𝑡)  <  𝑟 

Let 𝑟0 =  𝑁(ց, ℎ, 𝑡) <  𝑟    𝑠𝑖𝑛𝑐𝑒 𝑟0 <  𝑟, 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑠 𝑤ℎ𝑒𝑟𝑒, 0 <  𝑠 <  1  ∋  𝑟0  <  𝑠 <  𝑟, 

Using a given 𝑟0  and s in which 𝑟0  <  𝑠 we can now find an s, 0 <  𝑠 <  1 ∋  𝑁(ց, ℎ, 𝑡0)  <  𝑟  

Let  𝑟0  =  𝑁(ց, ℎ, 𝑡0)𝑠𝑖𝑛𝑐𝑒 𝑟0  <  𝑟,  it is possible to find an s, 0 <  𝑠 <  1, ∋ 𝑟0  <  𝑠 <  𝑟 

 Now considering 𝑟0  and s  s.t   𝑟0  <  𝑠, we can identify 

 𝑟1, 0 < 𝑟1 < 1 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑟0 ⊗  𝑟1 < 𝑠 𝑁𝑜𝑤 𝑙𝑒𝑡 𝑡ℎ𝑒 𝑏𝑎𝑙𝑙 𝑆(ց, 𝑟1, 𝑡 − 𝑡0), 𝑤𝑒 𝑠𝑎𝑦 𝑆(ℎ, 𝑟1, 𝑡 − 𝑡0) ⊂

 𝑆(ց, 𝑟, 𝑡). 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑘 ∈   𝑆(ℎ, 𝑟1, 𝑡0)  𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑠 𝑡ℎ𝑎𝑡 𝑁(ℎ, 𝑢, 𝑡 − 𝑡0)  <  𝑟1      

 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  𝑁(ց, 𝑢, 𝑡) <  𝑁(ց, 𝑢, 𝑡0)  ⊗    𝑁(ℎ, 𝑢, 𝑡 − 𝑡0)    

                                       <   𝑟0 ⊗  𝑟1    

                                       < s 

                                       < r.   

Hence u ∈ S (ց, r, t), and therefore 𝑆(ℎ, 𝑟1, 𝑡 − 𝑡0)  ⊂  𝑆(ց, 𝑟, 𝑡). 

Definition 3.10. 

The (Co- F M S).  (G(X), N, ⊗),we explain  a closed sphere with the center ց ∈ G(X) and the radius          

0 < r < 1,  t > 0, as S[ց, r, t] = { ց ∈ G(X) : N(ց, h, t)  ≤ r}   

Lemma 3.1. 

  In a (Co- F M S).  (G(X), N, ⊗), each closed sphere is a closed set. 

Proof: 

Since X is first countable, Let h ∈ S[ց, r, t]. There is a seq 

{ℎ𝑛} 𝑖𝑛 𝑆[ց, 𝑟, 𝑡] ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑠. 𝑡 𝑡ℎ𝑒 𝑠𝑒𝑞{ℎ𝑛}   𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑡𝑜 ℎ 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑁(ℎ𝑛, ℎ, 𝑡) converges to 0 for all t, for a 

given ϵ > 0 

𝑁(𝑔, ℎ, 𝑡 +  𝜀 )  <  𝑁(𝑔, ℎ𝑛, 𝑡)  ⊗  𝑁(ℎ𝑛, ℎ, 𝜀)  

Hence 

N(ց, h, t +  𝜀 )  < lim𝑛→∞ 𝑁(𝑔, ℎ𝑛, 𝑡) ⊗  𝑁(ℎ𝑛, ℎ, 𝜀)  

                          ≤   𝑟 ⊗  0 

                      = r 
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𝐼𝑓 𝑁(ց, ℎ𝑛, 𝑡) 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑, 𝑡ℎ𝑒 𝑠𝑒𝑞 {ℎ𝑛} contains a subseq denoted by  

{ℎ𝑛} 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑙𝑖𝑚𝑛→∞ 𝑁(𝑔, ℎ𝑛, 𝑡)  is existent, particularly for  n ∈ N  

𝑇𝑎𝑘𝑒  𝜀 =  
1

𝑛
  , 𝑡ℎ𝑒𝑛 𝑁(ց, ℎ, 𝑡 +  𝜀 )   =  𝑙𝑖𝑚𝑛→∞ 𝑁(𝑔, ℎ, 𝑡 +

1

𝑛
  )  ≤   𝑟     

Thus ց ∈ S [ց, r, t] closed set 

Definitions 3.11. 

  If the a (Co- F M S). (G(X), N, ⊗) , then     

(a) The seq  {𝑔𝑛} in G(X) is called  (Co- F) convergent to x in G(X) if all ϵ  ∈  (0,1) and all t > 0 

 ∃  𝑛0  ∈ 𝑍+  ∋  𝑁(𝑔𝑛, 𝑔𝑚, 𝑡)  <  𝜀   ∀  𝑛 ≥ 𝑛0              

(b) The seq {𝑔𝑛} in X  is called (Co- F) Cauchy seq if for every x in G(X) if  ∀ ϵ  ∈  (0,1) and each t > 0 

 ∃  𝑛0  ∈ 𝑍+  ∋  𝑁(𝑔𝑛, 𝑔𝑚, 𝑡)  <  𝜀   ∀  𝑛, 𝑚 ≥ 𝑛0   

  (c) A (Co- F M S) s.t every (Co- F) Cauchy seq is (Co- F) convergent is referred to as complete              

 Theorem 3.3. 

 (i) Each fuzzy convergent seq is (Co- F) Cauchy seq in (Co- F M S).  (G(X), N, ⊗)     

 (ii) In G(X), each seq has an unique limit. 

Proof: 

 (i) Suppose that {𝑔𝑛}  is the seq in G(X) ∋ , ∀  t > s > 0 

      lim𝑛→∞ 𝑁(𝑔𝑛, 𝑔, 𝑡 ) = 0  

      𝑁(𝑔𝑛, 𝑔, 𝑡 ) ≤  𝑁(𝑔𝑛, ց, 𝑡 −  𝑠)  ⊗  𝑁(𝑔𝑚, ց, 𝑠)     Taking limit as m, n → ∞   

       lim𝑛→∞ 𝑁(𝑔𝑛, 𝑔𝑚, 𝑡 ) ≤ 𝑙𝑖𝑚𝑛→∞ 𝑁(𝑔𝑛, 𝑔, 𝑡 − 𝑠 ) ⊗ 𝑙𝑖𝑚𝑛→∞ 𝑁(𝑔𝑚, 𝑔, 𝑠 ) = 0 ⊗  0 =  0       

      𝐵𝑢𝑡 𝑙𝑖𝑚𝑛,𝑚→∞ 𝑁(𝑔𝑛, 𝑔𝑚, 𝑡 ) ≤  0  𝑡ℎ𝑒𝑛 𝑙𝑖𝑚𝑛,𝑚→∞ 𝑁(𝑔𝑛, 𝑔𝑚, 𝑡 ) = 0 , ⇒ {𝑔𝑛}   is (Co- F) Cauchy seq 

      in X . 

(ii) 𝐿𝑒𝑡 {𝑔𝑛}𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑞 𝑖𝑛 𝐺(𝑋)  ∋   𝑔𝑛 ⟶    ց 𝑎𝑛𝑑 𝑔𝑛 ⟶   ℎ 𝑎𝑛𝑑  ց ≠  ℎ 𝑡ℎ𝑒𝑛 ∀ 𝑡 >  𝑠 >  0 >

      𝑙𝑖𝑚𝑛→∞ 𝑁(𝑔𝑛, 𝑔, 𝑡 ) = 0   

      𝑇ℎ𝑒𝑛  𝑙𝑖𝑚𝑛→∞ 𝑁(𝑔𝑛, ℎ, 𝑠 ) = 0,   𝑙𝑖𝑚𝑛→∞ 𝑁(𝑔𝑛, ℎ, 𝑡 − 𝑠 ) = 0     

      𝑁(ց, ℎ, 𝑡)  ≤  𝑁(𝑔𝑛, ց, 𝑠)  ⊗   𝑁(𝑔𝑛, ℎ, 𝑡 −  𝑠)                                                                                                                                                                                                            

      Taking limit 

      𝑁(ց, ℎ, 𝑡)  ≤  𝑙𝑖𝑚𝑛→∞ 𝑁(𝑔𝑛, 𝑔, 𝑠 )  ⊗ 𝑙𝑖𝑚𝑛→∞ 𝑁(𝑔𝑛, 𝑔, 𝑡 − 𝑠 ) = 0    
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N(ց, h, t)  ≤  0 ⊗ 0 = 0   but  N(ց, h, t)  ≤ 0  ⇒  N(ց, h, t) = 0 

= h   ց Then by axiom (2) 

Definition 3.12. 

 If (G(X), N, ⊗) is a (Co- F M S)., then the (Co- F) closure of A is defined as a subset 𝐴̅ of G(X)  

 𝐴 ⊂  𝐺(𝑋) 𝑖𝑓 𝑓𝑜𝑟 𝑎𝑛𝑦 ց ∈ 𝐴̅, 𝑎 ∈  𝐺(𝑋) there exists a seq                            

{𝑔𝑛} 𝑖𝑛 𝐴  ∋  𝑙𝑖𝑚𝑛→∞ 𝑁(𝑔𝑛, 𝑔, 𝑡 ) = 0,  ∀  𝑡 >  0 

Theorem 3.4. 

Let A be a (Co- F) subspace of complete (Co- F M S).  G(X) then A is complete (Co- F) space iff  it is 

(Co- F) closed in G(X)  

Proof 

Let A be a complete (Co- F M S). and let 𝑔 ∈  𝐴̅  there exist a seq {𝑔𝑛} 𝑖𝑛 𝐴 ∋   𝑔𝑛 → 𝑔 𝑡ℎ𝑒𝑛 {𝑔𝑛}           

Is a (Co- F) Cushy seq in A, since A is a complete (Co- F)  space.  

⟹   𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 ℎ ∈ 𝐴̅  ∋ 𝑔𝑛 ⟶ ℎ,  but the (Co- F) converge is unique       

ℎ ⟹    𝑔 ⟹   𝑔 ∈  𝐴 ⟹   𝐴 ̅ ⊆   𝐴      

Then A is closed (Co- F) subspace. 

Conversely, let us assume that A is a closed (Co- F) subspace within G(X) 

𝐿𝑒𝑡 {𝑔𝑛}   be a (Co- F) Cauchy seq in A  

𝑆𝑖𝑛𝑐𝑒 𝐴 ⊂  𝐺(𝑋)  ⟹  {𝑔𝑛} is a (Co- F)  Cauchy seq in G(X)  

Because G(X) is a complete fuzzy space, there is 𝑔 ∈ 𝐺(𝑋) ∋  𝑔𝑛 ⟶  𝑔 𝑠𝑖𝑛𝑐𝑒 𝑔𝑛  ∈ 𝐴 ⟹  𝑔 ∈  𝐴̅            

                                                                                                                                                                     

Since A is closed (Co- F)  set  in G(X),  

𝐴̅  =   𝐴 ⟹  𝑔 ∈ 𝐴 ⟹ {𝑔𝑛} is (Co- F)   converge seq in A then A is complete (Co- F) subspace           
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