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1. Introduction

Many researchers have studied deferent tvpes of reliability and Baves estimator of them , K. Kumar
et.al.[11 were computed Bavesian and classical estimates and maximum likelihood estimators then
correspondina asymptotic confidence intervals were developed for unknown parameters in the inverse
Chen distribution under type Il ioint control.. Alwan and Karam [2] considered estimatina the
dependability of a parallel redundant system with separate Weibull-Rvleigh probability density
functions for strenath and stress, three approaches were used to estimate the dependability parameters:
the maximum likelihood. moments, and percentiles methods in the end. the reliability estimate was
determined, and the most accurate estimation techniaue for each scenario was provided. applyina the
mean sauared error standards. The percentiles method was determined to be the most accurate
estimatina techniaue. Joshi and pandit [31 estimated the stress-strenath of the (s-out —of —k) system for
ICD. Karam and Jasem [4] with one known parameter and unknown parameter it is derived the
reliability of n-cascade stress-strenath system model based on the Gumbel Tyvpe-2
distribution.Mubarak and Ashraf [51 they were examined Bavesian estimates under the influence of the
symmetric loss function, where comparisons between the different estimators were aiven considerina
that the problem of estimatina parameters other than the inverse Chen distribution is obtained based on
record values as upper record.In this article the reliability estimation of a parallel redundant stress-
strenath system by the unknown tow parameters from Inverse Chen distribution will be discussed, with
cumulative distribution function (cdf) as follow [5], [6]

F(x) = ea(l_ex_ﬁ), x>0;apf >0 (1)

And the probability density function (pdf)of Inverse Chen distribution (ICD) is

x~B
F@) = aprm e 07) L ap S0 (2)
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Where( a, p) is the shape and f is the scale parameter.

2. The Parallel System Stress-strength Reliability

Let we define Y as the stress random variable such that Y~ICD (u, B) and let X be define as strength
random variable with X~ICD (a, ) then.

B} -8 -8

g() = pupy~ Py FPor=e""  sothat  E.(y) =1-—e*@=¢" ) forourreal Y
-5

R(Y) =1—-F,(y) = e*1=¢” ") and

v 7"
Rp()’) =1—-[1- R(y)]k =1— [1 — pa(l-e )]
Using binomial expansion were,

(x+y)rk=Yk, ¢k x*t yi we can find

k

i k

AN _ i

R,(y) = ZCi" (—e"‘(1 e’ )) =1 —Z ck (—1)le®-¢"")
i=0

i=0
So, the overall real Y can be get as

(o]

o k
Ro= [ B0) 90) dy = [(1= ) e e =) g0y ay
0 i=0

0

k )
=1 —Z cf (—1)if eai(l_ey_ﬁ) up y~a+h) S eu(l—ey_ﬁ) dy
i=0 0

1

Ro=1-T3k, Cf (“1 1B s

Then

Ro=1-Xi Cf (-1
3)

3. Bayes analysis

The Bayes estimators of reliabilities R, are provided in this section based on a left censored sample
and employ the (quadratic loss function, weighted loss function, linear exponential loss function and
squared error loss functions) using gamma prior

3.1 The left censored sample.
From the invers chen distribution, a sample of size “’n’” has been chosen, and least(minimal) ‘r > The
suppressed observations, this implies that the final (x4, ..., x,, ) Values that are arranged can only be

seen. then the probability function for the left data observations x;, ... x,, , as used by Mitra and Kundu
(2008) :[7]
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L(alx) = f(Xera1ys - Xy @4, 0) = f—:(F(x(m)))r f(xg+n) - f (xamy)

- :_" [F(x(r+1))]r 1[ fop = :—: [e“(l—ex_ﬁ)]r ﬁ [a,B -(+0) ex_ﬁea(l_ex—ﬁ)]

i=r+1 i=r+1

n

. 5 -8
_r e“r(l—ex(r+1))l a™Tpnr | | xi_(1+ﬁ)e2?=r+1xi_ﬁ eaz?ﬂ“(l_e% )
7!

i=r+1

Let D =2 B [T, yy ;- (+PeSirs s’

-B s
L(a|x) = De“r(l—ex(’"“))an—r ea2?=r+1(1+exl )

P -B
b . al r(1-e (T+1)+Z?=r+1(1—exi )
= a e

B -
And letting @, = r(1—e* e+ + ¥ (1 — ek B) then we can written as:

L(a|x) =D a™ 7 e%x 4)
3.2 Bayes procedure

By determining the posterior function under the gamma prior function using the Bayes method:

n(a) = ?—Za’a"l e @  a>0,ab >0 (5)

The posterior function can be found form the relation:

L(a|x) m(a)
foooL(a|x) n(a) da

p(alx) =

By using (4) and (5) we get :

_ b* .1 _
Danrea(bx I‘_O(aaleab

a
fooD an—T ea%x b_aa—l e~ dg
0 [

p(alx) =

b«
D T qnTrta-1 e—a(b—Q)x)

B b® (oo n-r+a-1 p—a(b—0y)
D gl @ e x) da
Using the following integration formula [°y** e™fda = ;—“ (6)
an—r+a—1 e—a(b—d)x)
plalx) = n—r+a/(b— ¢ )"+
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_ n-r+a
C I‘:i)rﬂz gTHa-1 g—alb—¢y) ()

p(alx) =
3.2.1 Squared error loss function

The squared loss function is used by the Bayes estimator for o given as:[8]

@ = E(alx) = [ a p(alx) da 8)

By comp.equ. (7) in (8) can we get:

qnta-r-1 e—a(b—Q)x) da

R J‘OO (b — (Z)x)n—r+a
s = a
0

In—r+a

. (b — @x)n—r"ra
ST I'm—-7r+4a

[0/0)
j anta—r o=ab=0x) qq
0

Using equation (6) can we get:

. b=0 )" Tn—-r+a+l
ST Tn—r+a (b—@,)nrtatl

SinceT'a = (¢ —1)! ,wecanget:

2 _(n+a—r) ) _(m+a—r)
T -0 T = ,)

And the reliabilities estimation function in eq. (3) we get:

A

k
§0=1—2c{< -1 —~

S
e Ui + Us
i=0

3.2.2 Quadratic loss function

The Quadratic loss function is used by the Bayes estimator for a. which given as:[9]

__ E(a7x)
o E(a™2|x) (9)

Qg

E(a Yx) = fooo a ! p(alx) da
(10)

By comp. equ. (7) in (10) we get

qnhta-r-1 e—a(b—(z)x) da

B = | Y Gl 0l

0 In—r+a

B (b _ @x)n—r+a
" I'm—-r+a

[ee]
f qhta-1-2  o=a®=0x) 4
0
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=0 )" Tn—r+a-1
- I'm—-r+a (b-9@,)nTrta1

(b—0x)
(n-r+a-1)

E(alx) = (11)

E(a™?|x) = fooo a=? p(a|x) da (12)

We put equation (7) in (12) we can get

qnhta-r-1 e—a(b—(bx) da
0 'n—r+a

B (b — Q)x)n—r+a
 I'm—-r+4a

[e/0)
j qnta-r-3 e—a(b—®x) da
0

(b-0 )™ Tn—r+a-2
n—r+a “(b—@,)nT+a2

(b—0y)?
(n-r+a-1)(n-r+a-2)

E(a™?|x) = (13)

We put equation (11) and (13) in (9) we can get:

(b_(bx) (b_(bx)z
T (n—-r+a-1) /(n—r+a—1)(n—r+a—2)

1N

n—-r+a-2) , (m—-r+a-2)
T -0 T (b-vy)

D

And the reliabilities estimation function in eq. (3) we get:

3.2.3 The Weighted loss function

The weighted loss function is used by the Bayes estimator for a. Which given as[8]:

~ _ -1

a, = (E(a 1 |x)) (14)
By making up for it (11) in (14) we get

1
T -0/ n—-r+a-1

., (m—-r4+a-1) .  (m-r+a-1)
WS T -0y T T -0y
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And the reliabilities estimation function in eq. (3) we get:
k A
- . Aw
Row =1— E k(-1 ——
ow Cl ( ) & ﬁ

+
i=0 w w

3.2.4. Linear exponential loss function

The Bayes estimator for a using Linear exponential as loss function given as:[10]
a, = %ln E(e " |x) (15)

E(e “*|x) =J. e p(alx)da
0

o n-r+a
— j e—ca (br_ ¢x)+ qn-T+a-1 g—alb—dx) 4,
0 n—r+a

_ =g
 I'm—r+4a

o
j an—r+a—1 e—a(b—(z)x+c) da
0]

=0 )"T Tn4a-r
~ TI'm—r+4+a ‘(b—p e

_ (b_¢x)n—r+a
E(e™x) = g5 e (16)

By compensating (16) in (15) we get:

s =1 ((b—qu)n-”a

ap = c (b—pr+c)n-T+a

) Then the estimates will be as

L -1 b—chy )n+a—r " (b—¢y )m+a—r
L = c In (b—¢x+c HL = c In b—¢y+c

And the reliabilities estimation function in eq.(3) we get:

k A

§0L =1 —chk (—1)i ,\L

. @, + Ay

=0

4. Simulation study

A simulation study of size (1000) was used to estimate the shape parameters (o) using four loss
function that were derived in the section 3 to obtain the best estimate using the mean square error and
Monte Carlo simulation using the MATLAB (2013) program. four sample sizes were used: small, a
little more, medium large (15,30,50,100), value(c=1) and the prior distribution (a, b). From equation
(1), we let U = F(x) where uniformly distributed over (0,1). And the random sample is generated by:

xB _ x=B —
U= ea(l_e ) = InU = lnea(1 ) = InU = a(l —e* B)
-B an an -B an -B
l1—e* =—=1——=¢" —>ln(1——)=lnex
a a a
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-1
InU

xF =In (1 - I"TU) therefore, we get: X = (l" (1 - 7)>?

Table 1. The best estimate when(a,f,1)=(2,1,2.9 )and (a,b.k,c,r)=(3,2.5,4,1,2) R,= 0.8829

(n .m) BS BQ BL BW best
(15,30) 0.0026 0.0023 0.7796 0.0025 BQ
(30,15) 0.0059 0.0080 0.0137 0.0068 BS
(50,15) 0.0064 0.0099 0.0137 0.0079 BS
(50,30) 0.0027 0.0031 0.0137 0.0029 BS
(15,50) 0.0069 0.0116 0.0137 0.0089 BS
(30,50) 0.0016 0.0015 0.7796 0.0015 BQ,BW
(100,15) | 0.0089 0.0137 0.0116 0.0069 BW
(15,100) | 0.0018 0.0025 0.7796 0.0021 BS
(100,30) | 0.0025 0.0033 0.0137 0.0028 BS
(30,100) | 0.0012 0.0013 0.7796  0.0012 BS,BW
(100,50) | 0.0013 0.0015 0.0137 0.0014 BS
(50,100) | 0.0011 0.0010 0.7796 0.0011 BQ

Table 2. The best estimate when(o,,1)=(1.5,0.6,0.1 )and (a,b.k,c,r)=(1.5,3,4,1,2) R0O= 0.1270

(n ,m) BS BQ BL BW best
(15,30) 0.0033 0.0045 0.0161 0.0038 BS
(30,15) 0.0027 0.0021 0.7614 0.0024 BQ
(50,15) 0.0018 0.0014 0.7621 0.0016 BQ
(50,30) 0.0011 0.0009 0.6669 0.0010 BQ
(15,50) 0.0033 0.0052 0.0161 0.0041 BS
(30,50) 0.0013 0.0015 0.0161 0.0014 BS
(100,15) | 0.0019 0.0015 0.7621 0.0016 BQ
(15,100) | 0.0029 0.0051 0.0161 0.0038 BS
(100,30) | 0.0008 0.0006 0.7621 0.0007 BQ
(30,100) | 0.0011 0.0015 0.0161 0.0013 BS
(100,50) | 0.0005 0.0004 0.7621 0.0005 BQ
(50,100) | 0.0006 0.0007 0.0161 0.0007 BS

Table 3. The best estimate when(a,B,1)=(2,1.1,0.3 )and (a,b,k,c,r)=(1.5,3,4,1,2) Ry= 0.2575

(n ,m) BS BQ BL BW best
(15,30) 0.0119 0.0159 0.0663 0.0137 BS
(30,15) 0.0068 0.0054 0.5514 0.0060 BW
(50,15) 0.0059 0.0048 0.5514 0.0053 BQ
(50,30) 0.0035 0.0031 0.5514 0.0033 BQ
(15,50) 0.0103 0.0158 0.0663 0.0127 BS
(30,50) 0.0044 0.0051 0.0663 0.0047 BS
(100,15) 0.0046 0.0041 0.5514 0.0042 BQ
(15,100) 0.0104 0.0174 0.0663 0.0134 BS
(100,30) 0.0026 0.0023 0.5514 0.0024 BQ
(30,100) 0.0038 0.0051 0.0663 0.0044 BS
(100,50) 0.0016 0.0014 0.5514 0.0015 BQ
(50,100) 0.0021 0.0024 0.0663 0.0022 BS

Table 4. The best estimate when(a,B,1)=(1.9,0.5,2.3 )and (a,b,k,c,r)=(1,3,2,1,3) R,= 0.7182

(n ,m) BS BQ BL BW best
(15,30) | 0.0062 0.0077 0.5158 0.0068 BS
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(30,15) 0.0127 0.0176 0.0794 0.0148 BS
(50,15) 0.0159 0.0244 0.0794 0.0196 BS
(50,30) 0.0051 0.0059 0.0794 0.0055 BS
(15,50) 0.0077 0.0112 0.5158 0.0092 BS
(30,50) 0.0036 0.0038 0.5158 0.0037 BS
(100,15) 0.0199 0.0318 0.0794 0.0251 BS
(15,100) 0.0093 0.0145 0.5158 0.0117 BS
(100,30) 0.0059 0.0077 0.0794 0.0067 BS
(30,100) 0.0036 0.0045 0.5158 0.0040 BS
(100,50) 0.0027 0.0030 0.0794 0.0028 BS
(50,100) 0.0020 0.0022 0.5158 0.0021 BS

Tableb. The best estimate when(a,f3,u)=(2.5,1.3,1 )and (a,b.k,c,r)=(1,3,2,1,3) R,=0.4048

(n ,m) BS BQ BL BW best
(15,30) 0.0039 0.1638 0.0042 0.0037 BW
(30,15) 0.0074 0.0075 0.3543 0.0073 BW
(50,15) 0.0066 0.0086 0.3543 0.0073 BS
(50,30) 0.0045 0.0043 0.3543 0.0044 BQ
(15,50) 0.0221 0.0324 0.1638 0.0267 BS
(30,50) 0.0076 0.0088 0.1638 0.0082 BS
(100,15) 0.0079 0.0121 0.3543 0.0096 BS
(15,100) 0.0238 0.0369 0.1638 0.0296 BS
(100,30) 0.0033 0.0039 0.3543 0.0036 BS
(30,100) 0.0075 0.0097 0.1638 0.0085 BS
(100,50) 0.0022 0.0023 0.3543 0.0023 BS
(50,100) 0.0033 0.0038 0.1638 0.0035 BS

5. Discuss the results

In tables (1) and (2) when different sample sizes were taken as shown above values were taken
(a,B,1)=(2,1,2.9)=(1.5,0.6,0.1) respectively and the parameters was also reduced( a) and raised (b) the
best estimate was obtained (BS)as for the second table (BQ,BS), because it achieved the lowest (
MSE).

In the table (3) it we took (a,B,u)=(2,1.1,0.3) the changes (a=1.5,k=4, r=2) that occurred while holding
the other values constant. we obtained the best estimate(BS) ,because it achieved the lowest ( MSE) .

In the table (4) the values of (a,B,1)=(1.9, 0.5, 2.3) were taken ,and the values of (a=1, k=4,r=2) were
changed while holding the other values constant .the best estimate for all sample sizes was obtained
(BS) because achieved it the lowest ( MSE).

In table (5) we took (a,B,1)=(2.5,1.3,1)and the values (a=1,k=2,r=3)we obtained the best estimate (BS)
too because it achieved the lowest ( MSE).

6. Conclusion

By observing the results in the tables above and using the mean square error, the best estimate was
obtained, which is the least mean square error for left data and Bayes estimators (BS, BQ, BW) as
arranged above under Bayes estimators.
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