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Image Denoising: Smooth Total Variation
Minimization for 5G Enhanced Mobile Broadband
Transmission System
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a Computer Science Department/University of Kirkuk, Iraq
b Computer Science Department/Tikrit Universit, Tikrit, Iraq

ABSTRACT

Image denoising is an important area of computer vision. Rudin-Osher-Fatemi model based on a gradient is one of
the simplest models used in image denoising to solve the problem of restoring the clear image. The challenge in solving
this model is the non-differentiability of Total Variation function (TV-function) minimization. Image transmission is
widespread over wireless systems, including the fifth generation (5G) cellular network. Transmission impairment can
affect transmitted images, including noise, attenuation, and distortion. This study proposed a new smoothing technique
to make the TV-function differentiable and smooth. The new smoothed function was used for de-noising images with
the help of the gradient descent method in minimization. Two transmission systems were proposed, additive white
Gaussian noise (AWGN) and 5G enhanced mobile broadband (eMBB), to evaluate the performance of the proposed
approach. The denoising technique proved convincing over AWGN and 5G eMBB channel models, reducing the noise
effect on the transmitted images. Compared with the noisy image, the gains achieved by the denoised image reached
7.4 and 4174.1 for peak signal-to-noise ratio and mean square error, respectively. These gains are achieved at the
low and moderate signal-to-noise ratio regions, while at the high signal-to-noise region, the quality of the noisy and
denoised images is almost the same.

Keywords: Total variation, Smoothing function, Image denoising, 5G eMBB, mmWave

1. Introduction

The beginning of the fifth generation (5G) of the
digital cellular system was in 2015 [1]. 5G provides
new types of services and applications not supported
by the previous cellular systems [1, 2]. The fifth mo-
bile generation introduces three use cases which are
Enhanced Mobile Broadband (eMBB), Massive Ma-
chine Type Communications (mMTC), and Ultra Reli-
able Low Latency Communications (URLLC). Further,
5G is the first cellular system that uses a new band
of spectrum called millimetre waves (mmWaves) in
addition to the use of a multi-input multi-output

(MIMO) antenna [1, 3]. The eMBB use case, which
was deployed in 2019, provided a variety of appli-
cations and services to end users with less latency
and a lower error rate than 4G, so eMBB is consid-
ered an evolution of 4G. Like the previous ones, this
cellular network transmits all forms of data, includ-
ing images. The last one may suffer from distortion
during transmission over a wireless channel because
of noise, fading, multi path propagation, interference,
and other transmission impairments. Image denoising
is a crucial field in which many applications deal with
image transmission that somehow needs to recover
the original image and reduce the noise effect [2, 4].
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In this paper, we consider all images to be in size
n ∗ n. Let x′ ∈ � ∈ Rn2 be the original image, and let
ω ∈ � be Gaussian noise. A degraded image y ∈ �
characterized as follows.

y = x′ + ω (1)

To improve the image and remove noise, this can be
solved by taking the inverse of the model Eq. (1),
taking into account that regularization techniques try
to combine both data-fidelity terms and the model
presented in Eq. (1), and put them in the appropriate
objective function, and considering the solution to
this function as a minimization problem, which is
described as follows

min
f
{‖ f − y ‖ + λJ( f )} (2)

where J( f ) is the regularization term and the positive
number λ is an equalizer between the two terms in the
model Eq. (2). We must choose the appropriate math-
ematical model for the proposed image to obtain good
and accurate results. There are many different math-
ematical models for describing digital images [4–6].
The total Variation function model (TV function) is an
important and effective model for describing digital
images because of its capacity to restore the image’s
edges and preserve its texture very efficiently. The TV
function model was first introduced by researchers
[7] as a regularizer to reduce image noise, and was
later developed and used for denosing [8], and seg-
mentation [9, 10]. So the model in Eq. (2) can be
reformulated based on the TV function as follows:

min
f
{‖ f − y‖22 + λJTV ( f )} (3)

where JTV ( f ) = ‖∇ f‖1 =
∫
�
|∇ f |d� represent the TV

function, y is a degraded image and f is the image we
want to obtain after processing. The model, defined in
Eq. (3), contains the TV function, and this function is
convex, which indicates that the minimizer is unique.
On the other hand, as we mentioned previously, this
model is good and effective for removing image noise.
Still, there is a problem with the TV function as it
is not differentiable due to the presence of the norm
term, which is difficult to minimize, and its gradi-
ent flow is not well-defined. This problem prompted
many researchers to reformulate the model and find
an alternative that can be derived [11, 12]. Many
researchers have presented alternatives to solve the
problem in model Eq. (3); for more information, see
[7, 13]. In this paper, we present a new method to
solve the problem in model Eq. (3), and then we min-
imize the new function using one of the local search
methods. The gradient descent method [14, 15] is one

of the proposed local methods for image denoising
and optimization, which has been used to minimize
the new function and obtain a good image. Global
smoothing was used to solve the problem of model
Eq. (3) and make it differentiable. In general, smooth-
ing techniques can be classified into two categories:
local [16, 17] and global [18, 19].

In this study, we introduce a new global technique
to make TV-function differentiable, and then we use
it to denoise the received images in a 5G eMBB trans-
mission system. The structure of this document is
as follows: in Section 2, several relevant works are
provided. Section 3 defines our study and explains our
problem’s mathematical solution. Section 4 explains
how to adapt the results Section 3 to the denoising
problem. In Section 5, additive white Gaussian noise
(AWGN) and 5G channel models are presented. The
simulation results were shown and discussed in Sec-
tion 6. Lastly, the conclusion was given in Section 7.

2. Literature survey

Image denoising is a critical issue for wireless com-
munication. The images have to be delivered to the
receiver with minimum noise effects. Many studies
presented in the literature are concerned with this
topic.

In [20] a 34-layer hybrid convolutional neural
network (HCNN) scheme was proposed to denoise
complex images and overcome the poor performance
of the single deep CNN. The HCNN combines sev-
eral blocks including a single convolution, RepVGG
block, dilated block, and feature refinement block.
The proposed scheme provided good performance for
image and blind denoising. A multi-stage wavelet
transformation with convolutional neural network
image denoising was proposed in [21], including
three stages: enhancement blocks, cascaded wavelet
transform, and enhancement blocks. The proposed
system outperforms several widespread denoising
methods in terms of qualitative and quantitative. In
[22] a dual-tree complex wavelet transform was uti-
lized along with the bio-inspired optimization process
and artificial neural network to introduce a technique
for image denoising. This approach divided the noise
into bands by wavelet transform. Then, wavelet-free
coefficients were provided by using the neural net-
work. Finally, an optimization algorithm was used
to threshold the wavelet coefficients. The introduced
scheme provided better performance than other clas-
sical methods.

A hyperspectral image denoising model was pro-
posed in [23] with hybrid spatial-spectral total
variation and tensor decomposition. The correlations
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among the modes were inspected, and regularization
was presented to avoid over-smoothing. The simu-
lation result shows the superior performance of the
proposed method. In [24] a model for representing
the total variation regularization was introduced by
combining high-order total variation with total varia-
tion to overcome the staircase artifact problem which
may occur during the removal of the mixed Poisson-
Gaussian noise. The results exhibit the advantage of
the proposed model compared with various state-of-
the-art algorithms.

A cross-transformer denoising approach was pro-
posed in [25] with serial, parallel, and residual blocks
to produce spotless images for composite scenes. The
transformer mechanisms are embedded into the SB
and PB to extract complementary salient features
to remove noise. Experiments illustrate that this ap-
proach is better than some denoising methods in real
and synthetic image denoising.

3. Theoretical part

In this paper, we denote L2−norm (Euclidean norm)
by ‖x‖ =

√
xT .x, x ∈ Rn and L1−norm on [a, b] as fol-

lows [18]:

‖Cr‖L1[a,b] =

∫ b

a
|Cr(x)|dx

where Cr is a continuous function on the interval
[a, b], a, b ∈ R.

Definition 1: [18]: If we have the continuous func-
tion h : Rn

→ R. Then the function h̃ : Rn
× R+→ R

considers a smoothing function of h(x), if h̃(., σ ) is
continuous and differentiable function in the domain
Rn for any fixed σ , and for any x ∈ Rn,

lim
z→x,σ→0

h̃(z, σ ) = h(x).

In this section, we suggest a new approach for
creating the TV-function differentiable as follows: let
‖u‖ = ‖∇ f‖ and we rewrite the term |u| in one dimen-
sion as follows:

φ(u) = |u| = 2uS(u)− u (4)

where the function S : R→ R is defined by

S(u) =
{

1, u ≥ 0,
0, u < 0.

As explained above, the function S(u) is non-smooth,
and as a result, φ(u) is also non-smooth that mean
when S(u) = 1 the function φ(u) = u and if S(u) = 0

Fig. 1. The functions φ(u) and φ̃σ (u) with deferent values of σ .

the function φ(u) = −u. Therefore, as we know the
function φ(u) is not smooth, to solve this problem and
make the function φ(u) smooth, it is enough to try
to find an alternative to the function S(u) and make
it smooth. In this section, we present a new global
smoothing technique and an alternative to the S(u)
function. In fact, any smoothing function S̃σ (u) can
be used as an alternative to S(u) taking into account
the following properties:

. limu→∞ S̃σ (u) = 1,

. limu→−∞ S̃σ (u) = 0,

. ∀u ∈ R, S̃′σ (u) > 0,

. ∀u ∈ (−∞,0), S̃′′σ (u) < 0 and ∀u ∈ [0,∞), S̃′′σ (u)≥ 0.

Concerning our methodology, we suggest the follow-
ing smoothing function

S̃σ (u) =
1

1+ e −u
σ

(5)

where σ ≥ 0 is a smoothing parameter. It is clearly,

lim
σ→0

S̃σ (u) =


1 u > 0,
1
2 u = 0,
0 u < 0.

(6)

The parameter σ has a major role in controlling the
function S̃σ (u) as it is used to squeeze the function
S̃σ (u) to be asymptotic to the function S(u), which
means when σ → 0, then the function S̃σ (u)→ S(u).
Finally, we obtain the smoothing version for the func-
tion φ(u) by using Eq. (5) instead of S(u) as follows:

φ̃σ (u) = 2uS̃σ (u)− u. (7)

and we can see the functions φ(u) and φ̃σ (u) with
deferent values of σ in Fig. 1. Based on the above
features of the function S̃σ (u) we introduce the
following outcomes.
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Theorem 1: Suppose the functions S̃σ (u) and S(u) are
defined in Eqs. (4) and (5), then for any σ > 0

‖S̃σ (u)− S(u)‖L1 ≤
1.39
σ

.

Proof. Since we have u ∈ (−∞,∞) then

‖S̃σ (u)− S(u)‖L1 =

∫
∞

−∞

|S̃σ (u)− S(u)|d(u)

=

∫ 0

−∞

|S̃σ (u)− (0)|d(u)

+

∫
∞

0
|S̃σ (u)− 1|d(u)

≤
1.39
σ

.

Theorem 2: If the function φ̃σ (u) is a smoothing func-
tion of φ(u), then

‖φ̃σ (u)− φ(u)‖L1 ≤
1.65
σ 2 .

Proof. We have

‖φ̃σ (u)− φ(u)‖L1 =

∫
∞

−∞

|φ̃σ (u)− φ(u)|du

= 2
∫
∞

−∞

|u(S̃σ (u)− S(u))|d(u)

= 2
∫ 0

−∞

|u(S̃σ (u)− (0))|d(u)

+ 2
∫
∞

0
|u(S̃σ (u)− 1)|d(u)

≤
1.65
σ 2 .

Theorem 3: Assume that φ̃σ (u) is a smoothing func-
tion of φ(u), then

lim
σ→∞

φ̃σ (u) = φ(u).

Proof. Since the function S̃σ (u) is smooth, then the
function φ̃σ (u) in Eq. (7) should also be defined as a
smooth for any σ > 0. From the Theorem 1, it can be
obviously recognized that φ̃σ (u) approaches to φ(u)
when σ →∞.

4. Denoising using modified total variation

We employ the rustles from the previous section
in this one to make the TV-function smooth. As we

mentioned before, we have

JTV ( f ) = ‖∇ f‖

and this function’s gradient can be computed as

∇JTV ( f ) = div
(
∇ f
‖∇ f‖

)
.

The gradient of the TV-function is not defined if at a
pixel x one has f (x) = 0. This means the TV-function
is difficult to minimize, and its gradient flow is poorly
defined. To overcome this problem, we consider that
instead, a smooth TV-function

JσTV ( f ) = 2∇ f ϕ̃(∇ f )−∇ f (8)

and

ϕ̃(∇ f ) =
1

1+ e
−∇ f
σ

where σ > 0 is a parameter. Now, the problem which
was defined in Eq. (3) can be reformulated based on
smoothed TV-function as

min
f
{‖ f − y‖22 + λJσTV ( f )} (9)

We can obtain a good solution for image denoising
by using Eq. (9) with the assistance of a gradient de-
scent minimization method, as described in the next
algorithm.

5. Channel model

Two transmission system models were proposed
to evaluate the submitted image denoising tech-
nique. The first transmission system is based on an
AWGN channel with a binary phase shift keying
(BPSK) as a modulation scheme [26], while the sec-
ond transmission system is based on a 5G eMMB
environment. The last model includes the following
components:

1. LDPC encoder/decoder is used for channel cod-
ing with a message length 3832 and a coding
rate 1/3. This code is supported with the Cyclic
Redundancy Code (CRC) for superior perfor-
mance. The maximum number of iterations used
in the LDPC decoder is 8 [27, 28].

2. Quadrature Phase Shift Keying (QPSK) is em-
ployed for signal modulation and demodulation
to achieve spectral efficiency [29, 30].

3. Orthogonal frequency division multiplexing
(OFDM) with a length of 2048 and cyclic prefix
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Algorithm
Step1. Locate k = 0, given σ > 0, λ > 0, ε > 0 as a stopping condition, and τ > 0 as a step.
Step2. Suppose f0 = y, where y is a degraded image.
Step3. Find a new solution f (k)+1 as follows

f (k)+1
= f0 − τ ( f0 − y + λ∇JσTV ( f0)).

Step4. If ‖ f (k)+1
− f0‖ > ε then take f0 = f (k)+1, set k = k+ 1 and goto (Step3); else stop the algorithm

and goto (Step5).
Step5. Take f (k)+1 as the best solution of image denoising operations.

of length 144 with a subcarrier spacing of
120 KHz is utilized for signal mapping [31, 32].

4. A multiple-input and multiple-output (MIMO)
antenna with a dimensionality of 4× 4 is applied
using Space-Time Block Coding (STBC) [29, 30].

5. A fading channel model approved by 3GPP with
a 5G environment is considered. This channel
has a maximum bandwidth of 2 GHz and is
defined over a frequency range between 0.5
and 100 GHz. This channel model is the tapped
delay line E-channel for the umi-street canyon.
The proposed channel includes three taps at a
carrier frequency of 39 GHz. This frequency lies
within the (mmWave) spectrum. The path gains
are [−0.03 −15.8 −18.1] in dB. The normalized
delays for the taps are [0 0.5133 0.5440] with
a delay spread of 30 ns. The K-factor used with
this model is 22 dB [33]. A maximum Doppler
shift of 77.784 Hz is considered for 3 Km/Hr
relative velocity between the transmitting and
receiving nodes. The bandwidth of the proposed
channel is 200 MHz [31, 34].

6. Simulation result and discussion

In this part, three standard images with a size of
256*256 pixels were used to assess the effectiveness
of the suggested denoising approach to minimize the
effect of noise on images. These images are the “pep-
per image”, the “camera-man image”, and the “Lena
image”. The Matlab R2021of version (9.10) was used
to implement and simulate the proposed system. Two
transmission systems, illustrated in Section 5, were
utilized to evaluate the image-denoising technique.
The simulation results and the discussion of these
results are presented in this section.

Two metrics are used to evaluate the performance
of the proposed systems which are Peak Signal-to-
Noise Ratio (PSNR) and Mean Esquire Error (MSE).
PSNR is an evaluation metric widely used to deter-
mine the ratio between image and noise power. PSNR
can be presented mathematically according to the

following equation [20]:

PSNR = 10× log10

(
MAX2

I
MSE

)
(10)

MAX represents the maximum value for an image
pixel, and MSE is the mean esquire error. MSE rep-
resents the mean esquire difference between the
original and the reassembled images. The mathemat-
ical formula of MSE can be found in the equation
below [21]:

MSE =
1

M × N

M∑
i=1

N∑
j=1

[
I(i, j)− K(i, j))

]2 (11)

Where I(i,j) and K(i,j) are the pixel intensity for
the original and rebuilt images, M and N are the
image’s dimensions. As the value of the PSNR gets
high this indicates the enhancement in the quality of
the reconstruction image and vice versa. As the value
of the MSE gets down that indicates the improvement
in the quality of the rebuilt image and vice versa.
Both of these metrics will be used to evaluate the
performance of the proposed system [20, 21].

6.1. Simulation results

For the AWGN channel, a range of signal-to-noise
ratio (SNR) between −6 and 14 dB was considered.
The results of the peak signal-to-noise ratio (PSNR)
of the received noisy and denoised images for the
three considered images are shown in Figs. 2 to 4.
In addition, the original, the noisy, and the denoised
images at an SNR value of 3 dB are shown in Figs. 5
to 7. Subfigures (a), (b), and (c) refer to the original,
noisy, and denoised images, respectively.

The results illustrate that the proposed technique
achieved PSNR gains that reached 7.3 dB for the de-
noised image compared to the noisy one at low and
moderate SNR regions for all the considered images.
On the other hand, the gains achieved at the high
SNR region were reduced. Further, the PSNR for the
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Fig. 2. PSNR for pepper image over AWGN channel.

Fig. 3. PSNR for camera man image over AWGN channel.

Fig. 4. PSNR for Lena image over AWGN channel.

noisy and the denoised images at the high SNR region
became almost identical.

An SNR range from −6 to 1 dB was considered in
the simulation over the 5G eMBB transmission sys-
tem. The PSNR results for the noisy and denoised
received images are displayed in Figs. 8 to 10. Fur-
ther, the original, the noisy, and the denoised samples
for the considered images at −2 dB are illustrated in
Figs. 11 to 13. The subfigures (a), (b), and (c) in
the former figures refer to the original, noisy, and
denoised images, respectively.

According to the figures above, the denoised image
achieved gains reaching up to 7.4 dB compared to the
noisy one in low and moderate SNR ranges (i.e., be-
tween −6 and −1) and in all considered cases. At the
SNR value of −1 dB, the achieved PSNR gain began
to reduce. After this SNR value, the PSNR values for
noisy and denoised images become much closer.

Fig. 5. Pepper image over AWGN channel at 3dB.

Fig. 6. Camera man over AWGN channel at 3dB.

Fig. 7. Lena over AWGN channel at 3dB.

Fig. 8. PSNR for pepper image over 5G eMBB channel.

Fig. 9. PSNR for camera man image over 5G eMBB channel.

Fig. 10. PSNR for Lena image over 5G eMBB channel.
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Fig. 11. Pepper image over 5G eMBB channel at −2 dB.

Fig. 12. Camera man image over 5G eMBB.

Fig. 13. Lena image over 5G eMBB channel at −2 dB.

Fig. 14. MSE for pepper image over AWGN channel.

Fig. 15. MSE for pepper image over 5G eMBB channel.

Further evaluation of the proposed model utilizes
another metric: the mean square error (MSE). While
the PSNR results for the evaluated images are closed
over the same channel, only one image, the Pepper
image, is considered for evaluating the proposed sys-
tem based on the MSE metric.

Figs. 14 and 15 present the MSE for the noisy
and denoised Pepper image over AWGN and 5G

channels, respectively. SNR ranges of −6 to 14 and
−6 to 1 are considered over AWGN and 5G channels,
respectively.

According to these figures, the denoised images
achieved high reductions in MSE compared with
noisy images at low and moderate SNR reaching up
to 4174 and 2937 over AWGN and 5G channels,
respectively. The MSE for both noisy and denoised
images at high SNR values becomes closed over both
channels.

6.2. Result discussion

The proposed denoising technique performs well in
minimizing the effect of noise on the received images.
In addition to the theoretical proofs for the denoising
technique in sections 3 and 4, the evaluation of the
proposed system showed that the denoised images
achieved gains in terms of PSNR and MSE over the
noisy ones and for all considered cases. This gain was
between 0 and 7.4 dB for PSNR and between 0 and
4174 for MSE. Tables 1 and 2 present the details of the
PSNR gain provided by the denoising system over the
AWGN and 5G channels, respectively. Tables 3 and 4
show the details of the MSE reduction provided by the
denoising system over the AWGN and 5G channels,
respectively.

According to Table 1, the PSNR for the noisy image
increased from 10.5, 10.4, and 10.7 dB at an Eb/No
of −6 dB to 51.6, 44, and 48.6 at an Eb/No value
of 14 dB for pepper, camera man, and Lina Image,
respectively. On the other hand, the PSNR for the
denoised images increased from 16.2, 15.2, and 16.5
to 51.6, 44,6, and 48.6 over the same Eb/No range for
pepper, camera man, and Lina Images, respectively.
Thus, the PSNR gains achieved by the denoised pep-
per image over the noisy one are distributed between
0 and 7.3 dB over the SNR range −6 and 14 dB.

For Table 2, the PSNR for the noisy pepper, cam-
era man, and Lina images increased from 12.4, 12.4,
and 12.5 dB to 51, 44, and 45 dB, respectively, over
the evaluated Eb/No range between −6 and 1 dB.
Furthermore, the PSNR for the denoised image en-
hanced from 19.2, 18.2, and 19.3 to 51.7, 44.6, and
45.6 dB for pepper, camera man, and Lina images,
respectively, and over the same Eb/No values. Con-
sequently, the achieved gains varied between 0.6 and
6.3 over the SNR range −6 and 1 dB.

Related to Table 3, the MSE for the noisy image
reduced from 5732.5 at an Eb/No of −6 dB to 0 at
an Eb/No value of 13 dB for the pepper image. Con-
versely, the MSE for the denoised images reduced
from 1558.4 to 0 over the same Eb/No range for
the pepper Image. Thus, the MSE gains achieved by
the denoised pepper image over the noisy one are
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Table 1. PSNR for noisy and denoised images and PSNR gain over AWGN channel.

PSNR forNoisy Image [dB] PSNR for Denoised Image [dB] PSNR Gains [dB]

SNR Value
[dB]

Pepper
Image

Camera
Man Image

Lena
Image

Pepper
Image

Camera
Man Image

Lena
Image

Pepper
Image

Camera
Man Image

Lena
Image

−6 10.5 10.4 10.7 16.2 15.2 16.5 5.7 4.8 5.8
−4 11.1 11 11.3 17.2 16.2 17.4 6.1 5.2 6.1
−2 11.9 11.9 12 18.4 17.5 18.6 6.5 5.6 6.6
0 13 13.1 13.2 20.1 19.2 20.1 7.1 6.1 6.9
2 14.8 14.9 14.8 22.1 21.3 21.9 7.3 6.4 7.1
4 17.3 17.7 17.3 24.2 23.4 23.7 6.9 5.7 6.4
6 21.2 21.4 21.3 26.1 25.4 25.2 4.9 4 3.9
8 27.1 27.4 27 28.6 28.1 27.5 1.5 0.7 0.5
10 35.6 36.2 35.6 35.6 36.2 35.6 0 0 0
12 47.8 43.5 46.1 47.8 43.7 46.1 0 0.2 0
14 51.6 44 48.6 51.6 44.6 48.6 0 0.6 0

Table 2. PSNR for noisy and denoised images and PSNR gain over 5G eMBB transmission.

PSNR forNoisy Image [dB] PSNR for Denoised Image [dB] PSNR Gains [dB]

SNR Value
[dB]

Pepper
Image

Camera
Man Image

Lena
Image

Pepper
Image

Camera
Man Image

Lena
Image

Pepper
Image

Camera
Man Image

Lena
Image

−6 12.4 12.4 12.5 19.2 18.2 19.3 6.8 5.8 6.8
−5 13.3 13.3 13.4 20.4 19.5 20.3 7.1 6.2 6.9
−4 14.4 14.5 14.5 21.8 20.8 21.5 7.4 6.3 7
−3 15.9 16 15.8 23.1 22.2 22.7 7.2 6.2 6.9
−2 17.7 17.9 17.7 24.5 23.7 23.8 6.8 5.8 6.1
−1 24.3 24 24.2 27.3 26.3 26.1 3 2.3 1.9
0 44 44 36 44.7 44.6 36.6 0.7 0.6 0.6
1 51 44 45 51.7 44.6 45.6 0.7 0.6 0.6

Table 3. MSE for noisy and denoised images and MSE reduc-
tion over AWGN channel.

SNR [dB] MSE Noisy MSN De-noisy Reduction in MSE

−6 5732.5 1558.4 4174.1
−5 5395.5 1400.6 3994.9
−4 5031.4 1239.1 3792.3
−3 4640.1 1085.2 3554.9
−2 4201.3 930.2 3271.1
−1 3725.3 775.5 2949.8
0 3204.5 625 2579.5
1 2684.3 500.2 2184.1
2 2171.5 396.4 1775.1
3 1682 311.9 1370.1
4 1222.9 245.9 977
5 824.3 195.7 628.6
6 494.9 157 337.9
7 264.5 123.1 141.4
8 127.1 88.3 38.8
9 54.5 51.6 2.9
10 17.9 17.7 0.2
11 4.7 4.6 0.1
12 0.8 0.7 0.1
13 0 0 0
14 0 0 0

distributed between 0 and 4174.1 over the SNR range
−6 and 14 dB.

For Table 4, the MSE for the noisy pepper image
reduced from 3717.0 to 0 over the evaluated Eb/No
range between −6 and 1 dB. Furthermore, the MSE

Table 4. MSE for noisy and denoised images and MSE
reduction over 5G channel.

MSE for MSE for Reduction
SNR [dB] Noisy Image Denoised Image in MSE

−6 3717.0 779.8 2937.2
−5.5 3379.5 680.2 2699.3
−5 3024.6 584.9 2439.7
−4.5 2680.2 501.6 2178.6
−4 2341.0 429.9 1911.1
−3.5 1999.7 365.3 1634.4
−3 1689.5 312.8 1376.6
−2.5 1385.6 265.6 1120
−2 1097.8 227.2 870.6
−1.5 768.4 188.7 579.7
−1 243.1 120.7 122.4
−0.5 0.3 0.2 0.1
0 0 0 0
0.5 0 0 0
1 0 0 0

for the denoised image reduced from 779.8 to 0 for
the pepper image over the same Eb/No values. Con-
sequently, the achieved gains varied between 0 and
2937.2 over the SNR range −6 and 1 dB.

The PSNR gains achieved for the tested images over
the AWGN channel and 5G eMBB transmission system
are shown in Figs. 16 and 17, respectively. Related to
the AWGN channel case, the peak value of PSNR gain
was achieved at an Eb/No value of 2 dB. Further, the
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Fig. 16. PSNR gain for AWGN channel.

Fig. 17. PSNR gain for 5G eMBB channel.

Fig. 18. MSE reduction for AWGN and 5G eMBB channels.

highest PSNR gains were realized over the range of
Eb/No between −6 and 5 dB. Before 6 dB, the PSNR
gains were reduced and reached zero at 10 dB.

Fig. 18 shows the reduction in MSE achieved for
the tested image over the AWGN channel and 5G
eMBB transmission system. For the considered case,
the maximum gains were achieved at low and mod-
erate SNR values, while at the high SNR region, the
MSE gain reduced until reaching 0.

For the 5G eMBB case, the peak PSNR values at-
tained at Eb/No value of −4 dB. The highest PSNR
gains were reached at the Eb/No domain between
−6 and −2. After that, the PSNR gains were brought
down to values below 1 dB at Eb/No of 0 dB.

Consequently, the proposed approach in image
denoising enhanced the quality of the denoised
images compared with the noisy ones. Furthermore,

the effective regions of the denoising approach are
the low and moderate SNR regions.

7. Conclusions

This paper introduced a new smoothing technique
to minimize the noise effect on images transmitted
over a 5G eMBB transmission system using a mathe-
matical model based on TV function. The last function
was modified to be differentiable and smooth. It was
proved to be effective in image denoising capability.
In addition, two-channel models were proposed; the
first model is an ideal channel, i.e., Additive White
Gaussian Noise channel, while the second model sim-
ulates a real modern channel model. The last one is
based on the parameters of the fifth generation of
mobile communication standards. The performance
of the proposed smoothing technique was evaluated
over these channel models, and it showed persuasive
behavior. The denoised image provided gains in PSNR
and MSE over the noisy ones at low and moderate
SNR regions.

References

1. P. Marsch, Ö. Bulakci, O. Queseth, and M. Boldi, “5G system
design: Architectural and functional considerations and long
term research,” John Wiley & Sons, 2018.

2. H. Kim, “Design and optimization for 5G wireless communi-
cations,” John Wiley & Sons, 2020.

3. A. F. Molisch, “Wireless communications: From fundamentals
to beyond 5G,” John Wiley & Sons, 2022.

4. A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse
solutions of systems of equations to sparse modeling of signals
and images,” SIAM review, vol. 51, no. 1, pp. 34–81, 2009.

5. L. Ao, L. Yibing, Y. Xiaodong, and L. Yue, “Image restoration
with dual-prior constraint models based on split bregman,”
Optical Review, vol. 20, pp. 491–495, 2013.

6. D. L. Phillips, “A technique for the numerical solution of
certain integral equations of the first kind,” Journal of the ACM
(JACM), vol. 9, no. 1, pp. 84–97, 1962.

7. L. I. Rudin and S. Osher, “Total variation based image
restoration with free local constraints,” In Proceedings of 1st
international conference on image processing, vol. 1, pp. 31–35,
1994.

8. A. Beck and M. Teboulle, “Fast gradient-based algorithms
for constrained total variation image denoising and deblur-
ring problems,” IEEE transactions on image processing, vol. 18,
no. 11, pp. 2419–2434, 2009.

9. Y. He, M. Y. Hussaini, J. Ma, B. Shafei, and G. Steidl, “A
new fuzzy c-means method with total variation regularization
for segmentation of images with noisy and incomplete data,”
Pattern Recognition, vol. 45, no. 9, pp. 3463–3471, 2012.

10. T. F. Chan, S. Esedoglu, and M. Nikolova, “Algorithms for find-
ing global minimizers of image segmentation and denoising
models,” SIAM journal on applied mathematics, vol. 66, no. 5,
pp. 1632–1648, 2006.

11. A. Chambolle, “Total variation minimization and a class
of binary mrf models,” In International Workshop on



194 IRAQI JOURNAL FOR COMPUTER SCIENCE AND MATHEMATICS 2025;6:185–194

Energy Minimization Methods in Computer Vision and Pattern
Recognition. Springer, 2005, pp. 136–152.

12. T. F. Chan, G. H. Golub, and P. Mulet, “A nonlinear
primal-dual method for total variation-based image
restoration,” SIAM journal on scientific computing, vol. 20,
no. 6, pp. 1964–1977, 1999.

13. A. Marquina and S. Osher, “Explicit algorithms for a new time
dependent model based on level set motion for nonlinear
deblurring and noise removal,” SIAM Journal on Scientific
Computing, vol. 22, no. 2, pp. 387–405, 2000.

14. A. Chambolle, “An algorithm for total variation minimization
and applications,” Journal of Mathematical imaging and vision,
vol. 20, pp. 89–97, 2004.

15. J. Yang, W. Yin, Y. Zhang, and Y. Wang, “A fast algorithm for
edge-preserving variational multichannel image restoration,”
SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 569–592,
2009.

16. D. P. Bertsekas, “Nondifferentiable optimization via
approximation,” In Nondifferentiable optimization. Springer,
2009, pp. 1–25.

17. N. Yilmaz and A. Sahiner, “New smoothing approximations
to piecewise smooth functions and applications,” Numerical
Functional Analysis and Optimization, vol. 40, no. 5, pp.
513–534, 2019.

18. A. Sahiner and S. A. Ibrahem, “A new global optimization
technique by auxiliary function method in a directional
search,” Optimization Letters, vol. 13, pp. 309–323, 2019.

19. Y. Xiao and B. Yu, “A truncated aggregate smoothing newton
method for minimax problems,” Applied Mathematics and
Computation, vol. 216, no. 6, pp. 1868–1879, 2010.

20. M. Zheng, K. Zhi, J. Zeng, C. Tian, and L. You, “A hybrid
cnn for image denoising,” Journal of Artificial Intelligence and
Technology, vol. 2, no. 3, pp. 93–99, 2022.

21. A. Jameel Naji, S. A Ibrahem, and S. U Umar, “Improved
image segmentation method based on optimized higher-order
polynomial,” International Journal of Nonlinear Analysis and
Applications, vol. 14, no. 1, pp. 2701–2715, 2023.

22. M. Rmaidh and S. Ibrahim, “A new method for solving
image segmentation problems using global optimization,”
International Journal of Intelligent Systems and Applications in
Engineering, vol. 11, pp. 85–92, 2023.

23. P. Zhang and J. Ning, “Hyperspectral image denoising
via group sparsity regularized hybrid spatio-spectral total
variation,” Remote Sensing, vol. 14, no. 10, p. 2348, 2022.

24. C. T. Pham, T. T. T. Tran, H. V. Dang, and H. P. Dang,
“An adaptive image restoration algorithm based on hybrid
total variation regularization,” Turkish Journal of Electrical
Engineering and Computer Sciences, vol. 31, no. 1, pp. 1–16,
2023.

25. C. Tian, M. Zheng, W. Zuo, S. Zhang, Y. Zhang, and C.-W.
Lin, “A cross transformer for image denoising,” Information
Fusion, vol. 102, p. 102043, 2024.

26. M. Forkan, A. Halder, M. N. N. Ripa, and M. R. Tanshen,
“Performance analysis of bpsk & 8-fsk modulation technique
through awgn channel in wireless communication system,”
AIJR Proceedings, pp. 52–59, 2022.

27. 3rd Generation Partnership Project, “5g; nr; multiplexing and
channel coding,” TS 38.212 version 17.2.0 Release 17, 2022.

28. T. T. B. Nguyen, T. Nguyen Tan, and H. Lee, “Efficient qc-ldpc
encoder for 5g new radio,” Electronics, vol. 8, no. 6, p. 668,
2019.

29. W. K. Abdulwahab and A. A. Kadhim, “Internal pilot insertion
for polar codes,” Indonesian Journal of Electrical Engineering
and Computer Science (IJEECS), vol. 22, no. 3, pp. 1495–1504,
2021.

30. W. K. Abdulwahab and A. A. Kadhim, “Reduced path succes-
sive cancellation list decoding for polar codes.” International
Journal of Engineering & Technology Innovation, vol. 11, no. 1,
2021.

31. 3rd Generation Partnership Project, “5g; nr; user equipment
(ue) radio transmission and reception; part 2: range 2
standalone,” TS 38.101-2 version 17.6.0 Release 17, 2022.

32. A. A. Kadhim and W. Abdulwahab, “Scalable video
transmission using ofdm schemes over wireless channels,”
In 2012 International Conference on Future Communication
Networks. IEEE, 2012, pp. 63–68.

33. 3rd Generation Partnership Project, “5g; study on channel
model for frequencies from 0.5 to 100 ghz,” TR 38.901 version
16.1.0 Release 16, 2020.

34. 3rd Generation Partnership Project, “5g; nr, base station (bs)
conformance testing part1:conduct conformance testing,” TS
38.141-1 version 16.12.0 Release 16, 2022.


	Image denoising using smooth total variation function for 5G enhanced mobile broadband transmission system
	Recommended Citation

	Image Denoising: Smooth Total Variation Minimization for 5G Enhanced Mobile Broadband Transmission System
	1 Introduction
	2 Literature survey
	3 Theoretical part
	4 Denoising using modified total variation
	5 Channel model
	6 Simulation result and discussion
	6.1 Simulation results
	6.2 Result discussion

	7 Conclusions

	References

