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H I G H L I G H T S  
 

A B S T R A C T  

• Remote sensing and GIS were used to 

investigate drought conditions in Iraq from 

2000 to 2022. 

• The maps were derived using the Land 

Surface Water Index (LSWI). 

• Extreme drought was highest in 2020 and 

2021, with 43.9% and 43.3%, respectively. 

• Analyzed images show an increasing trend 

of extreme drought. 

• The overall trend of hydrological drought 

has increased. 

 
Climate change has significantly increased the risk of drought and natural 

disasters. Droughts are expected to become more frequent and severe globally, 

particularly in Iraq, due to decreasing precipitation, rising temperatures, reduced 

vegetation cover, and water scarcity. The extent and location of drought are 

primarily influenced by limited precipitation and scarce water resources. In Iraq, 

drought is a serious and recurring issue exacerbated by the mismanagement of 

water resources and insufficient precipitation. Drought indicators are utilized to 

monitor and evaluate drought conditions to address this issue. Drought models 

typically consider systematic patterns of precipitation shortages, temperature 

increases, and other factors over decades. This study employs advanced 

technologies, including remote sensing (RS) and geographic information systems 

(GIS), to assess drought-affected water surfaces in Iraq from 2000 to 2022 using 

the Land Surface Water Index (LSWI). The results demonstrate that LSWI 

effectively identifies hydrological droughts, especially during extreme drought 

events. Extreme drought conditions were observed in 2020 and 2021, with 43.9% 

and 43.3% of areas affected, respectively. Severe drought was prevalent in 2000 

and 2001, with the highest recorded drought impact being 78.7% and 57.5% of 

the affected regions, respectively. Additionally, moderate drought conditions 

were notably high in 2019 and 2003, affecting 9.9% and 9.2% of areas, 

respectively. The findings of this research can support the development of 

effective drought alerts using remote sensing. The results confirm the usefulness 

of LSWI as a rapid and cost-effective index for monitoring changes in land 

surface water conditions and assessing the impact of drought. 
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1. Introduction 

Iraq is one of the most affected territories worldwide by climate change, along with the dramatic decrease of water inputs 

in river basins like Tigris and Euphrates [1,2]. Extreme weather events, dust storms, rising mean temperatures, short-term 

precipitation, and water shortages are featured in Iraq's modern climate conditions [3]. Extreme weather can lead to extreme 

natural hazards such as heat waves, floods, and droughts. A drought phenomenon is well known as "a long period of lack of 

precipitations that extended for one session or more, which leads to a decrease in water," precipitation, temperature, water 

flow, groundwater table, water reservoirs, soil moisture, and snow are examples of drought indices [4]. Depending on the 

impacts of drought and its characteristics, drought can be classified into different types, such as agricultural drought, 

hydrological drought, and meteorological drought [5,6]. A prolonged absence of precipitation that is below average is called 

meteorological drought and can have a significant impact on ecosystems and communities [7]. Water stress that reduces soil 

moisture and causes crop losses is called agricultural drought. This type of drought severely threatens the security of global 

food and water supplies and natural ecosystems [8]. A hydrological drought occurs when there is a lack of precipitation, which 

can cause water shortages and degradation in groundwater, lake, and river water elevation, leading to ecosystem degradation, 

loss of vegetation cover, and loss of topsoil [9].  

The hydrological drought conditions can be monitored and analyzed using different drought indices [10]. These 

technologies are investigated in various studies. The Land Surface Water Index (LSWI) is one of the hydrological drought 
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indices that utilizes the shortwave infrared (SWIR) and near-infrared (NIR) regions of the electromagnetic spectrum. The 

LSWI is known to be sensitive to the total amount of water moisture in vegetation and its topsoil, and the water content 

strongly absorbs light in the SWIR [11]. Two methodological approaches were employed to assess drought conditions using 

remote sensing techniques and satellite imagery for parameters and conditions like vegetation cover, soil moisture, 

evaporation, and rainfall [12,13]. In recent years, the benefits of using remote sensing data in observing and monitoring 

drought conditions have greatly enhanced drought management and decreased its effects [14,15]. Several studies have utilized 

remote sensing data to identify droughts' duration and location. For example, Chandrasekhar et al. [16] compared the results of 

the Normalized Difference Vegetation Index (NDVI) and Land Surface Water Index (LSWI). To assess the impact of rainfall, 

the NDVI for 2002 was missing from the MODIS VI product, so it is not available for analysis, but the MODIS VI data and 

the SWIR and NIR reflectance values were used to obtain the LSWI for 2005. A strong correlation between NDVI and LSWI 

is found for most processed data with a delay of two weeks [16]. Xiang et al. [17] have studied agricultural irrigation in China 

through an integrated approach of statistical, annual mean rainfall, land cover analysis from the satellite MODIS, and the 

surface reflectance values, This methodology proved promising method in drawing maps of irrigated areas and observing their 

annual fluctuations. LSWI values for agricultural pixels were compared with the surrounding forest pixels that have the same 

NDVI. These results explain the effective range of this method in drawing the maps of the irrigated areas and observing their 

annual changes [17].  

Dong et al. [18] introduce a technique that combines NDVI and LSWI to extract information on seasonal variation in 

wetlands, which is different from the previous methods that do not consider seasonal variation in wetland information. The 

proposed efficient drought extraction using the NDVI and LSWI approaches will be aided by seasonally independent 

management of wetland design, monitoring, planning, and ecological management [18]. Khalaf studied the hydrological 

drought in the Middle Euphrates region of Iraq [19]. This study used the LSWI to analyze drought rates based on crop water 

content and water at the topsoil. This study used the difference between the NIR and SWIR1 spectral values of Landsat images 

TM, ETM+, and OLI from 1988, 1993, 2000, 2005, 2010, and 2018. The study results show that the area was affected by 

severe agricultural and hydrological drought between 1988 and 2018. The drought areas were 17% to 23% of the total area [19, 

20]. Because of the lack of long-term hydrological data (e.g., precipitation, streamflow, groundwater levels, water lost through 

evaporation), it is necessary to find another method to study the long-term hydrological drought. One possible method is using 

natural resources such as Landsat and satellite images based on hydrological drought indices such as LSWI. State-of-the-art 

technologies such as remote sensing and geographic information systems (GIS) are used to investigate the effects of drought 

on the water surface in Iraq by creating comprehensive drought maps at different periods using the LSWI index and Landsat 

image data for the years (2000-2022).  

2. Study area 

Iraq Figure 1 is the eastern border of the Arab homeland and is located in southwest Asia. It borders Syria and Jordan to 

the west, Iran to the east, Turkey to the north, and Saudi Arabia and Kuwait to the south. Iraq lies between the latitudes 

(29°00′𝑁 to 37° 15′N) and longitudes (38°45′𝐸 to 48°25′𝐸) and has a land area of 438,320 km2 [21]. 

The climate in Iraq varies significantly due to the country's topography and geographical location. Iraq has both 

continental and subtropical weather. Most winters are below-freezing, with little to no rainfall. Rainfall occurs from September 

to May, with the highest precipitation volumes in December and March. Iraq has short periods of spring and fall, followed by a 

hot and dry summer with temperatures exceeding 50 °C. The area's evaporation rate increases dramatically due to climatic 

change factors such as high temperatures, low precipitation, and strong winds. The Euphrates and Tigris are rivers that stream 

through Iraq and extend from northwest to southeast (Figure 1).  

 

Figure 1: Topographic of Iraq 



Israa H. Mohammed et al. Engineering and Technology Journal 42 (11) (2024) 1367-1377 

 

1369 

3. Methodology  

The objectives of this study can be achieved with the assessment of drought conditions in spatiotemporal domine for the 

Iraqi regions for the study time from (2000 to 2022). Two different Landsat sensors with a (30 m) spatial resolution were used 

to create the remote sensing datasets: the L7 Enhanced Thematic Mapper Plus (ETM+) and the L8 Operational Land Imager 

(OLI). The Landsat 7 and 8 TM Collection 1 Tier 1 composites were created from orthorectified Tier 1 scenes using the 

calculated top-of-atmosphere (TOA) reflectance and are thus geometrically and radiometrically matched see Table 1 [22, 23]. 

The Landsat satellite images for the study region are acquired using Google Earth Engine (GEE), which is also used to apply 

the LSWI index and to determine the mean of LSWI every year the study was conducted. In this work, a Geographic 

Information System (GIS) was used to generate maps showing the spatial distribution of LSWI classes. Figure 2 represents the 

methodology of this research. 

 

Figure 2: Flowchart of the LSWI calculation 

Table 1: Data used and source 

No. The Data used parameter Source  

1 L7 enhanced thematic mapper plus (ETM+) Google. "Landsat 7 Collection 1 Tier 1 8-

Day TOA Reflectance Composite." 

2 L8 operational land imager (OLI) Google. "USGS Landsat 8 Collection 2 Tier 

1 TOA Reflectance." 

 

Temperature and precipitation are the main climate factors that directly influence the drought. In this study, 27 

meteorological station temperature and precipitation data were used. These stations are distributed all over Iraq. Figure 3 and 

Table 2 summarize the location and names of the stations. 
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Figure 3: Point location and distribution 

Table 2: Points coordinates, availability, and references 

Station name 
Coordinates 

Available Refe. 
Longitude   Latitude  

Ali-Algharbi 47 32 yes IMO* 

Al-Khalis 45 34 yes IMO 

Amarah 47 32 yes IMO 

Arbil 44 36 yes IMO 

Baghdad 44 33 yes IMO 

Basrah 48 30 yes IMO 

Diwaniya 45 32 yes IMO 

Hadithah 42 34 yes IMO 

Heet 44 34 yes IMO 

Hella 44 32 yes IMO 

Kerbela 44 33 yes IMO 

Khanaqin 45 34 yes IMO 

Kirkuk 44 35 yes IMO 

Kut 46 33 yes IMO 

Kut-Al-Hai 46 32 yes IMO 

Mosul 43 36 yes IMO 

Najaf 44 32 yes IMO 

Nasiriya 46 31 yes IMO 

Nukaib 42 32 yes IMO 

Ramadi 43 33 yes IMO 

Rutbah 40 33 yes IMO 

Salahaddin 44 36 yes IMO 

Semawa 45 31 yes IMO 

Sulaimaniya 45 36 yes IMO 

Tel-Afer 42 36 yes IMO 

Tikrit 44 35 yes IMO 

Zakho 43 37 yes IMO 

* Iraqi meteorological organization and seismology 
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4. Land surface water index (LSWI) 

Land Surface Water Index (LSWI) is an instrument for monitoring drought conditions [24]. In areas with low 

precipitation, the relationship between LSWI and total precipitation is more significant [25]. The LSWI plays a significant role 

in monitoring the vegetation cover and soil water content during the different stages of plant growth [26]. 

LSWI is defined as follows: 

 𝐿𝑆𝑊𝐼 =
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅)
  (1) 

where: NIR is the near-infrared spectral reflectance band for satellite images. 

SWIR in Equation 1 is a satellite image's short-wave infrared reflectance band [27, 28]. Combining the two spectral bands 

(SWIR and NIR) can generate the LSWI index. It is sensitive to the water content in vegetation land cover and the water and moisture 

in its topsoil. In contrast, the band SWIR is sensitive to the soil moisture and the water content in the vegetation cover. The 

reflectance of band SWIR is decreased, and the absorption increases with increased water content in the soil and the vegetation's 

water content, leading to an increase in the LSWI values [29]. There are four classes for the severity of the LSWI index. The first 

class can be distinguished as the extreme drought, which ranges between (LSWI ≤ −0.1). The second class is the severe drought, 

which ranges between (0 < LSWI ≤ -0.1); the third class is the moderate drought, which varies between (−0.1 < LSWI ≤ 0); and the 

fourth class is the no drought and has the range between (0.1< LSWI) [30, 31]. 

5. Results and discussion 

Figure 4 represents the trend and time series of temperature and precipitation for the study period from the year 2000 to the 

year 2022. The temperature data in the figure represent the mean annual temperatures for 12 months and 27 weather stations 

distributed all over Iraq, while the precipitation data represent the mean annual precipitation of the 27 weather stations. 

There is an increased trend in mean annual temperatures from the year 2000 to the year 2022, with the highest temperature 

being 24.6 ℃ in 2010 and the lowest temperature being 22.3 Figure 4a. As for precipitation, the trend is a decline in annual 

precipitation values throughout Iraq, which means a lack and scarcity of water and a decline in water bodies. 

The precipitation and temperature data are noisy and need to be smoothed to study the waves in the data. The average 

mean smooth method is used to smooth the precipitation and temperature data from Figure 4 (a and b). Figure 4c illustrates a 

negative relationship between temperature and precipitation. A drought assessment was carried out in the study area using the 

Land Surface Water Index (LSWI). LSWI results were calculated for each year of the study period (2000–2022). The analysis 

of the results of LSWI shows that the study area suffered from extreme drought in years (2020 and 2021), While severe 

drought dominated in years (2000 and 2001). The results also showed moderate drought prevailed over the years (2019 and 

2003). Table 3 shows the maximum, mean, and minimum LSWI values for every conducted year from (2000-2022) in the 

study area. 

  
(a) (b) 

 
(c) 

Figure 4: The trend and time series of (a) Temperature, (b) Precipitation, (c) relation between Temperature and Precipitation 
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Table 3: Max., Mean, Min, and Standard deviation STD of LSWI values for every year the study was conducted 

Year Max Mean Min STD Year Max Mean Min STD 

2000 0.75 -0.07 -0.65 0.00746361 2012 0.63 -0.07 -0.37 0.005324 

2001 0.78 -0.06 -0.71 0.006474913 2013 0.65 -0.06 -0.28 0.006321 

2002 0.81 -0.06 -0.62 0.004329325 2014 0.72 -0.06 -0.24 0.004213 

2003 0.87 -0.06 -24 0.007645743 2015 0.62 -0.07 -0.37 0.000546 

2004 0.74 -0.06 -0.42 0.002654936 2016 0.67 -0.06 -0.38 0.007395 

2005 0.99 -0.06 -0.3 0.00185038 2017 0.64 -0.07 -0.34 0.004792 

2006 0.76 -0.06 -0.39 0.001021203 2018 0.76 -0.06 -0.34 0.009964 

2007 0.72 -0.06 -0.5 0.005559327 2019 0.67 -0.04 -0.36 0.00512 

2008 0.72 -0.07 -0.39 0.001516566 2020 0.7 -0.06 -0.39 0.007757 

2009 0.65 -0.07 -0.43 0.00130339 2021 0.72 -0.06 -0.38 0.008785 

2010 0.62 -0.07 -0.28 0.002584411 2022 0.59 -0.07 -0.32 0.008564 

2011 0.85 -0.07 -0.33 0.006108345      

Based on the LSWI results, the results for the area were divided into four classes: extreme, severe, moderate, and no 

drought. The percentage and area of each class were calculated and shown in Table 4. 

Table 4: The percent and area of the LSWI classes 

year 

Class 1 

Extreme Drought 

Class 2 

Severe Drought 

Class 3 

Moderate Drought 

Class 4 

No Drought 

Area 

(Km2) 

Area 

(%) 

Area 

(Km2) 

Area 

(%) 

Area 

(Km2) 

Area 

(%) 

Area  

(Km2) 

Area 

 (%) 

2000 52721.57 12.0 345033.6 78.7 27779.98 6.3 12778.86 2.9 

2001 134005.3 30.6 251979.8 57.5 32494.98 7.4 19833.97 4.5 

2002 155101.2 35.4 239452.4 54.6 28347.83 6.5 15412.63 3.5 

2003 129892.4 29.6 241807.8 55.2 40246.54 9.2 26367.23 6.0 

2004 141734.3 32.3 243748.9 55.6 30319.26 6.9 22511.55 5.1 

2005 154003.2 35.1 237983.4 54.3 27270.36 6.2 19056.95 4.3 

2006 145297.5 33.1 234112 53.4 35709.22 8.1 23195.28 5.3 

2007 150273.8 34.3 234356.4 53.5 32480.63 7.4 21203.11 4.8 

2008 151542.1 34.6 242924.4 55.4 30007.81 6.8 13839.68 3.2 

2009 154685.1 35.3 246260.4 56.2 23530.73 5.4 13837.73 3.1 

2010 170619.4 38.9 233055.9 53.2 21509.02 4.9 13129.65 3.0 

2011 163351.3 37.3 235452.3 53.7 24682.59 5.6 14827.9 3.4 

2012 163532.2 37.3 234016.2 53.4 25823.36 5.9 14942.26 3.4 

2013 152844 34.9 238006.3 54.3 28953.62 6.6 18510.05 4.2 

2014 140799.6 32.1 246059.9 56.1 32825.57 7.5 18628.91 4.3 

2015 158147.9 36.1 237063.2 54.1 29278.1 6.7 13824.78 3.2 

2016 156334 35.7 231970.9 52.9 33134.19 7.6 16874.93 3.8 

2017 157595.7 35.9 234843.9 53.6 28144.43 6.4 17729.93 4.0 

2018 149077.3 34.0 246642.9 56.3 28520.24 6.5 14073.52 3.2 

2019 116964.7 26.7 250617.9 57.2 43477.84 9.9 27253.56 6.2 

2020 192440.1 43.9 184748.9 42.1 35844.47 8.2 25280.62 5.8 

2021 189839.9 43.3 189208.1 43.2 37071.27 8.5 22194.67 5.1 

2022 148876.9 33.9 242902.4 55.4 30620.57 6.9 18691.85 3.6 

 

Table 4 shows that the unaffected area increased from 12,778.86 km² (2.6% of Iraq's total area) in 2000 to 18,691.85 km² 

(3.6% of Iraq's total area) in 2022, reflecting a net increase of 5,913 km² (1% of Iraq's total area). The maximum unaffected 

area was recorded in 2019, with 27,253.56 km². The area classified as moderate drought increased from 27,779.98 km² (6.3% 

of Iraq's total area) to 30,620.57 km² (6.9% of Iraq's total area), representing a gain of 0.6% of Iraq's total area. The maximum 

extent of moderate drought occurred in 2019, affecting 9.9% of Iraq's total area. The maximum area of severe drought was 

recorded in the first year of the study, 2000, with 345,033.6 km², representing 78.7% of Iraq's total area. This category 

experienced the most significant reduction, decreasing to 242,902.4 km² in 2022, a decrease of 23.3% of Iraq's total area. The 

extreme drought area was initially 52,721.57 km² (12% of Iraq's total area) and expanded to 148,876.9 km² by 2022, 

representing 33.9% of Iraq's total area, an increase of 21.9%. 
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Overall, the drought years (2020 and 2021) had the highest percentage of areas affected by extreme drought (43.9 and 

43.3%, respectively), while the drought years (2000 and 2001) had the highest percentage of areas affected by severe drought 

(78.7 and 57.5%, respectively). The highest percentage of regions suffering from moderate drought was in the drought years 

(2019 and 2003) with 9.9 and 9.2%, respectively. Figure 5 shows the time series for each class, and we can observe an 

increasing trend in the area of extreme, moderate, and no drought, while in severe drought, there is a decline in the area of 

drought in favor of extreme drought. The spatial distribution maps of the classes of LSWI for Landsat images are illustrated in 

Figure 5. 

 

Figure 5: The spatial distribution of LSWI classes 

According to Figure 5, the northern part of Iraq is the least affected by the drought, as this region receives the highest 

volume of rainfall, especially from September to May, with the most significant volume of precipitation between December 

and March. The river's proximity also helps mitigate the effects of drought in the central areas of Iraq. The western regions of 

Iraq have deficient precipitation compared to other parts. The lack of water sources such as rivers and lakes and the lack of 

vegetation are among the most essential reasons for extreme drought in this part. Over the years, these reasons have led to the 

inability of the population to live in this area, which results in social and economic losses that were not benefiting from this 

part in agricultural and industrial fields, which are more than a third of the area of Iraq. It is also one of the most important 

reasons for the difficulty of security control over this part. 
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Figure 6 illustrates the time series of the LSWI for each class, presented in square kilometers (km²) and percentages. 

Specifically, Figure 6a depicts the extreme drought area in km², while Figure 6b shows the extreme drought area as a 

percentage. Figure 6c represents the severe drought area in km², and Figure 6d presents it as a percentage. Similarly, Figure 6e 

illustrates the moderate drought area in km², with Figure 6f showing it as a percentage. Finally, Figure 6g represents the non-

drought area in km², and Figure 6h shows the non-drought area as a percentage. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 6: The time series of the LSWI for each class 

The data from Figure 4 and Figure 6, as well as the following Figure 7, can be derived. That represents the relationships 

between the first side, extreme drought, and the second side, the temperatures and precipitations.  
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Figure 7a illustrates the relationship between the area of LSWI extreme drought class and the temperature, and there is 

increasing in the drought area concerning the increasing mean annual temperatures. The correlation coefficient between the 

extreme drought area and the temperatures was 0.98, representing a high correlation between the two factors. Figure 7b 

illustrates the relationship between the extreme drought area and the precipitations. The effect of precipitation can be seen as 

very high on the results of the extreme values. The correlation coefficient was 0.79, representing a high strength and direction 

of a relationship between the two variables. 

   
(a) (b) 

Figure 7: . The relationship between extreme drought and (a) temperatures and (b) precipitations 

 

The findings of this research reveal  an increasing trend in values over the years of study for extreme drought, moderate 

drought, and no drought, and there is a trend of decrease for severe drought. This trend leads to an increase in extreme droughts 

compared to other drought areas. The drought map from Figure 5 for 2019 is the least drought area compared with the different 

years because it has the greatest amount of precipitation this year, consistent with the results of Hassan and Al-Abadi  [32]. On 

the other hand, the worst years were from 2020 to 2022 because they have the lowest annual precipitation and have increasing 

mean annual temperatures. This also coincided in the same period with the filling of the Turkish Ilisu Dam, which led to a 

decrease in water releases, which is consistent with the discussion of Al-Madhhachi et al. that the decline of water from the 

Tigris River will have impacts on the hydrological and environmental aspects [33]. Overall, it can be observed from the figures 

and tables that the hydrological drought will increase in the future, which requires the decision-makers to take steps against 

losing no drought areas and water bodies to extreme drought areas. The results show that the LSWI is an effective tool that 

uses satellite images to assess the hydrological drought. Although the LSWI and Landsat image data are available and can be 

used for hydrological drought assessment, they have many spatial and temporal resolution limitations. The spatial resolution of 

Landsat images (30 m) is considered a moderate resolution, so hydrological ground features with less than 30 meters, such as 

rivers and streams, cannot be detected accurately. The temporal resolution of the Landsat is approximately 16-18 days, which 

is considered a good resolution, but in case of any change in the wetland in this period will not be detected, and in case there is 

a high cloud cover in time, satellite visiting this will lead to neglect the captured image. The Landsat SWIR band can be used 

in different indices such as LSWI and NDVI. Although the LSWI is designed to detect the water in images and NDVI is used 

to detect the vegetation cover, the vegetation will have the same spectral fingerprint of water bodies spatially in the growing 

seasons. The LSWI is used mainly to map and classify water bodies. Still, if a flooded area can result from high rain 

(considered a temporary water body), the barren land will be registered as a water body, leading to false classification.   

6. Conclusion 

The impact of drought in Iraq was assessed in this study using remote sensing methods and the Land Surface Water Index 

(LSWI) over 23 years, from 2000 to 2022. Understanding how climate change will affect agriculture and water resources 

management is essential to fully grasp the research objective underlying Iraq's assessment of drought conditions through 

remote sensing and LSWI techniques. The manuscript provides valuable data on the spatial distribution and intensity of Iraq's 

23-year drought that will help identify problem areas and develop mitigation measures. For this study, multi-temporal drought 

maps were created using Landsat satellite imagery with a spatial resolution of 30 meters. The study results show that the 

proportion of extreme drought is highest in the drought years 2020 and 2021 (43.9% and 43.3%, respectively). According to 

the analyzed images, the trend of extreme drought is increasing. 

In contrast, the proportion of severe drought was highest in 2000 and 2001 (78.7% and 57.5%, respectively), and the trend 

of severe drought is decreasing. The most significant proportion of locations with moderate drought was observed in 2019 

(9.9%) and 2003 (9.2%). Generally, the overall trend of the hydrological drought is increased, which is considered one of the 

most critical factors that lead to the deterioration of the agricultural economy, abandoning work in agriculture and livestock 

raising, and migration to the city to search for jobs with fixed salaries, which leads to the significant traffic congestion that 

exists in the capital, Baghdad. However, there are certain limitations to this study. The study relies on satellite imagery and 

LSWI data, which may have temporal and spatial resolution limitations. Future studies should consider merging new data 

sources and indicators, e.g., ground survey measurements such as soil water content data and socio-economic data such as 

economic losses and agricultural yields, to increase the accuracy and reliability of drought assessments. As a result, our work 

has shown that LSWI, in combination with remote sensing, is an efficient and cost-effective method for monitoring drought in 

Iraq. 
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