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 المستخلص 
لأستجابة يتعامل البحث الحالي بتطبيق دوال والش بالأعتماد على تكامل مصفوفة العمليات لديناميكية مراقبة نظام السيطرة 

الحالة. تستخدم طريقة والش نظرا لبساطة تحليلها ودراستها وتنفيذها بسهولة استنادا الى بعض الخطوات للوصول الى حل 
أظهرت النتائج أن  تم اخذ مثال لشرح الطريقةالتي تعتمد على برنامج الماتلاب. ديناميكية مراقبة نظام السيطرة لأستجابة الحالة .

 .عالية الدقة والكفاءة عند مقارنتها بالحل الدقيق الموجودالطريقة المقترحة 
 دوال والش ,متسلسلة والش, ديناميكية مراقبة نظام السيطرة لأستجابة الحالة,دوال راديميجر, ضرب كرونكرالكلمات المفتاحية: 
 

Abstract:  
The present paper deals with the application of Walsh functions based on integration operational 

matrix to the dynamics of the observed –state  feedback control system. Walsh method is used 

because its simple analysis, studying and easier implementation based on some steps to reach the 

solution of the observed-state feedback control system . An  example is taken to explain the method 

depending on Matlab programming. The results show that the proposed method is very accurate and 

efficient when compared to existing exact solution. 

Keywords: Walsh functions, Walsh series, The observed-state feedback control system, 

Rademacher functions. Kroncker product 

 

1. Introduction  

     Walsh functions have been widely used in the analysis of  communication theory (Multiplexing 

system, coding system and non-sinusoidal electromagnetic radiation), signals processing 

(spectroscopy, speech processing, Medical applications, and seismology) and in transform 

spectroscopy rather than sinusoidal functions,[2-6,8-11]. 

      In control system, Walsh functions been used since 1975 where many authors applied them in 

many  different problems [3-5], such as the time-domain-synthesis problem, the time-varying feed 

gains of linear systems problem, and optimal problem. Also in recent years Walsh functions were 

defined in hybrid orthogonal functions which called Hybrid Walsh functions and been applied in 

many real life problems, [1,14-15,18].  

      The Laplace transform method is an approach used to solve homogeneous and non 

homogeneous state equations. In [13] this method is described to solve the control system problems 

associated with the repeated integration and operational matrix which relates : (a)piecewise constant 

orthogonal functions( block-pulse functions, Haar functions , Walsh functions), (b) orthogonal 

polynomials(Legendre polynomials, Laguerre polynomials , Hermite polynomials, Tchebycheff 
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polynomials of the first kind ,  Tchebycheff polynomials of the second kind, Jacobi polynomials, 

Gegenbauer polynomials),and (c) sine-cosine(Fourier) functions. 

       In this paper, Walsh series is used for the determination of suboptimal feedback laws for the 

linear systems with quadratic performance criteria, then applied them for solving linear dynamic 

systems.  

2- Study problem: 

     The study of the problem can be formulated by the following questions: 

a) Can the concept  of Walsh functions be used , studied and analysed  to obtain the numerical 

to general  approach solution  solve the observed-state feedback control system? 

b)  Is it possible to find the integral operational matrix of Walsh functions in terms of integral 

operational  matrix of Block pulse functions? 

c) How to characterize the approximate solution  by Walsh functions? 

 

3- Study supposal: 

   In  this paper will relate and define the Walsh  functions based on the product of Rademacher 

functions  and their integral operational matrix and represent any square function f(t) in terms of  

Walsh series, as well as apply Walsh series compute to the approximate numerical solution of 

the observed-state feedback control system. Finally an example is considered to explain the 

method. 

 

4- Importance of the study: 

   In the present work a new approach for estimating the error vector in  the dynamics of the 

observed-state feedback control system applying  Walsh functions. Also can be partly classified 

into three importance, first it can use another representation method for computing the 

integrational operational Walsh matrix based on Block pulses functions. Second it present the 

numerical solution of the observed-state feedback control system. Finally, The results show that 

the proposed method is very accurate and efficient when compared to with existing exact 

solution. 

 

5- Study methodology: 

    Our work composed of many  information such as, results relate the goal, for instance 

discussion, study and analysis of Walsh functions. The Matlab programming will be used to 

compute the approximate solution and compared it with the exact solution, as will be shown in 

example employed. 

 

6- Theoretical consideration: 

6-1 Walsh functions with their integration operational matrix    

       The American mathematician Walsh J.L. studied and analysed a set of orthogonal functions in 

1923, which called Walsh functions, [16].  Each function takes only the values +1 or -1, except at 

jumps, where they takes the value 0.These functions can be defined by the following:- 

 a- A set of  𝑚 = 2𝑘, for some 𝑘 ∈ 𝑁 = {1,2,3, . . . } of Walsh functions can be defined in terms of 

finite products of Rademacher functions,[16] which defined as a set of orthogonal functions and are 

belongs to square waves of unit height with periods equal to 1, 1/2, 1/4 ,1/8, 1/16, 1/32,. . . , 2
(1-i)

 : 

𝑊0(𝑡) ≡ 𝑅0(𝑡) ≡ 1, ∀𝑡 ∈ [0,1]       .    .   . (1) 

For 𝑖 > 0, writing the binary expansion of  𝑖 :𝑖 = ∑ 𝑖𝑟2
𝑟[𝑙𝑜𝑔2𝑖]

𝑟=0  , where, 𝑖𝑟 ∈ {0,1}, so now 
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𝑊𝑖(𝑡) = 𝑅[𝑙𝑜𝑔2𝑖]+1(𝑡)∏ (𝑅𝑟+1(𝑡))
𝑖𝑟[𝑙𝑜𝑔2𝑖]−1

𝑟=0       .    .   .  (2) 

Where, 𝑅𝑖(𝑡) is called the 𝑖𝑡ℎ Rademacher functions and written as: 

𝑅𝑖(𝑡) = 𝑠𝑔𝑛(sin(2𝑖𝜋𝑡))    ∀𝑡 ∈ [0,1)     .    .   . (3) 

𝑠𝑔𝑛(𝑡) = {

+1 𝑖𝑓 𝑡 > 0
−1  𝑖𝑓  𝑡 < 0
0   𝑖𝑓 𝑡 = 0

        .   .   . (4) 

So the first eight of Walsh functions can be represented in terms of Rademacher functions as: 

𝑊0(𝑡) ≡ 𝑅0(𝑡) ,𝑊1`(𝑡) ≡ 𝑅1(𝑡),𝑊2(𝑡) ≡ 𝑅2(𝑡),𝑊3(𝑡) ≡ 𝑅2(𝑡)𝑅1(𝑡),𝑊4(𝑡) ≡ 𝑅3(𝑡),𝑊5(𝑡) ≡
𝑅3(𝑡)𝑅1(𝑡),𝑊6(𝑡) ≡ 𝑅3(𝑡)𝑅2(𝑡),𝑊7(𝑡) ≡ 𝑅3(𝑡)𝑅2(𝑡)𝑅1(𝑡)        .   .  .(5) 

Since the Walsh functions are complete orthonormal functions in Hilbert space 𝐿2[0,1),[2,7,16]. 

      So it can be assembled as a square matrix of order 𝑚 by dividing the closed interval [0,1] into 

𝑚 subintervals with length 1/𝑚 , and denoting the collection points by:𝑡𝑠 =
2𝑠−1

2𝑚
, where 𝑠 =

1,2,3, . . . , 𝑚 and  

𝑾𝑐(𝑡) = [𝑾(𝑐,
1

2𝑚
)    𝑾(𝑐,

3

2𝑚
)    𝑾 (𝑐,

2𝑠−1

2𝑚
)   .  .  .𝑾(𝑐,

2𝑚−1

2𝑚
) ]     . . . (6) 

Where, 𝑐 = 0,1,2, . . . , 𝑚 − 1: 

𝑾𝑚(𝑡) =

[
 
 
 
 

𝑾0(𝑡)

𝑾1(𝑡)

𝑾2(𝑡)
⋮

𝑊𝑚−1(𝑡)]
 
 
 
 

=

[
 
 
 
 
 
 
 
  𝑾(0,

1

2𝑚
)                           𝑾 (0,

3

2𝑚
)              𝑾 (0,

2𝑠−1

2𝑚
)       .  .  .       𝑾(0,

2𝑚−1

2𝑚
)

𝑾(1,
1

2𝑚
)                          𝑾 (1,

3

2𝑚
)              𝑾 (1,

2𝑠−1

2𝑚
)       .  .  .       𝑾(1,

2𝑚−1

2𝑚
)

 𝑾(2,
1

2𝑚
)                           𝑾 (2,

3

2𝑚
)              𝑾 (2,

2𝑠−1

2𝑚
)       .  .  .       𝑾(2,

2𝑚−1

2𝑚
)

 𝑾(3,
1

2𝑚
)                           𝑾 (3,

3

2𝑚
)              𝑾 (3,

2𝑠−1

2𝑚
)       .  .  .       𝑾(3,

2𝑚−1

2𝑚
)

⋮                                         ⋮                            ⋮                                ⋮                   ⋮

𝑾(𝑚 − 1,
1

2𝑚
)           𝑾 (𝑚 − 1,

3

2𝑚
)           𝑾 (𝑚 − 1,

2𝑠−1

2𝑚
)   .  .  .𝑾(𝑚 − 1,

2𝑚−1

2𝑚
)]
 
 
 
 
 
 
 
 

  . . .(7) 

 Where, 𝑾𝑚(𝑡)  is called the Walsh matrix of order  𝑚 = 2𝑘, for some 𝑘 ∈ 𝑁 and 𝑾0(𝑡) ,𝑾1(𝑡),
.  .  .  ,𝑾𝑚−1(𝑡)  are  the  Walsh vectors. For  example, consider the Walsh  matrices of order 2,4, 

and 8 respectively:  

𝑾2(𝑡) = [
1 1
1 −1

]      .  .  . (8) 

𝑾4(𝑡) = [

1  1 1    1
1
1
1

 1
−1
−1

−1
 1
−1

−1
−1
−1

]      .  .  .  (9) 
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𝑾8(𝑡) =

[
 
 
 
 
 
 
 
+1 +1 +1
+1 +1 +1
+1 +1 −1

+1 +1 +1 +1 +1
+1 −1 −1 −1 −1
−1 +1 +1 −1 −1

+1 +1 −1
+1 −1 +1
+1
+1
+1

−1
−1
−1

+1
−1
−1

−1 −1 −1 +1 +1
−1 +1 −1 +1 −1
−1
+1
+1

−1
+1
−1

+1 −1 +1
−1 −1 +1
+1 +1 −1]

 
 
 
 
 
 
 

   .   .  .  (10) 

b-  Any square  integrable  function 𝑓(𝑡)  can be represented  as  an infinite  series  in terms  of  

Walsh   functions [18]: 

𝑓(𝑡) = ∑ 𝛼𝑖𝑾(𝑖, 𝑡)∞
𝑖=0              . . . (11) 

Where, 𝑾(𝑖, 𝑡) are  the  Walsh  functions and  the  Walsh  coefficients 𝛼𝑖can be  written as: 

𝛼𝑖 =
1

𝛾𝑖
∫ 𝑓(𝑡)𝑾(𝑖, 𝑡)𝑑𝑡

1

0
             .  .  . (12) 

And , 𝛾𝑖 = ∫ 𝑾(𝑖, 𝑡)𝑾(𝑖, 𝑡)𝑑𝑡 = 𝑚
1

0
  which called the normalized  factors for  Walsh functions . 

     Eq.(11) was also called the spectrum of 𝑓(𝑡) with respect  to the system of orthogonal Walsh  

functions  {𝑾(𝑖, 𝑡)}𝑖=0
∞ . This compact (discrete) form of eq.(11) can be defined by: 

𝑓(𝑡) = ∑ 𝛼𝑖𝑾(𝑖, 𝑡) = 𝜶𝑻𝑚−1
𝑖=0 𝑾𝑚(𝑡)   .   .  .(13) 

Where, 𝜶𝑻 = [ 𝛼0   𝛼1  𝛼2   .   .  . 𝛼𝑚−1]  is called the  coefficients vector and 𝑾𝑚(𝑡) =
[𝑾0(𝑡)   𝑾1(𝑡)    𝑾2(𝑡)  .   .  .  𝑾𝑚−1(𝑡)] is the Walsh  vector. 

Now  the  approximation  of  the  integral   of  a  Walsh  vector   𝑾𝑚(𝑡)    can be  represented 

mathematically [18] as: 

∫ 𝑾𝑚(𝑥)𝑑𝑥 ≈ 𝑬𝑚𝑾𝑚(𝑡)
𝑡

0
      .   .   .  (14) 

Where, 𝑬𝑚 is  a  𝑚 × 𝑚 square operational matrix of integration uniquely  determined  by 𝑾𝑐(𝑡), 

Where, 𝑐 = 0,1,2, . . . , 𝑚 − 1, which is given by: 

𝑬𝑚 = 𝑾𝑚(𝑡)𝑬𝑚
∗ (𝑾𝑚(𝑡))−1    .   .  .  (15) 

Where, 

𝑬𝑚
∗ =

1

𝑚

[
 
 
 
 
 
 

1

2
 1  1  .  .  .  1

0 
1

2
 1  .  .  .  1

0  0 
1

2
 .  .  .  1

⋮   ⋮   ⋮   .  .  .  ⋮
  0  0   0 .  .  .  1/2]

 
 
 
 
 
 

   .  .  .  (16) 

𝑬𝑚
∗  is called the operational square matrix for Block pulse functions,[17].  

     It can be noted that eq.(14) was computed as Wu, [17] in integration operational matrix for 

orthogonal bases vector based on  𝑬𝑚
∗ .   

Therefore  the operational matrices for Walsh  functions of order 4 and 8 can be represented 

respectively as: 
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𝑬4 = [

1/8 −1/4 −1/8 0.00

1/4 0.00 0.00 −1/8

1/8
0.00

0.00
1/8

0.00 0.00
0.00 0.00

]    .   .  .  (17) 

𝑬8 =

[
 
 
 
 
 
 
 
+1/2 −1/4 −1/8
+1/4 0.00 0.00

+1/8
0.00

+1/16
0.00
0.00
0.00

0.00
+1/8
0.00

+1/16
0.00
0.00

0.00
0.00
0.00
0.00

+1/16
0.00

0.00 −1/16 0.00
−1/8 0.00 −1/16
0.00
0.00
0.00
0.00
0.00

+1/16

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00

−1/16
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00

−1/16
0.00
0.00
0.00
0.00 ]

 
 
 
 
 
 
 

   .   .  .(18) 

7- Application and Results: 

      Consider the completely state controllable and completely observable system which defined by 

the following equations,[12]:  

�̇�(𝑡) = 𝐴𝒙(𝑡) + 𝐵𝑢(𝑡) , 𝑦 = 𝐶𝒙(𝒕)     .  .  . (19) 

Where, �̇�(𝑡): is the vector function of the state vector for the plant with 𝑛 components 𝒙𝒊(𝑡); 

𝒙𝟏(𝑡), 𝒙𝟐(𝑡), 𝒙𝟑(𝑡), . . . , 𝒙𝒏(𝑡) :; 𝑢(𝑡) : control signal (scalar); 𝑨 is an 𝑛 × 𝑛 constant square matrix ; 

𝑩 is an 𝑛 × 1 constant matrix ; 𝑦(𝑡) : output signal (scalar) and 𝐶 is an 1 × 𝑛 constant matrix. For 

the state – feed back control based on the observed state �̂�(𝑡), 

𝑢(𝑡) = −𝐾�̂�(𝑡)    .   .   . (20) 

Where, 𝐾 is (1 × 𝑛) the state feedback gain matrix which can be determined. With this control, the 

state equation becomes: 

�̇�(𝑡) = 𝐴𝒙(𝑡) − 𝐵𝐾�̂�(𝑡)     . . . (21) 

Arranging eq.(21) by adding subtracting  −𝐵𝐾𝒙(𝑡), will obtain   

�̇�(𝑡) = 𝐴𝒙(𝑡) − 𝐵𝐾𝒙(𝑡) + 𝐵𝐾𝒙(𝑡) − 𝐵𝐾�̂�(𝑡) 

   = (𝐴 − 𝐵𝐾)𝒙(𝑡) + 𝐵𝐾(𝒙(𝑡) − �̂�(𝑡))        .   .   . (22) 

where the difference between  𝒙(𝑡) and �̂�(𝑡) is the error vector 𝒆(𝑡): 

𝒆(𝑡) = 𝒙(𝑡) − �̂�(𝑡)     .   .   .(23) 

Substituting the error vector 𝒆(𝑡) and  𝑨∗ = (𝐴 − 𝐵𝐾),𝑩∗ = 𝐵𝐾 into eq.(21) gives: 

�̇�(𝑡) = 𝑨∗𝒙(𝑡) + 𝑩∗𝒆(𝑡)     .  .  .(24) 

The observer error equation is given by, [12]: 

�̇�(𝑡) = (𝐴 − 𝐾𝑒𝐶)𝒆(𝑡) = 𝑀𝒆(𝑡)   .  .  .(25) 

Where, 𝐾𝑒 is called the observer gain matrix, can be determined and  𝑀 = (𝐴 − 𝐾𝑒𝐶).  

   Combining  equations (21) and (25), and arrange them in matrix form:  

[
�̇�(𝑡)

�̇�(𝑡)
] = [

𝐴 − 𝐵𝐾 𝐵𝐾
0 𝐴 − 𝐾𝑒𝐶

] [
𝒙(𝑡)

𝒆(𝑡)
]  .  .  .(26) 

In order to describes the dynamics of the observed-state feedback control system matrix. 
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       To estimate the state feedback control based on the observed  state �̂�(𝑡), first approximate the 

error vector 𝑒(𝑡) by a set of 𝑚 orthogonal Walsh functions {𝑊𝑖(𝑡)}𝑖=0
𝑚−1: 

𝒆(𝑡) = [
𝒆1(𝑡)
𝒆2(𝑡)

] ≈ 𝒆∗(𝑡) = [
𝒆∗

1(𝑡)

𝒆∗
2(𝑡)

] = ∑ 𝜎𝑖
𝑚−1
𝑖=0 𝑊𝑖(𝑡) = 𝜎𝑾(𝑡)   .  .  . (27) 

Integrating both sides of eq.(25) over the interval [0,t] and using eq.(27), will obtain  

𝑒(𝑡) − 𝑒0 = 𝑀𝜎𝑬𝑚𝑾(𝑡)    .   .   .(28) 

𝜎𝑾(𝑡) − 𝑒0𝑾(𝑡) = 𝑀𝜎𝑬𝑚𝑾(𝑡)    .  .  .  (29) 

Where, 𝑒0 = [𝑒(0), 0 , 0, . . . ,0] , 𝑒(0) is the initial value of eq.(13), gives  

𝜎 − 𝑀𝜎𝑬𝑚 = 𝑒0     .   .  .(30) 

By solving 𝜎 based on Kroncker product, will have  

[
 
 
 
 

𝜎0

𝜎1
𝜎2

⋮
𝜎𝑚−1]

 
 
 
 

= [𝐼 − 𝑬𝑚
𝑇 ⊗ 𝑀]−1

[
 
 
 
 
𝑒0

0
0
⋮
0 ]

 
 
 
 

    .   .   . (31) 

Where, 𝐼 is the identity matrix, and 𝑬𝑚
𝑇 ⊗ 𝑀 is the Kroncker product defined by: 

𝑬𝑚
𝑇 ⊗ 𝑀 =

[
 
 
 

𝑀11𝑬𝑚
𝑇    𝑀21𝑬𝑚

𝑇    .  .  .    𝑀𝑚1𝑬𝑚
𝑇

𝑀12𝑬𝑚
𝑇    𝑀22𝑬𝑚

𝑇    .  .  .    𝑀𝑚2𝑬𝑚
𝑇

⋮       ⋮           .  .  .       ⋮
𝑀1𝑚𝑬𝑚

𝑇    𝑀2𝑚𝑬𝑚
𝑇    .  .  .    𝑀𝑚𝑚𝑬𝑚

𝑇 ]
 
 
 
   .   .   .(32) 

After 𝜎 is determined, the solution  �̇�(𝑡) is obtained. The solution 𝒆 is easily found by substituting 

𝜎  into eq.(29). 

   Secondly, the state vector 𝒙(𝑡) can be approximated by  a set of 𝑚 number of orthogonal Walsh 

functions {𝑊𝑖(𝑡)}𝑖=0
𝑚−1 as follows: 

𝒙(𝑡) = [
𝒙1(𝑡)
𝒙2(𝑡)

] ≈ 𝒙∗(𝑡) = [
𝒙∗

1(𝑡)

𝒙∗
2(𝑡)

] = ∑ 𝜃𝑖
𝑚−1
𝑖=0 𝑊𝑖(𝑡) = 𝜽𝑾(𝑡)   .  .  . (33) 

Integrate both sides of eq.(24) over the interval [0,t] and using eq.(33), will have  

𝒙(𝑡) − 𝒙0 = 𝑨∗𝜽∫ 𝑾(𝑡)𝑑𝑡 + 𝑩∗𝝈∫ 𝑾(𝑡)𝑑𝑡
𝑡

0

𝑡

0
  

𝒙(𝑡) − 𝒙0 = 𝑨∗𝜽𝑬𝑚𝑾𝑚(𝑡) + 𝑩∗𝝈𝑬𝑚𝑾𝑚(𝑡)          . . . (34) 

𝜽𝑾𝑚(𝑡) − 𝒙0𝑾𝑚(𝑡) = 𝑨∗𝜽𝑬𝑚𝑾𝑚(𝑡) + 𝑩∗𝝈𝑬𝑚𝑾𝑚(𝑡)   .  .   .(35) 

Where, 𝒙0 = [𝒙00 , 𝒙01 , .   .   . , 𝒙0𝑚−1], therefore,  

𝜽 − 𝑨∗𝜽𝑬𝑚 = 𝒙0 + 𝑩∗𝝈𝑬𝑚 = 𝑸          .   .  .  (36) 

Finally, will obtain: 

[
 
 
 
 

𝜃0

𝜃1

𝜃2

⋮
𝜃𝑚−1]

 
 
 
 

= [𝐼 − 𝑬𝑚
𝑇 ⊗ 𝑀]−1

[
 
 
 
 

𝑞0

𝑞1
𝑞2

⋮
𝑞𝑚−1]

 
 
 
 

      .  .   .  (37) 
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Where, 𝑞1  is the first column of  ; 𝑞2 is the second column of 𝑸 ,  .  .  . ,etc. After 𝜽 is determined 

from eq.(37) the solution of �̇�(𝑡) in eq.(24) is obtained. The solution  𝒙(𝑡) is easily found by 

substituting  𝜽 into eq.(34). 

7-1 Study Problem: Consider the completely state controllable and completely observable system 

defined by the equations[12]: 

�̇�(𝑡) = 𝐴𝒙(𝑡) + 𝐵𝑢(𝑡) , 𝑦 = 𝐶𝒙(𝒕)     .  .  .(38) 

Where, 𝐴 = [
0 1

20.6 0
] , 𝐵 = [

0
1
] , 𝐶 = [1 0] , 𝐾𝑒 = [

16
84.6

] . 

The state-feedback gain matrix 𝐾 for this case can be obtained as follows: 

𝐾 = [29.6 3.6]      .  .  .(39) 

Using this state-feedback gain matrix 𝐾, the control signal 𝑢 is given by: 

𝑢 = −𝐾𝒙(𝑡) = −[29.6 3.6] [
𝒙1(𝒕)
𝒙2(𝑡)

]    .  .  .(40) 

Suppose that we use the observed-state feedback control instead of the actual-state feedback 

control: 

𝑢 = −𝐾�̂�(𝑡) = −[29.6 3.6] [
�̂�1(𝒕)

�̂�2(𝑡)
]     .  .  .(41) 

Table(1) : The general approximation solution of   the completely state controllable and 

completely observable system. 

Time  → 0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9375 

𝒙1(𝑡) 0.9701 0.7914 0.5187 0.2420 0.0151 0.1425 -0.2321 -0.2654 

�̂�1(𝑡) 0.9701 0.8591 0.5685 0.2695 0.0286 0.1487 -0.2294 -0.2642 

𝒆1(𝑡) 0.0000 -0.0677 -0.0498 -0.0275 -0.0135 -0.0062 -0.0027 -0.0012 

𝒙2(𝑡) -0.8061 -1.9406 -2.2967 -2.0600 -1.5469 -0.9776 -0.4723 -0.0823 

�̂�2(𝑡) 0.6654 -0.8579 -1.6993 2.3531 1.6817 -0.9181 -0.4468 -0.0716 

𝒆2(𝑡) -1.4715 -1.0827 -0.5974 -0.2931 -0.1348 -0.0595 -0.0255 -0.0107 

−𝐾𝒙(𝑡) -25.8130 -16.4393 -7.0854 0.2528 5.1219 7.7374 8.5704 8.1521 

−𝐾�̂�(𝑡) -31.1104 -22.3409 -10.7101 -16.4484 -6.9007 -1.0964 8.3987 8.0781 

𝒙∗
1(𝑡) 0.9687 0.8493 0.6433 0.4107 0.2001 0.0315 -0.0873 -0.1571 

�̂�∗
1(𝑡) 0.8367 0.8831 0.6611 0.4223 0.2093 0.0373 -0.0843 -0.1559 

𝒆∗
1(𝑡) 0.1320 -0.0338 -0.0178 -0.0116 -0.0092 -0.0058 -0.0030 -0.0012 

𝒙∗
2(𝑡) -0.5000 -1.4106 -1.8878 -1.8308 -1.5394 -1.1576 -0.7424 -0.3738 

�̂�∗
2(𝑡) 0.8858 -0.5766 -1.4578 -1.6710 -1.3228 -1.0772 -0.7012 -0.3608 

𝒆∗
2(𝑡) -1.3858 -0.8340 -0.4300 -0.1598 -0.2166 -0.0804 -0.0412 -0.0130 

−𝐾𝒙∗(t) -26.8735 -20.0611 -12.2456 -5.5658 -0.3811 3.2350 5.2567 5.9958 

−𝐾�̂�∗(t) -27.9552 -24.0640 -14.3205 -6.4845 -1.4332 2.7738 5.0196 5.9135 

       

       The results for numerical solution of present method is shown in table (1) for m = 8 , which 

confirms that with respect to Walsh functions operational matrix method approach produces the 

numerical solutions of errors 𝒆𝟏
∗ (𝑡) and  𝒆𝟐

∗ (𝑡)  which are closer to the exact solutions 𝒆1(𝑡) and 

𝒆2(𝑡) . Better approximation is expected by choosing a larger value of m. 
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8- Conclusion 

     The Walsh functions method is found to be an effective tool for  the approximate solution to 

the dynamics of the observed-state feedback control system. As shown from the analysis and  is 

suitable for the completely state controllable and completely observable system, as well as, as 

appeared in solving the simple problem is stable in terms of error reducing versus step sizes, 

then it has fast computational time. The result is compared with the exact solutions. It is worth 

mentioning that Walsh solution provides excellent result even for small values of m=8. For 

large values of m=16,m=32, and m=64, we can also obtain the results closer to exact values. 

       So this approach can be extended to other orthogonal functions, such as Haar functions. 

They are much more complicated in terms of construction compared to the Walsh functions.  

9- Recommendations 

1- Using of  another complete orthonormal systems instead of Walsh functions  such as 

complete orthogonal polynomials approximation :Legendre polynomials , Laguerre 

polynomials, Tchebycheff polynomials of the first and second kind and others …. 

2- Giving some practical examples in the completely state controllable and completely 

observable system and using orthogonal polynomials to get the suitable approximation for 

these examples, as well as,  compared them with Walsh functions.   
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