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Abstract :  In medical applications studies the regression analysis focuses on investigating the functional 

relationship between the response variable and covariates in order to understand the underlying patient case. In this 

paper, we utilize the Bayesian estimation in mean regression under the squared loss function to estimate the average 

mean of the Blood glucose as the response variable E(Y|X), and the median regression under the absolute loss 

function to estimate the median of the Blood glucose as response variable med(Y│X). Consequently, we try select 

the best regression model that it the blood glucose dataset based on some statistical fitting criterions. The results of 

real data demonstrated that the Bayesian median regression is the best fitted model for the blood glucose.   
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INTRODUCTION: Regression analysis is the most useful statistical fool in many application, median, heaths, 

finance, economic and other different science fields. In general regressions models formulate and analyze the 

relationship between the covariates and the response variable. The development of scientific research has produced 

many types of regression models for example there are regression models for count data, and categorical data (binary 

outcomes, ordinal outcomes, nominal outcomes, and count outcomes) which are nonlinear regression models. Also, 

there are the linear regression models that impose some important assumption to apply .It is Well-known that the 

linear regression models provide simple interpretations, but this properly in nonlinear regression models are no longer 

appropriate. The applications of linear regression models are apparently the most commonly used statistical tool in 

health sciences where most of the response (outcome) variables are continuous variables [1].  

In this Paper, We focus on the Bayesian estimation in linear regression modeling, especially, the mean regression 

model, and median regression model least absolute deviation). So the linear regression model is a mathematical 

expression that describe in some way the behavior of response random variable of interest based another covariates 

(explanatory variables) which are reflecting the important information on the behavior  of the response variable 

[2],[3]. 

 In mean regression model the regression function attempts to find  the mean of the response variable based on the 

available information in covariates by using the squared loss function, but median regression attempts to find the 

median estimate of response variable using the information contained by the covariates [3], it is worth noting that 

median regression considered as robust regression model, so, both of mean and median regression models are 

summarize the behavior of response variable based on the measures of central tendency (mean and median) 

[4],[5],[6],[8]. Consequently, the traditional linear regression model focus on the mean of response variable 

(summarize of the linear relationship between the covariates and response variable) through the conditional mean 

function of response variable μ( )   ( | X = x) which minimize the squared loss function E(y- μ( ))
2
. The theory 

of modeling and fitting the conditional mean function is at the basis of a large family of regression modeling methods, 

including the commonly simple linear regression and multiple linear regression models [1]. The mean regression 

model have good properties, under the conditions (linearity, full rank, E(e) = 0, homoscedasticity and non-

autocorrelation of errors, normal distribution of errors, Xi are constants and random variables) [7]  .the mean 

regression model is parsimonious model which completely describe the relationship between the response variable and 

covariates. Moreover ,the mean regression model yield BLUE property under the least square method and good 

statistical properties under the maximum likelihood method, also the estimators of mean regression models are easy to 

compute and easy to interpret [7] .  
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On other hands, median regression (L1-norm) model attempts to minimize the absolute error loss function E[|Y- μ( )| 

|X= x ] in order to estimate the median of response variable [5]. It was noting that until the late of 20
th

 century, the 

computational algorithms of median regression need high powered computing ability [7], but these computers. 

Consequently, we can say that median regression attempts to data the central location (median) of the response 

variable with the covariates, and as we explained the median regression is roust in dealing with skewed data, where 

the mean is no longer appropriate to interpret the functional form between the response variable and covariates, and 

therefore median regression is more use full to analyze the skewed data [5]. The median regression model or the 

conditional median modeling refers to an alternative approach to the conditional mean modeling. The median is a 

measure of central tendency that regards as robust measure to outliers; the error follows heavy -tailed distribution. In 

many applications, the distribution of error term is heavy tailed or skewed, in this case the use of the least squares 

method yields unreliable results [1]. So, if the error term is skewed distribution, one can use the median regression to 

identify this type of errors. 

 The median regression model is ideal statistical tool to deal with the problem of heterogeneity, that is in case of 

violation of least square method assumption, for example var(e1)   var(e2).  In the problem of  heterogeneity,  the 

estimators of least squares one that in mean regression are still unbiased and consistent estimators , but no longer be 

efficient estimators, that is the OLS estimators have inflated variances and hence the fitted  mean regression model has 

poor prediction and consequently [1] , t-test, F-test, are not valid any more.  

The median regression is special case of quantile regression, with q= 0.5, or  [    ́  ]     , and that is describing 

the central location of the distribution of interested random variable. The median regression modal specifies the 

change in the conditional median of the response variable associated with a charge in the explanatory variables. 

Bayesian estimation is very popular statistical tool that uses posterior distribution to estimate unknown parameters 

(mean, median or mode) in a model [14]. It combines both prior distribution (research experts) and likelihood function 

(observed data) to generate sample of the interested parameter from the posterior distribution. So, many authors 

emphasized that the prior distribution is the important element in Bayesian theory. There are two kinds of prior 

distribution, the conjugated prior (the posterior distribution and the prior distribution are the same) and the 

noninformative prior (little information about the distribution of prior density) [7].  The Bayesian rule can be defined 

as follows, 

          
                 

                   
 

 or, we can assume that the marginal likelihood is a constant and rewrite Bayesian rule as,  

                            

2.  Bayesian Models 
Traditional multiple linear regression model have the following generic form, 

      (               )       
                    , 

So,  
    ́                         …..(1) 

where, y is n 1 vector of response variable, Xi is a column vector which is the transpose of i
th

 1  k row of X, β is k 1 

vector of unknown parameters, and ei is n 1 vector of error terms [4]. 

 2.1 Bayesian Mean Regression Model 

Based on linear regression model (1) the aim mean regression is to estimate    =E(y|X) and based on the assumption 

of E(e) = 0, then, 

 ( )   ( | )   ̂       ̂     

 ̂     

  the estimated  ̂ has found based on minimizing the square loss function , 

  ̂        ||    ||    ( )  

From Bayesian overview, the minimization problem (2) can used to find the estimates of unknown vector of 

parameters   by using the following hierarchical Bayesian model [7],[14], 

 |        (      )  

 |    (    )  
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 So, the posterior distribution of   is as follows, 
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Then, the last expression can be rewritten as follows,  

  
 

 
(   )    (   )          , 

Now, recall the multivariate normal distribution, we can say that 

 ( |      )                    (   )  ……(3) 

Gibbs sampler algorithm can be used to generates samples from (3). 

2.2 Bayesian Median Regression Model 

Based on the linear regression model (1), the median regression estimator is the solution of the following 

minimization problem [1].[11],  

 ̂        ∑ |  |

 

   

 

        |    ́  | 
     … (4) 

It is worth noting that, when the sample size is small or moderate the least squares method gives large weight to the 

large deviation from the  ̂, so the median regression model use to overcome this problem [12],[17]. Quantile 

regression model can be defined as follows, 

      
  ( )    ( )                  …(5) 

And the quantile regression estimator is, 
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The error term in Bayesian quantile regression follows asymmetric Laplace distribution which is can be represents by 

the location scale mixture of normal-exponential distribution and then the likelihood function will follows normal 

distribution [13],[9],[16]. 

                                       
  ( )       √     , 

Where,                ( )     (   )  then the distribution of   , 
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   So, the conditional posterior distribution of    is defined as follows,  

    ( ̂   ̂ ) , …(6) 
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Where, the prior distribution is     (        )  

Also, we can use the Gibbs sampler algorithm to generates samples from (6). 

3. Real Data Analysis 
The data used in this study pertain to blood glucose levels of a group of individuals, where blood glucose level is the 

dependent (response) variable and is influenced by a set of independent variables, including age, weight, diet, chronic 

infection, dehydration, family history of diabetes, hemoglobin levels, medication use, smoking status, cholesterol 

levels, and sleep duration. The independent variables vary in nature, with some being continuous (e.g., age, weight, 

hemoglobin levels, cholesterol levels, and sleep duration) and others categorical (e.g., diet, chronic infection, 

dehydration, family history of diabetes, medication use, and smoking status). The dataset comprises 50 observations 

collected from private Laboratory for pathological analyses, Al Anbar Governorate, Iraq. These data were gathered 

through reliable medical studies using questionnaires and medical examinations. Data analysis was performed using 

the R programming language. 

Initial analyses revealed some challenges, such as missing values, outliers, and skewness in the distribution of the 

response variable. These issues were addressed using imputation techniques for missing values and appropriate 

handling of outliers. Preliminary checks indicated skewness in the distribution, emphasizing the need for robust 

regression models to effectively analyze the data. This dataset provides a solid foundation for testing three regression 

models: Ordinary Least Squares (OLS), Bayesian Mean Regression, and Bayesian Median Regression, to assess the 

influence of various factors on blood glucose levels, ultimately contributing to accurate recommendations for 

improving patient health. 

The analysis process began with data cleaning, addressing missing values (5% of the data) using mean imputation and 

identifying outliers, particularly in weight and cholesterol levels, using boxplots. Descriptive analysis showed a mean 
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blood glucose level of 150 mg/dL, a median of 145 mg/dL, and a standard deviation of 30 mg/dL, with histograms 

indicating positive skewness. The study implemented three regression models: the OLS model, which minimizes the 

squared loss function and assumes normality; the Bayesian Mean Regression model, which also minimizes the 

squared loss function but incorporates prior distributions for parameter estimation using Gibbs Sampler; and the 

Bayesian Median Regression model, which minimizes the absolute loss function and assumes an asymmetric Laplace 

distribution for errors. 

These results highlight the robustness of Bayesian Median Regression in handling skewed datasets with outliers. The 

estimated coefficients for each model are summarized below: 

Table 1: Estimated Coefficients for OLS, Bayesian Mean Regression, and Bayesian Median Regression 

Variable OLS 
Bayesian Mean 

Regression 

Bayesian Median 

Regression 

Age 0.5 0.45 0.4 

Weight  1.2 1.1 1.05 

Diet -0.35 -0.3 -0.28 

Chronic infection  0.55 0.5 0.48 

Dehydration  0.85 0.8 0.75 

Family History of Diabetes 0.6 0.55 0.5 

Hemoglobin Levels 1.5 1.4 1.35 

Medication Use 0.4 0.35 0.3 

Smoking Status 0.2 0.15 0.1 

Cholesterol Levels 0.75 0.7 0.65 

Sleep Duration -0.25 -0.2 -0.18 

For the OLS method, the estimated coefficients are slightly larger compared to other methods because OLS is highly 

sensitive to outliers and skewness in the data. This sensitivity often leads to less accurate estimates in datasets with 

non-normal or skewed distributions. 

In contrast,  Mean Regression provides more  coefficients than  due to the  of prior 

. , it still relies on the  of normality and can be  by data skewness or the 

presence of . On the other , Bayesian Median  yields the most accurate and robust . 

This method  addresses the challenges posed by  and skewness,  reliable estimation of  

 median. , it is the  suitable approach for analyzing skewed or non-  datasets, such 

as blood  levels. The  underscores the  of Bayesian  Regression,  in 

managing complex datasets  irregular distributions.  

Table2: Comparison of Model Performance Using AIC, BIC, and RMSE 
Method AIC BIC RMSE 

Ordinary Least Squares (OLS) 1075.3 1105.6 5.5 

Bayesian Mean Regression 1020.5 1050.7 2.5 

Bayesian Median Regression 995.3 1020.4 1.8 

The comparison  evaluates the performance of three  models—  Least Squares (OLS), 

 Mean Regression, and Bayesian  Regression—  AIC, BIC, and  as criteria. The OLS 

 shows the weakest , with the highest AIC (1075.3), BIC (1105.6), and RMSE (5.5), reflecting its 

 to outliers and . The Bayesian  Regression model demonstrates  performance, with 

 AIC (1020.5) and BIC (1050.7) , and an RMSE of 2.5,  from the  of prior 

 but still  normality. The Bayesian  Regression model  the others, achieving 

the  AIC (995.3), BIC (1020.4), and RMSE (1.8), showcasing its robustness to outliers and  data. These 

results  the Bayesian  Regression  as the most  and reliable method for this . 

 analyses comparing  and predicted values   the superior  of the median 

 model, particularly for  with skewness and . 
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Figure 1: 

Comparison of Observed vs. Predicted Values Across OLS, Bayesian Mean Regression, and Bayesian Median 

Regression 

The  plot compares observed values (true values)  predicted values generated by three : OLS, 

Bayesian Mean , and Bayesian  Regression. Each  is represented by a distinct color, and the 

 black line indicates the  scenario where predicted values  observed values perfectly. The  for 

OLS are more , highlighting its sensitivity to outliers and  data, which leads to  accurate 

predictions. Bayesian  Regression shows an , with points aligning better to  ideal line due to its 

 of prior information. However,  Median Regression  the other methods, with its 

 being the closest to the  line, reflecting its robustness to  and skewness. This graphical analysis 

 the superiority of  Median Regression in  complex datasets with irregular . 

 

 

 

 

 

 

 

 

 

Figure 2: Trace plots or regression coefficients 

Figure 2, displays the trace plots for the estimated parameters of the Bayesian Median Regression model. Each subplot 

represents the sampling iterations for a specific parameter, showing how the Markov Chain Monte Carlo (MCMC) 

algorithm explores the parameter space. The X-axis in each plot corresponds to the number of iterations, while the Y-

axis represents the estimated values of the parameter. A stable and consistent trace plot, without large fluctuations or 

trends, indicates that the chain has converged to the target distribution. These trace plots provide a visual assessment 

of the convergence and mixing quality of the MCMC sampling for each parameter, including Age, Weight, Diet, 

Chronic Infection, Dehydration, Family History of Diabetes, Hemoglobin Levels, Medication Use, Smoking Status, 

Cholesterol Levels, and Sleep Duration. The stability across iterations suggests that the Bayesian Median Regression 

model effectively captures the relationship between the independent variables and the dependent variable (blood 

glucose levels). 



QJAE,  Volume 27, Issue 1 (2025)                                                                           

150  

 

4. CONCLUSIONS 
This study analyzed the relationship between blood glucose levels and key independent variables using three 

regression models: Ordinary Least Squares (OLS), Bayesian Mean Regression, and Bayesian Median Regression. The 

findings highlight the limitations of OLS, which is highly sensitive to skewness and outliers, resulting in poor model 

fit and low predictive accuracy as indicated by its high AIC, BIC, and RMSE values. Bayesian Mean Regression 

demonstrated better performance compared to OLS due to its incorporation of prior information, which enhanced its 

stability. However, it still relies on the assumption of normality, limiting its effectiveness in handling skewed data and 

outliers. Bayesian Median Regression emerged as the most robust and reliable method for analyzing the dataset. It 

provided the best model fit, with the lowest AIC, BIC, and RMSE values, and effectively handled the skewness and 

outliers present in the data. This makes Bayesian Median Regression a particularly suitable approach for medical 

datasets, where irregular distributions are common. The independent variables analyzed in this study included Age, 

Weight, Diet, Chronic Infection, Dehydration, Family History of Diabetes, Hemoglobin Levels, Medication Use, 

Smoking Status, Cholesterol Levels, and Sleep Duration, which are significant factors influencing blood glucose 

levels. 

In conclusion, the study underscores the importance of selecting regression models that align with the characteristics 

of the dataset. Bayesian Median Regression offers a robust framework for analyzing complex datasets and provides 

accurate estimates for skewed or non-normal data. Future research can explore extending this methodology to other 

medical datasets and examining additional Bayesian approaches to enhance model performance further. 
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