
Al-Qadisiyah Journal for Administrative and Economic Sciences                             ISSNOnline : 2312-9883          

QJAE,  Volume 27, Issue 1 (2025)                                                                          ISSNPrint    : 1816-9171   

DOI: https://doi.org/10.33916/qjae.2025.016276                                                                                                

62 

Dimensions of Digital Marketing and its Impact on Enhancing the 

Mental Image of the Organization 

 

Bahr Kadhim Mohammad                   Saif Sabar Hatem 
                                           mahemmed@qu.edu.iq                                        saif1992112@gmail.com  

University of Al Qadisiyah 

Article history: 
Received: 4/12/2024  

Accepted: 15/12/2024       

Available online: 25 /3 /2025 

Corresponding Author : Saif Sabar Hatem 

Abstract : When the response variable follows a normal distribution, the ordinary least squares (OLS) method is 

considered the most efficient and effective for estimating features. However, in real-world applications, we often 

encounter non-normal distributions, which is very common. In such cases, the OLS method becomes inefficient and 

does not provide accurate estimates. In this paper, we propose that the error distribution in a (23) factorial design is 

skewed and follows an Epsilon-Skew Normal (ESN) distribution. We employ the Modified Maximum Likelihood 

Estimator (MMLE) to estimate the parameters. We use simulation to validate the proposed method, along with real 

medical data to confirm the effectiveness of our approach. Additionally, we apply the Likelihood Ratio Test to the 

real data to assess the validity of the method. 

Introduction: Experimental design has recently become a crucial instrument in the process of product 

creation. This design offers a methodical and empirical technique to evaluate the influence of regulated input 

parameters on the response variable being investigated. It facilitates the comprehension of the relationships between 

the input variables and the identification of the most favorable combination of variable levels to attain the optimal 

outcome, hence enhancing the quality or quantity of the end output. Usually, it is assumed that a mathematical model 

exhibits a linear correlation between the input factors and the response variable. Subsequently, the study is conducted 

utilizing the method referred to as study of Variance (ANOVA).                                                                                                                                                         

This technique is suitable when the replies adhere to a normal distribution, are not influenced by each other, and 

possess identical variances. However, in many real-life situations, the dependent variable may not follow a normal 

distribution, and the relationship between the dependent variable and the independent factors may not be linear. 

Assuming a normal distribution and independent observations, the equations obtained from Maximum Likelihood 

Estimation (MLE) are linear and can be solved. Conversely, if the data does not adhere to a normal distribution, the 

equations obtained from maximum likelihood estimation (MLE) become nonlinear, which presents greater difficulty 

in managing them. This study presupposes that the response variable adheres to an epsilon-skew normal distribution. 

Reviewing previous studies on this topic could provide other viewpoints. 

In (Daniel, 1960), the identification of outliers in experimental design was discussed, noting that field experiments 

might include observations deviating from the general data pattern. Researchers suggested using alternative methods 

to the least squares (LS) method, such as M-estimation and the Huber function (Huber, 1981; Huber, 1973). In 

(Oyeyemi, 2004), a model was proposed using B techniques and Box-Cox transformation or Generalized Linear 

Models (GLM) to handle non-normal data, with a comparison of response plots through confidence intervals. In 

(Hutson, 2004), a regression model was presented that accounts for the error term following the Skew Epsilon Normal 

(ESN) distribution, including the estimation of skewness. In (Wang, Li, & Jiang, 2007), An approach for regression 

shrinkage that is strong and resilient against outliers was proposed. It utilizes LAD-Lasso and the Huber loss function 

for consistent variable selection. In (Kulkarni & Patil, 2010), 2
n
 factorial experiments with a Poisson response variable 

were modified, comparing LOG, SQRT, ANOVA, and GLM methods, with the modified GLM showing the best 

performance. In (Patil & Kulkarni, 2011), GLM and LOG transformation were proposed for analyzing experiments 

with non-normal response variables and small sample sizes, compared with ANOVA based on confidence intervals 

There is no text provided. In an article (Jafari & Hashemi, 2011) the optimal D-design of the basic linear regression is 

presented with the assumption that errors follow a normal skewed distribution. On the other hand, a study (Kane and 

Mandal 2016) used the adaptive Lasso method to evaluate its effectiveness in complex designs using small samples. 

(Mohammed et al., 2017) aimed to analyze a response variable following the logarithm-epsilon-normal deviant 

(LESN) distribution., where the maximum probability estimation (MLE) method was used to estimate parameters and 

verify the effectiveness of the proposed methodology through simulation and factual data. On the other hand, the study 
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(Omondi et al.,2021) focused on the use of two-level experimental design and simulation to identify the main factors 

that affect product durability in different environments, with the aim of enhancing reaction efficiency and extending 

product life.  

In this paper, we propose that the error distribution in a (2
3
)

 
factorial design is skewed and follows an Epsilon-Skew 

Normal (ESN) distribution. We employ the Modified Maximum Likelihood Estimator (MMLE) to estimate the 

parameters. We use simulation to validate the proposed method, along with real medical data to confirm the 

effectiveness of our approach. Additionally, we apply the Likelihood Ratio Test to the real data to assess the validity of 

the method. 

The structure of this paper consists of several sections. The second section reviews the basic principles and benefits of 

two-level experiment designs. The third section provides a summary of the normal-skewed logarithm (ESN) 

distribution. Section 4 deals with the development of accurate and efficient estimators for Design 2
3
 coefficients, 

which rely on modified maximum probability estimators (MMLE) to analyze factor experiments in which response 

variables follow the ESN distribution. Section 5 provides a summary of the simulation results and a detailed analysis 

of a particular sample data. Finally, Section VI provides a brief conclusion of the article. 

2. Full factorial experiment design with two levels 
Factor experiments, first introduced by Fischer (1935) and later developed by Yates (1937), are highly effective and 

widely usable designs in most research. These experiments study the effect of more than one factor on the trait under 

study, in order to obtain information about each factor of the experiment on the one hand, and to identify the 

interaction between these factors on the other. The design of 2
k
 factor experiments is widely used, where k refers to the 

number of factors involved in the study, while 2 represents the number of levels for each factor. These experiments 

have many benefits, especially in exploratory studies, because they are able to uncover important patterns that provide 

guidance for further experiments, as explained (Box et al., 1978), (Montgomery, 1984), and (Hinkelmann 

&Kempthorne1994).                         

 The main factor effect is defined as the change in response due to a change in the level of the factor participating in 

the experiment. An interaction effect arises when the influence of one element is modified by the quantities of other 

constituents. Factorial effects encompass the cumulative consequences of both main effects and interaction effects. A 

full factorial design is able to accurately estimate the effects of all primary factors and interactions of higher order.       

                                                                                                                   

A design that consists of three components, A, B, and C, each with two levels, is commonly known as a 2
3
-factorial 

design. The design yields eight treatment options, which can be visually depicted as a cube, as illustrated in Figure A. 

The symbols "+" and "−" are employed as orthogonal coding symbols to denote the high and low levels of the factors, 

respectively. The eight runs in this design are sequentially listed in Figure B within the "design matrix" as follows: (1), 

a, b, ab, c, ac, bc, and abc. It is crucial to acknowledge that these symbols also represent the total of all data obtained 

for any particular treatment combination. 

 
There are three commonly used notations for the runs in 2

k
 designs. The first notation is the "+" and "−" notation, 

which is commonly referred to as geometric coding, orthogonal coding, or effects coding. The second method involves 

utilizing lowercase letter labels to designate the therapy combinations. The ultimate representation employs the digits 

1 and 0 to signify elevated and diminished factor levels, correspondingly, rather than the symbols "+" and "−". The 

many notations for the 2
3
 design are depicted below: 
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Table 1: The design matrix 2
3
 

 
This type of factorial experimental design offers several methodological advantages:                                              

- The design is orthogonal and fulfills the requirement X
T
 X = nl where:                                                             

- X=(xij): The design matrix consists of elements xij, where xij represents factor j at level i.                            

The symbol I represents the identity matrix of size q×q.                                                                  

- The estimates of parameter βj (j=1, 2, ..., q) obtained using orthogonal designs are unbiased and have reduced 

variances.                                                                                           

The orthogonal design matrix (X) enables the independent measurement of the major effects of components without 

any overlap between the effects.                                                                                

- The potential to calculate interactions of varying orders, such as first order, second order, and so on.  

One alternative method to describe the idea of main effects and interaction effects in two-level designs, as outlined by 

(Montgomery ,2009), is by use a regression model. Consider a full factorial design to investigate the effects of three 

antiviral medications, namely A, B, and C, each having two levels. There are a total of 8 treatment combinations or 

levels in this case. The regression model commonly employed to analyze both the primary effects and interaction 

effects is: 

𝑌𝑖 = 𝛽�0 + 𝛽�1x1 + 𝛽�2x2 + 𝛽�3x3 + 𝛽�12x1x2 + 𝛽�13x1x3 + 𝛽�23x2x3 + 𝛽�123x1x2x3+    𝜀�𝑖� 
The variable 𝑌𝑖represents the response variable, while the parameters 𝛽� represent the factors (A, B, C) as X1, X2, and 

X3 accordingly. The word 𝜀�𝑖� represents a random mistake. Frequently, when constructing a statistical model in 

desired factor trials, the objective is to discover a model that closely approximates the estimated values of the response 

variable to the actual values The variables (X1, X2, X3) are assigned a numerical code of 1 for the high level and -1 for 

the low level of their respective factors. The interaction between X1 and X2 is represented as X1X2, and the remaining 

interaction effects are specified in a similar manner. 

3.Epsilon-skew-normal distribution 

The Gaussian distribution, which was popularized by (Gauss ,1809) but known for almost a century before that, 

continues to be widely used because of its analytical elegance, simplicity, and the central limit effect identified by (De 

Moivre,1733). Nevertheless, there have consistently been uncertainties and hesitations regarding the unrestricted 

utilization of the normal distribution and reluctance towards approaches that rely on assumptions of normalcy. Several 

distributions that are similar to the normal distribution, partially comprise it, and possess some of its desirable 

characteristics, have been important in providing alternatives to the normal distribution.                                                                                                            

Out of these options, the epsilon-skew-normal (ESN) distribution, represented as ESN (θ, σ, ε), is particularly notable. 

This distribution is defined by a singular peak at a certain value, with a probability mass of (1 - ε /)2 concentrated 

around this peak. The probability density function (PDF) for the ESN (0, 1, ε) distribution is defined as follows:  

𝑓0(𝑥) = {

1

√2𝜋
𝑒𝑥𝑝(−

𝑥2

2(1−𝜀)2
𝑖𝑓𝑥 < 0

1

√2𝜋
𝑒𝑥𝑝(−

𝑥2

2(1+𝜀)2
𝑖𝑓𝑥 ≥ 0

                                                                    (1) 

The cumulative distribution function (CDF) is given by: 

𝐹0(𝑥) = {
(1 − 𝜀)ф (

𝑥

1−𝜀
) 𝑖𝑓𝑥 < 0

−𝜀 + (1 + 𝜀)ф (
𝑥

1+𝜀
) 𝑖𝑓𝑥 ≥ 0

                                                               (2) 

When the value of ε is equal to zero, this distribution aligns perfectly with the conventional normal distribution. For 

extremely large or small values of ε, it undergoes a transformation and becomes half-normal distributions that are 

already known. The ESN (θ, σ, ε) distribution has been confirmed to have a mean of θ, making it well-suited for 



QJAE,  Volume 27, Issue 1 (2025)                                                                           

65  

statistical applications that necessitate a versatile distribution that combines the characteristics of the normal 

distribution with skewness.                                                                                     

The epsilon-skew-normal distribution is an instance of extending distributions to incorporate extra characteristics 

beyond the conventional normal distribution. Azzalini (1985, 1986) and other researchers have demonstrated that this 

distribution provides substantial versatility in data modeling and analysis, making it a powerful statistical tool.  

4.The 2
3 
Factorial Design with Epsilon-skew-normal 

The three factor factorial experimental design model can be written as 

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝑇𝑖 + 𝛽𝑗 + 𝛾𝑘 + (𝑇𝛽)𝑖𝑗 + (𝑇𝛾)𝑖𝑘 + (𝛽𝛾)𝑖𝑗 + (𝛽𝛾)𝑖𝑘 + (𝑇𝛽𝛾)𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘𝑙                     (3) 

𝑖 = 1,… , 𝑎𝑓𝑎𝑐𝑡𝑜𝑟𝐴  ,𝑗 = 1,… , 𝑏𝑓𝑎𝑐𝑡𝑜𝑟𝐵, 𝑘 = 1,… , 𝑐𝑓𝑎𝑐𝑡𝑜𝑟𝐶, 𝑙 = 1,… , 𝑛𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 

In model (3), we assume that this model is fixed effect and then, 

∑ 𝑇𝑖
𝑎
𝑖=1 = 0,∑ 𝛽𝑗

𝑏
𝑗=1 = 0,∑ 𝛾𝑘

𝑐
𝑘=1 = 0,∑ (𝑇𝛽)𝑖𝑗𝑖 = 0∀𝑗               

∑ (𝑇𝛽)𝑖𝑗𝑖 = 0∀𝑖, ∑ (𝑇𝛾)𝑖𝑘𝑖 = 0, ∀𝑘 ∑ (𝑇𝛾)𝑖𝑘𝑘 = 0∀𝑖, ∑ (𝛽𝛾)𝑗𝑘𝑗 = 0∀𝑘        

∑ (𝛽𝛾)𝑗𝑘𝑘 = 0∀𝑗, ∑ (𝑇𝛽𝛾)𝑖𝑗𝑘𝑖 = 0, ∀𝑗𝑘 ∑ (𝑇𝛽𝛾)𝑖𝑗𝑘𝑗 = 0∀𝑖𝑘, ∑ (𝑇𝛽𝛾)𝑖𝑗𝑘𝑘 = 0∀𝑖𝑗    

Suppose that the error from model (3) follow the 

𝑓(𝑥; 𝜀) = {

1

√2𝜋
𝑒𝑥𝑝 [

−𝑥2

2(1+𝜀)2
] ; 𝑥 < 0

1

√2𝜋
𝑒𝑥𝑝 [

−𝑥2

2(1−𝜀)2
] ; 𝑥 ≥ 0

                                                                                (4) 

So, if we use the error distribution as ESN (0, σ
2
, ε), then the pdf we will be as follows, 

𝑓(𝑒; 𝜀) = {

1

√2𝜋
𝑒𝑥𝑝 [

−𝑒2

2(1+𝜀)2
] ; 𝑥 < 0

1

√2𝜋
𝑒𝑥𝑝 [

−𝑒2

2(1−𝜀)2
] ; 𝑥 ≥ 0

                                                                             (5) 

Where 

𝑒𝑖𝑗𝑘𝑙 = 𝑦𝑖𝑗𝑘𝑙 − 𝜇 − 𝑇𝑖 − 𝛽𝑗 − 𝛾𝑘 − (𝑇𝛽)𝑖𝑗 − (𝑇𝛾)𝑖𝑘 − (𝛽𝛾)𝑗𝑘 − (𝑇𝛽𝛾)𝑖𝑗𝑘 

𝑓(𝑥; 𝜎2𝜀) = {

1

√2𝜋𝜎2
𝑒𝑥𝑝 [

−(𝑦𝑖𝑗𝑘𝑙−𝜇−𝑇𝑖−𝛽𝑗−⋯−(𝑇𝛽𝛾)𝑖𝑗𝑘)
2

2(1+𝜀)2𝜎2
] ; 𝑒 > 0

1

√2𝜋𝜎2
𝑒𝑥𝑝 [

−(𝑦𝑖𝑗𝑘𝑙−𝜇−𝑇𝑖−𝛽𝑗−⋯−(𝑇𝛽𝛾)𝑖𝑗𝑘)
2

2(1−𝜀)2𝜎2
] ; 𝑒 ≤ 0

                                              (6)           

The following section discuss the parameter estimation by using the maximum likelihood (MLE) method based on the 

distribution (6)  

The ln likelihood function (ln L) for the probability density function (6) with 𝑒𝑖𝑗𝑘𝑙  ESN (0, σ, ε) is defined as follows: 

𝐿 = ∏ 𝑓(𝑒𝑖; 𝜎
2; 𝜀)𝑛

𝑖=1 = {

1

√2𝜋𝜎2
𝑒𝑥𝑝 [

−∑ ∑ ∑ ∑ 𝑍𝑖𝑗𝑘𝑙
2𝑛

𝑙=1
𝑐
𝑘=1

𝑏
𝑖=1

𝑎
𝑖=1

2(1+𝜀)2
] ; 𝑍𝑖𝑗𝑘𝑙 > 0

1

√2𝜋𝜎2
𝑒𝑥𝑝 [

−∑ ∑ ∑ ∑ 𝑍𝑖𝑗𝑘𝑙
2𝑛

𝑙=1
𝑐
𝑘=1

𝑏
𝑖=1

𝑎
𝑖=1

2(1−𝜀)2𝜎2
] ; 𝑍𝑖𝑗𝑘𝑙 ≤ 0

                                   (7) 

Where 

𝑍𝑖𝑗𝑘𝑙 =
𝑦𝑖𝑗𝑘𝑙 − 𝜇 − 𝑇𝑖 − 𝛽𝑗 − 𝛾𝑘 − (𝑇𝛽)𝑖𝑗 − (𝑇𝛾)𝑖𝑘 − (𝛽𝛾)𝑗𝑘 − (𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
 

In real data analysis, the non-normality is more frequent phenomena, so using the ordinary last square methods gives, 

likelihood estimation for this type of data. To find an explicit solution for the parameters in (7), we will express (7) in 

terms of the order statistics as follows: 

𝐿 = {

1

√2𝜋𝜎2
𝑒𝑥𝑝 [

−∑ ∑ ∑ ∑ 𝑔1(𝑍𝑖𝑗𝑘(𝐿)
2 )𝑛

𝑙=1
𝑐
𝑘=1

𝑏
𝑖=1

𝑎
𝑖=1

2(1+𝜀)2
] ; 𝑍𝑖𝑗𝑘(𝐿) > 0

1

√2𝜋𝜎2
𝑒𝑥𝑝 [

−∑ ∑ ∑ ∑ 𝑔2(𝑍𝑖𝑗𝑘(𝐿)
2 )𝑛

𝑙=1
𝑐
𝑘=1

𝑏
𝑖=1

𝑎
𝑖=1

2(1−𝜀)2𝜎2
] ; 𝑍𝑖𝑗𝑘(𝐿) ≥ 0

                                                         (8) 

Where: 

𝑔(𝑍𝑖𝑗𝑘(𝐿)) = 𝑍2; 

𝑍𝑖𝑗𝑘(𝐿) =
𝑦𝑖𝑗𝑘(𝐿) − 𝜇 − 𝑇𝑖 − 𝛽𝑗 − 𝛾𝑘 − (𝑇𝛽)𝑖𝑗 − (𝑇𝛾)𝑖𝑘 − (𝛽𝛾)𝑗𝑘 − (𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
 

here, 𝑦𝑖𝑗𝑘(𝐿) is the order statistics of the sample observation, 

 𝑦𝑖𝑗𝑘(𝐿) ; l = 1, 2, . . . , n  

Now, the ln likelihood equation will be as follows: 
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𝑙𝑛𝐿 = {
𝑛𝑙𝑛 (

1

√2𝜋𝜎2
) 𝑒𝑥𝑝 [

−∑ ∑ ∑ ∑ 𝑔1(𝑍𝑖𝑗𝑘(𝐿))
𝑛
𝑙=1

𝑐
𝑘=1

𝑏
𝑖=1

𝑎
𝑖=1

2(1+𝜀)2
] ; 𝑍𝑖𝑗𝑘(𝐿) > 0

𝑛𝑙𝑛 (
1

√2𝜋𝜎2
) 𝑒𝑥𝑝 [

−∑ ∑ ∑ ∑ 𝑔2(𝑍𝑖𝑗𝑘(𝐿))
𝑛
𝑙=1

𝑐
𝑘=1

𝑏
𝑖=1

𝑎
𝑖=1

2(1−𝜀)2𝜎2
] ; 𝑍𝑖𝑗𝑘(𝐿) ≥ 0

                                           (9) 

The following are the partial derivatives of ln likelihood function of (9) with respect to the model parameters: 

𝜕𝑙𝑛𝐿

𝜕𝜇
= {

∑ ∑ ∑ ∑ �𝐿𝑘𝑗𝑖

2(1+𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) < 0

∑ ∑ ∑ ∑ �𝐿𝑘𝑗𝑖

2(1−𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) ≥ 0

= 0                        (10) 

𝜕𝑙𝑛𝐿

𝜕𝑇𝑖
= {

∑ ∑ ∑ �𝑙𝑘𝑗

2(1+𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) < 0

∑ ∑ ∑ �𝑙𝑘𝑗

2(1−𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) ≥ 0

= 0                       (11) 

𝜕𝑙𝑛𝐿

𝜕𝛽𝑗
= {

∑ ∑ ∑ �𝑙𝑘𝑗

2(1+𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) < 0

∑ ∑ ∑ �𝑙𝑘𝑗

2(1−𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) ≥ 0

= 0                       (12) 

𝜕𝑙𝑛𝐿

𝜕𝛾𝑘
= {

∑ ∑ ∑𝑙𝑘𝑗

2(1+𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) < 0

∑ ∑ ∑𝑙𝑘𝑗

2(1−𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) ≥ 0

= 0                      (13) 

𝜕𝑙𝑛𝐿

𝜕(𝑇𝛽)𝑖𝑗
= {

∑ ∑ �𝑙𝑘

2(1+𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) < 0

∑ ∑ �𝑙𝑘

2(1−𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) ≥ 0

= 0                           (14) 

𝜕𝑙𝑛𝐿

𝜕(𝛽𝛾)𝑗𝑘
= {

∑ ∑ �𝑙𝑖

2(1+𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) < 0

∑ ∑ �𝑙𝑖

2(1−𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) ≥ 0

= 0                        (15) 

𝜕𝑙𝑛𝐿

𝜕(𝑇𝛾)𝑖𝑘
= {

∑ ∑ �𝑙𝑗

2(1+𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) < 0

∑ ∑ �𝑙𝑗

2(1−𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) ≥ 0

= 0                        (16) 

𝜕𝑙𝑛𝐿

𝜕(𝑇𝛽𝛾)𝑖𝑗𝑘
= {

∑ �𝑙

2(1+𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) < 0

∑ �𝑙

2(1−𝜀)2𝜎
[
−𝑦𝑖𝑗𝑘(𝐿)−𝜇−𝑇𝑖−𝛽𝑗−𝛾𝑘−(𝑇𝛽)𝑖𝑗−(𝑇𝛾)𝑖𝑘−(𝛽𝛾)𝑗𝑘−(𝑇𝛽𝛾)𝑖𝑗𝑘

𝜎
] ; 𝑍𝑖𝑗𝑘(𝐿) ≥ 0

= 0                        (17) 

Based on Mudholkar & Hutson (2000); Al-Mousawi et al. (2012), the MLE of  

θ = (µ, τ, β, γ, τ β, τ γ, βγ, τ βγ) can be found by considering that the order statistics 𝑦𝑖𝑗𝑘(1), 𝑦𝑖𝑗𝑘(2). . ., 𝑦𝑖𝑗𝑘(𝑛)of the 

response variable 𝑦𝑖𝑗𝑘𝐿 that following epsilon skew normal (θ, ε, σ2 ) distribution. Now, let 𝑦𝑖𝑗𝑘(0)= −∞ and 𝑦𝑖𝑗𝑘(𝑛+1)= 

∞. Define t = t (𝑦𝑖𝑗𝑘(1), . . . , 𝑦𝑖𝑗𝑘(𝑛) , θ), where 𝑦𝑖𝑗𝑘(𝑡)< θ < 𝑦𝑖𝑗𝑘(𝑡+1), with t is a random integer 

Let us define the Epsilon skew normal in (5) as: 

𝑓(𝑦𝑖𝑗𝑘𝐿) =
1

√2𝜋𝜎2
{𝑒𝑥𝑝 [

−(𝑦𝑖𝑗𝑘𝐿−𝜃)
2

2(1−𝜀)2𝜎2
] 𝐼(𝑦𝑖𝑗𝑘𝐿 ≥ 𝜃) + [

−(𝑦𝑖𝑗𝑘𝐿−𝜃)
2

2(1−𝜀)2𝜎2
] 𝐼(𝑦𝑖𝑗𝑘𝐿 < 𝜃)}                               (18) 

If 0 ≤ t ≤ n, then the ln-likelihood function of (19) can be defined by: 

 

𝐿(𝜃, 𝜎2, 𝜀) = {

−𝑛

2
𝑙𝑜𝑔(2𝜋𝜎2) − (

1

4𝜎2
) 𝑒𝑥𝑝 {∑ (𝑦𝑖𝑗𝑘𝑙 − 𝜃)

2𝑛
𝑙=1 } ; 𝑖𝑓𝑡 = 0, 𝑛

−𝑛

2
𝑙𝑜𝑔(2𝜋𝜎2) − (

1

2𝜎2
) {∑

(𝑦𝑖𝑗𝑘𝑙−𝜃)
2

(1+𝜀)2
𝑡
𝑙=1 +∑

(𝑦𝑖𝑗𝑘𝑙−𝜃)
2

(1+𝜀)2
𝑡
𝑙=𝑡+1 } ; 𝑖𝑓1 ≤ 𝑡 < 𝑛

}       (19) 

Let 

𝐷(𝜃, 𝜀) =
1

(1 + 𝜀)2
∑[𝑦𝑖𝑗𝑘𝑙 − 𝜃]

2
𝑡

𝑙=1

+
1

(1 + 𝜀)2
∑ [𝑦𝑖𝑗𝑘𝑙 − 𝜃]

2
𝑡

𝑙=𝑡+1

 

 

See Mudholkar & Hutson (2000) for more information and the prove of likelihood function in (19). It is north to 

nothing that for t=0 and t=n, the ln-likelihood function comes straightly from the half-normal distributions. Now, 
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based on the likelihood function in equation (19), and using the order statistics to find the maximum likelihood 

estimators for (θ, σ
2,
 ε). 

𝜀 =
[∑ (𝑦𝑖𝑗𝑘𝑙 − 𝜃)𝑡

𝑙=1 ]
1
3 − [∑ (𝑦𝑖𝑗𝑘𝑙 − 𝜃)𝑛

𝑙=𝑡+1 ]
1
3

[∑ (𝑦𝑖𝑗𝑘𝑙 − 𝜃)𝑡
𝑙=1 ]

1
3 + [∑ (𝑦𝑖𝑗𝑘𝑙 − 𝜃)𝑛

𝑙=𝑡+1 ]
1
3

 

And 

𝜎2 =
1

4
{[∑ (𝑦𝑖𝑗𝑘𝑙 − 𝜃)𝑡

𝑙=1 ]
1

3 + [∑ (𝑦𝑖𝑗𝑘𝑙 − 𝜃)𝑛
𝑙=𝑡+1 ]

1

3}  

5. SIMULATION STUDY 
 In order to illustrate the Modified maximum likelihood estimation (MMLE) of the parameters 

(𝜇, 𝜏𝑖 , 𝛽𝑗 , 𝛾𝑘, 𝜎, 𝜀) of the epsilon-skew-normal distribution, we conduct a simulation study using the R software. The 

goal of this simulation is to study the reliability factorial experiment (23), and to estimate the parameters when the 

response variable follows the ESN distribution. At first we assume that 𝑌�𝐸𝑆𝑁, and repeat each experiment (IT=1000) 

for all the simulation experiments. Then we identify some of the default values for the parameters that we need in this 

distribution, as well as changing the number of repetitions for each experiment (r=1, 2, 4, 10) and the default values 

for the skew parameter 

(𝜀 = 0.2,0.5,0.8). When giving default values for the factors (A, B, C) we represent the parameters (𝛽1, 𝛽2, 𝛽3). After 

estimating the parameters, we find the design matrix and calculate the confidence intervals (upper and lower) in order 

to get the parameters estimation.  

Table (1) summarize the MLE for the parameters𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝜀 ∧ 𝜎, and we can see that the parameter estimates are 

close to the default values in the designed algorithm for this paper. We note that there is a simple difference, and 

sometimes an increase in variance (𝜎2) when we increase the number of repetitions (r). Figures () and () graphically 

illustrate the factors A, B, C and support the results obtained in terms of stability and convergence to the simulation 

experiments 

Table (2) Estimation of parameters for model design 2
3
 Factors when n=50 

R
E

P
. 

𝜖 

𝛽
0
=
𝜇

 

𝛽
1
=
𝜏 

𝛽
2
=
𝛽

 

𝛽
3
=
𝛾

 

𝛽
1
2
=
𝜏𝛽

 

𝛽
1
3
=
𝜏𝛾

 

𝛽
2
3
=
𝛽
𝛾

 

𝛽
1
2
3
=
𝜏𝛽
𝛾

 

𝜎 𝜖 

1 

0.

2 

Lower 3.817

7 

0.527

5 

1.864

2 

-

0.148 

2.362

4 

-

0.812 

0.607

5 

0.901

2 

4.893

1 

0.818

2 Upper 4.595

0 

1.314

4 

1.735

3 

2.158

8 

1.722

7 

2.470

7 

1.120

4 

1.014

2 

8.189

2 

1.105

2 Estimat

e 

4.206

4 

0.921

0 

1.799

8 

1.005

4 

2.042

6 

0.829

4 

0.864

0 

0.957

7 

6.541

2 

0.961

7 
0.

5 

Lower 4.167

2 

-

0.209 

0.429

7 

0.525

1 

-

0.292 

0.128

3 

-

0.351 

0.222

3 

5.996

6 

0.764

7 Upper 8.334

5 

3.027

8 

2.014

6 

2.003

3 

3.331

4 

4.433

3 

2.195

3 

3.187

7 

10.17

3 

1.768

2 Estimat

e 

6.250

9 

1.409

4 

1.222

2 

1.264

2 

1.519

7 

2.280

8 

0.922

2 

1.705

0 

8.084

8 

1.266

5 
0.

8 

Lower 1.788

9 

-

0.851 

-

0.549 

0.126

3 

0.042

3 

0.159

4 

0.151

7 

-

0.144 

7.119

6 

1.242

3 Upper 6.356

2 

2.995

4 

2.986

4 

1.757

7 

4.577

3 

2.805

4 

5.411

5 

4.854

1 

13.97

5 

2.077

2 Estimat

e 

4.072

6 

1.072

2 

1.218

7 

0.942

0 

2.309

8 

1.482

4 

2.781

6 

2.355

1 

10.54

7 

1.659

8 

2 

0.

2 

Lower 4.121

6 

0.763

9 

-

1.315 

0.562

2 

-

0.507 

-

0.945 

0.834

8 

0.844

7 

3.932

7 

0.422

1 Upper 7.971

8 

3.278

6 

2.001

5 

2.104

6 

4.498

9 

3.331

4 

1.124

6 

1.001

9 

6.173

0 

0.988

9 Estimat

e 

6.046

7 

2.021

3 

0.343

3 

1.333

4 

1.996

0 

1.193

2 

0.979

7 

0.923

3 

5.052

9 

0.705

5 
0.

5 

Lower 3.487

5 

-

0.303 

-

0.150 

0.102

7 

0.285

8 

0.116 -

0.130 

-

0.178 

4.965

6 

0.662

4 Upper 6.555

6 

2.323

4 

3.252

5 

1.133

8 

4.730

4 

2.185

5 

1.987

7 

2.241

5 

9.116

5 

1.443

2 Estimat

e 

5.021

6 

1.010

2 

1.551

3 

0.618

3 

2.508

1 

1.150

8 

0.928

9 

1.031

8 

7.041

1 

1.052

8 
0.

8 

Lower 4.580

7 

-

0.194 

0.017

9 

-

0.642 

0.193

4 

0.045

5 

-

0.529 

-

0.284 

5.093

1 

1.109

3 Upper 5.621

1 

4.682

6 

4.115

2 

2.425

9 

2.661

7 

1.263

6 

3.556

4 

1.989

8 

10.22

1 

1.899

8 Estimat

e 

5.100

9 

2.244

3 

2.066

6 

0.892

0 

1.427

6 

0.654

6 

1.513

7 

0.852

9 

7.657

1 

1.504

6 
4 

0.

2 

Lower 2.174

8 

0.426

4 

0.122

8 

0.884

0 

0.024

0 

0.605

8 

1.052

4 

0.158

5 

3.126

3 

0.422

1 Upper 6.336

3 

3.551

1 

5.653

2 

6.336

4 

1.554

2 

4.338

7 

5.987

8 

3.748

5 

5.715

2 

0.988

9 
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Estimat

e 

4.255

6 

1.988

8 

2.888

0 

3.610

2 

0.789

1 

2.472

3 

3.520

1 

1.953

5 

4.420

8 

0.705

5 
0.

5 

Lower 3.051

5 

0.169

7 

0.073

6 

0.224

8 

0.149

5 

0.093

2 

0.448

7 

0.101

7 

4.102

3 

0.662

4 Upper 9.188

1 

4.822

6 

2.585

2 

3.998

1 

2.889

7 

1.220

8 

2.098

8 

3.400

5 

8.748

5 

1.443

2 Estimat

e 

6.119

8 

2.496

2 

1.329

4 

2.111

5 

1.519

6 

0.657

0 

1.273

8 

1.751

1 

6.425

4 

1.052

8 
0.

8 

Lower 3.466

5 

0.110

2 

0.612

4 

-

0.137 

-

0.185 

0.129

4 

-

0.647 

0.172

9 

4.211

2 

0.332

2 Upper 8.778

4 

3.748

2 

5.366

8 

1.118

9 

3.707

0 

2.899

6 

3.172

2 

3.889

9 

8.002

2 

1.899

8 Estimat

e 

6.122

5 

1.929

2 

2.989

6 

0.491

0 

1.761

0 

1.514

5 

1.262

6 

2.031

4 

6.106

7 

1.116

0 

10 

0.

2 

Lower 3.582

1 

-

0.749 

0.134

4 

0.190

2 

0.784

8 

-

0.730 

-

0.180 

-

0.529 

1.878

0 

0.326

2 Upper 6.988

9 

3.142

4 

3.667

5 

3.442

2 

4.338

8 

2.885

3 

1.288

2 

5.228

8 

3.131

4 

0.762

6 Estimat

e 

5.285

5 

1.196

7 

1.901

0 

1.816

2 

2.561

8 

1.077

7 

0.554

1 

2.349

9 

2.504

7 

0.544

4 
0.

5 

Lower 4.552

1 

0.362

5 

0.537

6 

0.100

2 

0.292

7 

0.238

0 

-

0.256 

0.990

3 

2.911

3 

0.445

5 Upper 10.14

4 

5.556

7 

3.919

1 

3.692

1 

4.115

5 

5.512

5 

3.511

4 

2.669

8 

7.664

2 

1.288

5 Estimat

e 

7.348

1 

2.959

6 

2.228

4 

1.896

2 

2.204

1 

2.875

3 

1.627

7 

1.830

1 

5.287

8 

0.867

0 
0.

8 

Lower 4.434

8 

0.741

5 

-

0.193 

-

0.541 

0.212

2 

-

0.791 

-

0.359 

-

0.172 

2.200

2 

0.311

0 Upper 8.557

8 

6.335

2 

3.788

9 

4.822

1 

3.338

8 

4.889

1 

4.112

4 

2.178

8 

6.655

3 

1.544

1 Estimat

e 

6.496

3 

3.538

4 

1.798

0 

2.140

6 

1.775

5 

2.049

1 

1.876

7 

1.003

4 

4.427

8 

0.927

6  
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𝜖 = 0.2 for Low 

 
𝜖 = 0.2 for High 

 

Figure (1) Trace plot , replication =2 , n=50  
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𝜖 = 0.4 for Low 

 
𝜖 = 0.4 for High 

 

Figure (2) Trace plot, replication = 4, n=50  
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𝜖 = 0.8 for Low 

 
𝜖 = 0.8 for High 

Figure (3) Trace plot, replication = 10, n=50 and 

The results presented in Table (2), supported by Figure (1),(2)and(3) show the trace plot values of the factors (A, B 

and C) in terms of their stability, approximation, and sometimes fluctuations during the simulation experiments 

conducted with changes in the skew parameter (ε). The levels of the factors (high and low) are also varied in the 

replications. And with a sample size of n=50. 
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In the first case, when ( r = 1) and the skew parameter values are ( ε = 0.2, 0.5, 0.8), we observe that the trace plot 

values for the factors (A,B and C) are close to the default values of the simulations, with the best case occurring at ( ε 

= 0.2), where the results show values concentrated near the averages of the factors. 

In the second case, with (r = 2) and skew parameter values of (ε = 0.2, 0.5, 0.8), we find that the trace plot values for 

the factors (A, B and C) remain close to the default values of the simulations. The best case again occurs at (ε = 0.2), 

where the figure shows values centered around the averages of the factors. 

In the third case, when ( r = 4) and skew parameter values of ( ε = 0.2, 0.5, 0.8), we notice that the trace plot values for 

the factors (A,B and C) are closer and more stable compared to the previous cases relative to the default simulation 

values, with the best case occurring at  

 ( ε = 0.8). 

In the fourth case, when (r = 10) and skew parameter values of ( ε = 0.2, 0.5, 0.8), we find that the trace plot values for 

the factors (A,B and C) are closer and more stable than in previous cases concerning the default simulation values. 

The optimal case occurs at (ε = 0.8), where the figure illustrates values concentrated near the averages of the factors. 

6. Real Data 

Viral hepatitis is an infectious disease caused by viruses that damage liver cells. The resulting damage may be 

temporary or permanent. Viral hepatitis is characterized by the presence of inflammatory cells within the liver tissue. 

Viral hepatitis causes jaundice in children. There are five types of hepatitis (A, B, C, D, E). There are also other types 

that are not classified or have an unclear association with the disease, such as hepatitis G. The hepatitis virus class 

Viral hepatitis causes acute or chronic liver infection and inflammation, resulting in a serious global public health 

problem. Hepatitis B and C viruses are two major causes of severe illness and death. The global burden of disease 

caused by acute hepatitis B and C, liver cancer, and cirrhosis is high (about 27% of all deaths) and is expected to 

occupy a high position in the list of causes of death in the next two decades. It is estimated that 57% of cases of 

cirrhosis and 78% of cases of primary liver cancer are caused by infection with hepatitis B or C viruses. According to 

the World Health Assembly (2010), the transmission of hepatitis virus can be prevented thanks to the following 

effective strategies in the field of public health (vaccination against hepatitis virus infection, implementation of safe 

health care, food, and water supply). 

Based on the factors causing the disease, a factorial experiment was conducted (2
3
) to identify the factors affecting the 

incidence of viral hepatitis disease on a sample consisting of patient records collected from Al-Rifai Hospital/Dhi Qar, 

which represents the response variable (y) with interactions of these factors at two levels for each factor, a high level 

(+1) and a low level (-1). There are 4 common factors produced by three main factors, and there are 3 two-way 

interactions, and one three-way interaction. Tables (3) and (4) show the factors and levels for each factor, describe the 

main factors, and interacting factors. 

Table (3) The Factors and Levels for each factor 
Factors levels 

Factors 
Low level: -1 High level: +1 

Inadequate vaccination 
Full and early vaccination of children and coverage 

of health workers. 
A= Vaccination 

Lack of preventive measures or poor control of 
transmission in health facilities. 

Ensuring safe blood supplies and safe injection 
practices 

B= Healthcare 

Lack of effective safeguards or measures for food 

and water safety. 

Ensuring safe food and water according to health 

standards. 
C=Food and water supply 

 

Table (4) Description of the main and interaction factors 
Descriptive of the factors (main and interactions) Factors 

Vaccination A 

Main Factors Healthcare B 

Food and water supply C 

The interaction between vaccination and health care AB 

Two-factors interactions The interaction between vaccination and food and water supply AC 

The interaction between health care and food and water supply BC 

The interaction between vaccination, health care and food and water supply ABC Three-factors interactions 

 

Table 5. the results of response variable () for each level with interaction 

Factor 

Effect 
𝜇 𝐴 𝐵 𝐶 𝐴𝐵 𝐴𝐶 𝐵𝐶 𝐴𝐵𝐶 

Response 

Replication 1 Replication 2 

1 +1 -1 -1 -1 +1 +1 +1 -1 1.654 1.195 

2 +1 +1 -1 -1 -1 -1 +1 +1 1.693 1.285 
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3 +1 -1 +1 -1 -1 +1 -1 +1 1.272 1.199 

4 +1 +1 +1 -1 +1 -1 -1 -1 1.716 1.281 

5 +1 -1 -1 +1 +1 -1 -1 +1 1.336 1.178 

6 +1 +1 -1 +1 -1 +1 -1 -1 1.390 1.347 

7 +1 -1 +1 +1 +1 -1 +1 -1 1.445 1.462 

8 +1 +1 +1 +1 +1 +1 +1 +1 1.582 1.354 

 

     Testing the data distribution 

There are many statistical tests used to determine the distribution of the data of the phenomenon studied including 

the Kolmogorov-Smirnov test, Shapiro -Wilk test and the cumulative probability of standard distribution. As well 

as the Boxplots chart, this is often used to illustrate the distribution of factors data by levels. Therefore, the last 

method was chosen to test these data, as it shows the appropriateness of the data and its distribution by factor 

levels.   

 

 

 

Figure (4) Boxplot charts for viral hepatitis according to factors (A, B, C)   with two levels for each factor 

and interaction 
Through the forms in Figure (3.19), we observe that many levels of factors are asymmetric. The graph shows that the 

vaccination factor (A) and the healthcare application factor (B) are skewed to the right. Signs of this include the high 

level (+1) and the low level (-1). We note that the right tail is shorter, while the left tail is longer. Additionally, the last 
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factor, as well as the two-way interactions and the three-way interaction, also exhibit asymmetry. These factors, along 

with their levels, affect the distribution of the response variable (hepatitis), making it asymmetric and tending towards 

the (ESN) distribution. 

 

 
Figure (5): Histogram of Skew normal distribution for response variables. 

Figure (5) shows that the distribution does not appear to be symmetric, indicating a possible skew in the data 

distribution. Specifically, the distribution seems to be tilted to the right, with the right tail being longer than the left 

tail. We also observe that the data follows a skewed normal distribution, specifically following an epsilon-skew 

normal distribution (ESN). 

Table (6) MLE Coefficient for the viral hepatitis (main factors and interactions 

Parameter MLE Coeff. Lower CI Upper CI Likelihood Ratio P value 

𝛽0 2.772 2.431 3.113 11.364 0.3342 

𝛽1(A) 0.445 0.395 0.495 7.7743 0.0037 

𝛽2(𝐵) 0.375 0.337 0.413 6.9822 0.0129 

𝛽3(𝐶) 0.224 0.196 0.252 4.4682 0.3251 

𝛽4(𝐴𝐵) 0.482 0.428 0.536 5.5478 0.0148 

𝛽5(𝐴𝐶) 0.442 0.388 0.496 3.6594 0.1224 

𝛽6(𝐵𝐶) 0.371 0.333 0.409 6.1131 0.0155 

𝛽7(𝐴𝐵𝐶) 0.482 0.434 0.530 5.9877 0.0171 

𝜎 0.1533 0.138 0.169 - - 

𝜀 0.0874 0.077 0.098 - - 

The table (6) summarizes the maximum likelihood estimates (MLE) of the parameters, along with the confidence 

interval bounds, likelihood ratios, and p-values. 

1. Estimated Coefficients (β) 

The estimated coefficients indicate the effects of various factors and their interactions on the dependent variable. 

Below is a summary of each coefficient's effect: 

 β̂0 (Intercept): The estimated value is 2.772, representing the baseline mean of the model in the absence of other 

factor effects. 

 β̂1 (A): With an estimated value of 0.445, this coefficient represents the individual effect of factor A, which stands 

for Vaccination. This effect is statistically significant with a p-value of 0.0037, indicating a notable impact of this 

factor. 
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 Remaining Coefficients: These represent the individual effects of factors B and C and the two- and three-way 

interactions between factors such as AB, AC, BC, and ABC, reflecting the complexity of factor interactions. 

2. Confidence Interval Bounds 

Confidence intervals provide an assessment of the accuracy of each estimate, helping to understand the stability of 

each estimate: 

 β̂0: The confidence interval ranges from 2.431 to 3.113, suggesting a 95% confidence that the true value lies within 

this range. 

 β̂1 (A): With a confidence interval ranging from 0.395 to 0.495, this reinforces the importance of factor A and 

suggests a stable estimate, given its relatively narrow bounds. 

3. Likelihood Ratio Test and P-values 

The likelihood ratio test indicates the significance of factors or interactions in explaining the dependent variable. Here 

is a summary of factor significance based on p-values: 

 β̂1 (A): With a likelihood ratio of 7.7743 and a p-value of 0.0037, factor A (Vaccination) has a significant effect on 

the dependent variable at the 5% significance level. 

 β̂2 (B): With a likelihood ratio of 6.9822 and a p-value of 0.0129, factor B (Healthcare) also has a statistically 

significant effect on the dependent variable at the 5% level. 

 Interactions (AB, BC, and ABC): Coefficients β̂4 (AB), β̂6 (BC), and β̂7 (ABC) all show statistical significance at 

the 5% level, with p-values below 0.05, indicating the importance of interactions between these factors. 

 Non-significant Coefficients: β̂0, β3̂ (C), and β̂5 (AC) have p-values greater than 0.05, suggesting they are not 

statistically significant at the 5% level, and thus may not have a substantial impact on the dependent variable. 

The results indicate that factors A and B and the interactions AB, BC, and ABC have significant effects on the 

dependent variable, highlighting the importance of these factors in explaining the model's outcomes. 

7. Conclusions  
Based on the results of simulation experiments and real data, we conclude the following: 

1.The Modified Maximum Likelihood Estimation (MMLE) method is a comprehensive and effective approach for 

accurately estimating the parameters of factorial experiment models. It demonstrates strong performance in capturing 

the effects of main factors and their interactions, particularly when the response variable follows a skewed normal 

distribution. 

2.The Likelihood Ratio Test (LRT) proves to be effective in identifying important factors when the response variable 

follows a non-normal distribution. 

3.In analyzing real data, the MMLE method efficiently identified key factors in the viral hepatitis dataset. These 

factors include vaccination (Factor A), healthcare (Factor B), the binary interactions between vaccination and 

healthcare (AB), and between vaccination and food and water supply (AC), as well as the triple interaction among 

vaccination, healthcare, and food and water supply (ABC). 

8. Recommendations 
Based on the results and conclusions, some recommendations for this study can be summarized 

1.Using the proposed method when the response variable follows a skewed normal distribution. 

2. Using tests of non-normal distributions with factorial experiments. Recommendations Conclusions and 

Recommendations 

3. The researcher recommends employing Bayesian methods in analyzing factorial experiments that do not follow a 

normal distribution. 

4. Employing the proposed method with industrial, agricultural, and medical datasets 
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