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Abstract :  This study investigates the application of regularization methods within a two-stage  high-factor 

analysis framework. This proposed method aims to handle high-dimensional and complex data. First, we reduce the 

high factors (dimensionality) of the model by using factor analysis to find important factors  via  regularization 

techniques to improving of  the interpretability and stability of the model. This stage involves the development of 

using the selected factors, via  Lasso are applied to mitigate overfitting and improve generalization, the proposed 

method  including regularization not only speeds up the factor selection process but also produces predictions that are 

more accurate. But the second stage is focus on regularization the variables within the factor, to improve the 

interpretability and stability of the model . Also ,we can minimize  overfitting and enhance the model's performance 

in high-dimensional data scenarios by regularizing these variables efficiently. The superiority of our proposed 

method compared to existing approaches in this field can be demonstrated using simulation techniques and real-world 

data. Where, we notice that the proposed method has proven its superiority over previous methods in the same field, 

and this is evident from the presented Results. 
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INTRODUCTION: A statistical method called factor analysis divides the observable variables into smaller 

unobserved variables called factors (Kim, J. O., & Mueller, C. W. (1978)). The number of extracted factors will equal 

the number of variables, with each factor representing a linear combination of these variables. This means that each 

factor represents a set of observed variables that contribute to the variation in the data Costello, A. B., & Osborne, J. 

W. (2005). Numerous criteria exist for identifying the most significant factors; the Kaiser criterion(Kaiser, H. F. 

(1960)), which emphasizes choosing factors that correspond to eigenvalues larger than one, is among the most widely 

used approaches Field, A. (2013). However, in the current study , we will focus on a regularization method that 

balances bias and variance on one hand, it know Lasso technique, while reducing time and improving the 

interpretability of the model by automatically selecting important factors and setting insignificant factors to zero 

exactly(Tibshirani, R. (1996)). The majority of the time, when reducing high-dimensional by direct factor analysis, the 

remaining factors have low explanatory ability , as compered by the explained variance to total variance ratio. To 

overcome this issue, high factor analysis can be used, which represents the optimal level of analysis that achieves the 

highest explained variance (Cieciuch, J, et al ,,2014). In this paper, we mixed between lasso with high factor analysis, 

Where  the model becomes simpler to understand when fewer factors are included, which frees up the researchers' 

attention to concentrate on the most important factors that influence the result. Also, this mixing can lead to improved 

model performance by reducing overfitting and enhancing generalization to new data. Additionally, by lessening 

overfitting and boosting generalization to a new data, this mixing can increase model performance. This combination 

can save time and computational resources by automating the identification of significant factors and important 

variables selection  within the factors, hence streamlining the analytic process. This paper organized 

High-order factor analysis  
One crucial technique in multivariate analysis is factor analysis. It is mostly focuses with examining the 

interrelationships (correlations) among a set  of variables(Henson, R. K. et al ,,2006). This a set  variables 

            are related to one another either directly or indirectly, and factor analysis reduces them to a smaller set 

of variables known as common factors(         ). Following that, these factors are modeled with specific linear 

models that preserve a substantial amount of information from the initial variables(Okon, Jan(1974)). We can used the 

matrix system for writing mathematical model to factor analysis as following : 
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where    is original variables with      ,   is loading factor (correlation coefficients between observed variables and 

latent factors in dimensions      ,.) 

 is Common factors values with (   ) ,   is residual (error) values in dimensions(   ).  

Additionally, we shall impose the subsequent assumptions on Z 

-Common factors and error  are independent           , This indicated that the errors are unrelated to the common 

factors. 

-       , may have significant effects on statistical modeling by implying that common factors do not always 

favour positive or negative values, which results in more thorough analysis. This indicated that the errors are unrelated 

to the common factors. 

-         , where is the identity matrix, I is the cov covariance matrix, and is used to ensure that the common 

factors are uncorrelated. 

Let           
                   

                        ,From the above conditions                

                   ,let          

        

From the model presented in equation (1), we find that the factor loadings ( ) summarize the relationships between the 

variables and the original factors. 

   (     )                                                                     

In factor analysis,     is matrix of factor loading is a crucial strategy that aids in the process of dimensionality 

reduction and enables researchers to comprehend patterns of correlations between variables and underlying 

factors.Factors after rotation may depend on other factors, which is referred to as second-order factor analysis. Since 

factor analysis reduces a large set of variables to a smaller number of factors, these factors can be considered as 

variables themselves, allowing for a second round of factor analysis (Cudeck, R. (2000). Often, the explained variance 

from first-order factors (direct analysis) is low and does not represent the explanatory power of the phenomenon under 

study. To overcome this issue, we used the  higher-order factor analysis. A statistical technique known as higher-order 

factor analysis involves factor analysis, oblique rotation, and factor analysis of rotated factors as successive processes. 

Its advantage is that it makes the hierarchical structure of the phenomena under study visible to the researcher. One 

can either post-multiply the primary factor pattern matrix by the higher-order factor pattern matrices in order to 

comprehend the results (Gorsuch, 1983). To achieve the optimal level in factor analysis, we rely on the degree that 

achieves the highest explained variance, which allows us to focus and reduce factors to those with high explanatory 

power. To implement second-order factor analysis , the model will follow the following form: 

                                             

where    is original variables with      ,    is loading factor (correlation coefficients between observed variables 

and second –order latent factors in dimensions      ,.)   is second –order Common factors of s with (   ) ,   is 

residual (error) values in dimensions(   ). The second-order factor loadings represent the relationship between the 

original variables and the second-order factors after projecting the original variables onto the second-order factors, as 

shown in the following equation. 

   (     
 )     

                                                                 

To implement third-order factor analysis , the model will follow the following form: 

                                             
where    is original variables with      ,    is loading factor (correlation coefficients between observed variables 

and third –order latent factors in dimensions      ,.)   is third –order Common factors of s with (   ) ,   is residual 

(error) values in dimensions(   ). The second-order factor loadings represent the relationship between the original 

variables and the second-order factors after projecting the original variables onto the third-order factors, as shown in 

the following equation (Taha .H. A, and Fadhel H. H,2010). 

   (     
 )     

                                                                 

To implement high-order factor analysis , the model will follow the following form: 

                                             
where    is original variables with      ,    is loading factor (correlation coefficients between observed variables 

and high –order latent factors in dimensions      ,.)   is high –order Common factors of s with (   ) ,   is 

residual (error) values in dimensions(   ). The high-order factor loadings represent the relationship between the 

original variables and the second-order factors after projecting the original variables onto the high-order factors, as 

shown in the following equation. 
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   (     
 )     

                                                                 

In this paper,  we introduced a good method via mixing one of regularization  technique (lasso) and high-order factor 

analysis.  

Regularization technique of high- order factor analysis 
High-order factor analysis and regularization technique (lasso) together can improve the modeling process in a 

number of ways. An outline of the associated methods and benefits is provided below. This proposed new approach 

will provide us with a set of advantages. First, it will uniquely contribute to selecting important factors by excluding 

insignificant factors through setting their eigenvalues to zero. 

        ∑|   
 |

 

   

                                      

   , is a regularization loading factor that controls the strength of the penalty applied. ∑ |   
 | 

    As is common in 

regularization procedures to promote sparsity in the model, this term sums the absolute values of the  loading factor. 

Second , it will uniquely contribute to selecting important variable within the important factor as the second stage  by 

excluding insignificant factors through setting some  elements of eigenvector to zero exactly. The following 

mathematical model illustrates the selection of variables within a single factor. 

        √     ∑|  |

 

   

                                  

     is stand  for the factor loadings, or factor loadings matrix((Toczydlowska, D et al 2017). 

   is stand  high-order factor analysis, or eigenvector matrix. 

√   is represents the eigenvalue's square root for the high-order  factors more detail ((Jolliffe, I et al 2003)) . 

  is represented  the regularization parameter for high-order factor . 

The term of  ∑ |  | 
   In regularization techniques, this term sums absolute values of the loading factors , which 

promotes sparsity in the model. (Tibshirani, R. (1996)).  

In our proposed method, the code from the (psych) code has been modified by integrating Lasso technique for 

selecting important factors, as well as identifying significant variables within those factors by employing the (glmnet) 

code. 

Real data set  
issues that affects individuals, families, and communities as a whole. In recent years, divorce rates have seen a 

noticeable increase in many cultures and countries, raising questions about the causes and factors associated with this 

phenomenon. Risks of the Phenomenon Divorce not only affects the spouses but also extends its impact to children, 

parents, and friends, creating changes in family dynamics and affecting social relationships. Understanding the causes 

and motivations behind divorce can help develop supportive strategies for couples and families, contributing to the 

improvement of marital relationships and enhancing family stability. There are Influencing many variables intersect in 

the phenomenon of divorce, including 

1-                      

2-                                     
3-                         
4-    Living conditions. 

5-                         
6-                           

7-                                     
8-                     
9-                          
10-                             
11-                               
the questionnaire was presented to 120 social researchers in the courts of the provinces of Hilla and Qadisiyyah. After 

collecting the questionnaires from their original sources, it was found that there were 8 invalid questionnaires that 

were excluded. The valid questionnaires were processed numerically and entered into the program for data analysis. 

 

 

Results  



QJAE,  Volume 27, Issue 1 (2025)                                                                           

30  

The above data will be analyzed using the proposed method (lasso high-order factor analysis)and one of the classical 

approaches (Kaiser criterion) to select important factors and explained variance in both methods, along with a 

comparison of the results. 

Table -1- show the Eigen value and explained variance of our proposed method(Lasso high-order factor 

analysis) and classical method (factor analysis)for first-order factor analysis 
Factors Fac1 Fac2 Fac3 Fac4 Fac5 Fac6 Fac7 Fac8 Fac9 Fac10 Fac11 

Eigen value 1.551 1.463 1.320 1.288 1.159 1.102 1.094 0.753 0.545 0.491 0.234 

Explained 

variance% 
13.221 12.783 11.106 10.863 9.657 9.114 8.755 7.526 6.845 5.496 4.634 

Proposed  method  

Lasso Eigen 

value 
1.967 0.000 0.845 0.782 0.000 0.645 0.000 0.883 0.000 0.000 0.000 

lassoExplained 
variance% 

19.341 0.000 17.453 16.673 0.000 16.562 0.000 12.652 0.000 0.000 0.000 

From the results presented in the table above, we observe that the number of factors is equal to the number of 

variables, which is 11. Therefore, the first-order factor analysis was able to identify 7 significant factors out of 11 and 

disregard 4 insignificant factors, relying on the criterion of eigenvalues greater than one. We note that these 6 

significant factors explained 75.499% of the total variance. However, in our proposed method, we find that the 

number of non-zero factors is 5. This means that the first-order factor analysis successfully identified 5 significant 

factors out of 11 and excluded 6 factors that were deemed insignificant, setting their coefficients to zero exactly  and 

excluding them from the analysis. Our proposed method automatically selected the important factors by zeroing out 

the coefficients of the insignificant factors. We also note that the significant factors were able to explain 85.312% of 

the total variance.  

. Therefore, the important variables within the important factors for classical methods (factor analysis) , we can show 

in the following figure  

 
 Figure -1- Show the factor loading of original variables with important first –order factor by classical method 

As mentioned earlier, the significant first-order factors are 7 factors, each containing original variables with different 

factor loadings. The blue color corresponds to the significant variables within the factors that have factor loadings 

greater than 0.5. In contrast, the yellow color represents the insignificant variables within the factors that have factor 

loadings less than 0.5. the below figure show non-zero and zero loading factor for each factor   
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Figure -2- Show the factor loading of original variables with important first –order factor by proposed method (Lasso 

high-order factor analysis ) 

From the above figure, we observe that the non-zero factor loadings represented in blue correspond to the significant 

variables within each factor. Conversely, the remaining variables have zero factor loadings, indicating that these 

variables do not have an effect on their studied factors and can be excluded. 

Via the  observing both methods, we find that there is a percentage of unexplained variance .The classical method was 

unable to explain approximately 24.501% of the total variance, while our proposed method failed to explain 14.688% 

of the total variance. Therefore, first-order factor analysis cannot be considered the optimal degree. we see that there is 

unexplained variance in both methods at different rates. Therefore, it cannot be concluded that first-order factor 

analysis represents the optimal degree of analysis until the explained variance of the second-order factors is calculated 

and compared with the explained variance rates of the first and second-order factors. The process of second-order 

factor analysis for both methods relies on the factor loadings of the original variables with the first-order factors, as 

shown in the figures(1)(2). These are treated as original variables for the subsequent analysis steps, as illustrated in the 

table below. 

Table -2- Show the Eigen value and explained variance of our proposed method(Lasso high-order factor 

analysis) and classical method (factor analysis)for second-order factor analysis 
Second –order Factors     

      
      

      
      

      
      

  

Eigen value 1.542 1.393 1.165 1.029 0.716 0.642 0.513 

Explained variance% 19.453 18.857 17.762 15.452 12.542 9.673 6.172  

Proposed  method  

Lasso Eigen value 2.736 0.965 1.0672 0.000 0.000 ------ ------ 

Lasso Explained 

variance% 
32.784 30.563 27.654 0.000 0.000 ----- ------ 

 

From the results of the table above, which pertain to the second-order factor analysis of the classical method, we 

find that the number of factors with eigenvalues greater than one is 4. Thus, the number of significant factors is 4 

out of 7 factors, and these 4 factors were able to explain 71.524% of the total variance. When comparing this 

percentage with the explained variance in the first-order factors, we see that the explained variance in the second-

order factors is lower than that in the first-order factors. Therefore, the analysis can be concluded at the first-order 

factors, which are considered a good method for analyzing the phenomenon under study. But , we find that the 

number of non-zero factors in the second-order analysis of the proposed method(lasso high-order factor analysis) 

is 3 out of a total of 5 factors. These three factors explained variance is  91.001% of the total variance. When 

comparing this percentage with the explained variance in the first-order factors, we see that the explained variance 

in the second-order factors is greater than that in the first-order factors. Thus, second-order factor analysis is 
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superior to first-order factor analysis. We will continue with the analysis steps to reach an appropriate degree of 

factor analysis to rely on for analyzing the remaining degrees. 

In our proposed method (Lasso high-order factor analysis) with second -order factors are 3 factors have  non-zero 

eigenvalue ,each these factors have zero and non-zero factor loading for the first -order factors with second -order 

factors as show in the following figure    

 
Figure -3- Show the factor loading of first-order factors  with important second –order factor by proposed method 

(Lasso high-order factor analysis ) 

In our proposed method(lasso), we can continue with third-order factor analysis by relying on the factor loadings of 

the first-order factors with the second-order factors. The analysis steps can be repeated for the second-order factors to 

obtain the third-order factors, as illustrated in the table below. 

Table -3- Show the Eigen value and explained variance of our proposed method(Lasso high-order factor 

analysis) third  second-order factor analysis 
Third –order Factors     

      
      

  

Lasso Eigen value 1.673 1.0468 0.000 

Lasso Explained variance% 44.745 38.935 0.000 

From the results shown in the table above, we find that the non-zero eigenvalues are 2 factors. This means that the 

number of significant factors is 2 out of 3 factors, and these two important factors were able to explain 83.680% of the 

total variance. When comparing this variance ratio with the explained variance of the second-order factors, which is 

greater than this ratio, we conclude that we will rely on the second-order factors based on this results. After 

determining the second-order factors, which represent the optimal level in the analysis of the phenomenon under 

study, we notice a separation between the original variables and the second-order factors. The factor loadings of the 

original variables can be recalculated with the second-order factors by projecting the original variables onto the 

second-order factors, as illustrated in the following figure: 
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Figure -4- Show the factor loading of original   variable with  important second –order factor by proposed method 

(Lasso high-order factor analysis ) 

From the results listed in table 2 ,we observed there are three factors non-zero eigenvalues, therefore, the number of 

important factors are three, these three factor can explain 91.001% from total variance. From above figure displayed 

three important factor, we can explain the loading factor of original variable with three important factors are following 

: In first second-order factor can explain 32.784% from total variance , and this factor have seven non-zero loading of 

the original variables(                       ).Also, this factor have four zero exactly loading of the original 

variables(             ,these variables unimportant for analysis. In second factor of  the  second-order factor can 

explain 30.563% from total variance , and this factor have four non-zero loading of the original 

variables(                    ).Also, this factor have four zero exactly loading of the original 

variables(                ,these variables unimportant for analysis. In third  second-order factor can explain 

27.654% from total variance , and this factor have seven non-zero loading of the original 

variables(            ).Also, this factor have seven zero exactly loading of the original 

variables(                        ,these variables unimportant for analysis.  

Conclusions and recommendations  
Conclusions 

important factor Selection with  high-order factor analysis, regularization methods like Lasso can be used to efficiently 

choose important factor . In order to reduce dimensionality and concentrate on the most significant factor , which  

phase is essential. Also, Regularization reduces the possibility of overfitting, especially with high-dimensional 

datasets. Constraining the model guarantees the generalizability of the results. Automatic Factor Selection: By setting 

inconsequential coefficients to zero, regularization makes it easier for major factors to be automatically selected. This 

automaticity lessens the subjectivity in factor selection and streamlines the analytical process. Comparative 

Advantage: The regularization technique shows that when comparing factor analyses of the first ,second to the  high 

orders, the high order frequently produces a larger explained variance with fewer significant components. This 

demonstrates how well hierarchical modeling captures intricate interactions. The two-stage high-order factor analysis 
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approach is greatly improved with the addition of regularization techniques. While addressing problems like 

overfitting, it enhances robustness, high model interpretability, and variable selection within significant factors. These 

benefits highlight regularization's importance as a necessary element of contemporary analytical frameworks. We find 

that our proposed method demonstrated a greater ability to explain significant factors compared to the classical 

method, as evidenced by the explained variance. Our proposed method was able to explain a higher percentage of 

variance and was also effective with high-order factor analysis. Additionally, our proposed method does not rely on 

ranking when selecting significant factors or when choosing the original variables within those important factors. We 

note  that the variable (Living conditions) has the greatest impact on the phenomenon of divorce within the first and 

second factors, as it achieved the highest factor loadings within these two factors. Also, the variables (Changes in 

values)( Increased independence of women.) have the greatest impact on the phenomenon of divorce within the first 

and second factors, 

Recommendations 

Combine a good regularization methods To determine which regularization approach yields the best results for a given 

dataset, investigate the employment of various regularization techniques (such as Elastic Net and Ridge) in 

conjunction with Lasso. Also, To assess the impact of regularization parameter selection on the selection of important 

factors and the overall performance of the model, via sensitivity studies. In high-dimensional phenomena, we 

recommend using our proposed method due to its advantages in identifying the appropriate level of analysis that 

achieves the highest explained variance. Additionally, the combination of the Lasso technique with high-order factor 

analysis provides a new benchmark for selecting significant factors as well as important variables within the chosen 

factors. We recommend that civil society organizations hold awareness seminars to reduce this phenomenon by 

providing a wider space for women's independence and supporting independent living away from family and relatives' 

interference. 
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