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Abstract :  The phenomenon of obesity in newborns, though relatively rare, poses significant health challenges, 

necessitating the identification of key contributing factors to aid in health awareness and preventive strategies. This 

study employs advanced regression techniques, including Lasso, Bayesian Lasso, Adaptive Lasso, and Bayesian 

Adaptive Lasso, to analyze 13 predictors influencing infant obesity. These methods address challenges such as 

multicollinearity, sparsity, and high dimensionality, with Bayesian Adaptive Lasso emerging as the most effective. 

By achieving superior predictive accuracy and interpretability, this method excels in isolating non-influential 

predictors while providing credible intervals for uncertainty quantification. The findings highlight the robustness of 

Bayesian approaches, particularly Bayesian Adaptive Lasso, in analyzing medical data, providing a foundation for 

future interventions in neonatal health. 
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INTRODUCTION: Obesity in newborns, though uncommon, presents significant challenges to neonatal health 

and development. Understanding its underlying factors is crucial for raising awareness and designing effective 

preventive measures, World Health Organization. (2020). Many medical phenomena, including infant obesity, can be 

studied using regression models to examine the relationships between predictor variables and outcomes. However, 

traditional regression techniques often face limitations, especially with small sample sizes and high-dimensional 

datasets that are common in medical research. To overcome these challenges Bayesian regression has proven as 

effective methodology to parameter estimation. Bayesian regression is a statistical technique that combines the prior 

information about the parameters of linear regression model and updates these prior based on observed data. So, 

Bayes' rule is used to combine prior distributions with data (likelihood) function to obtain the posterior distributions 

for model of interested parameters, see Gelman et al. (2008) and Spiegelhalter et al., (1994). 

 Advanced methods like Bayesian regression, particularly Bayesian extensions of Lasso, Tibshirani, 1996, have 

proven effective by combining parameter estimation, variable selection, and uncertainty quantification. This study 

utilizes sophisticated regression techniques, including Bayesian Lasso (Park and Casella, 2008), Adaptive Lasso (Zou, 

2006), and Bayesian Adaptive Lasso (Feng et al., 2017), to identify factors influencing infant obesity. These 

approaches address challenges such as multicollinearity, sparsity, and high dimensionality while maintaining model 

interpretability. The primary goal is to improve the predictive accuracy and reliability of regression models, offering a 

robust statistical framework for medical interventions and policy formulation. A notable feature of Lasso is its ability 

to perform automatic variable selection by shrinking irrelevant coefficients to zero, enhancing both model simplicity 

and interpretability. This property is especially valuable for high-dimensional datasets where the number of predictors 

exceeds the sample size. However, Lasso has limitations, particularly in handling multicollinearity, as it tends to select 

only one variable from a group of highly correlated predictors, potentially excluding equally important ones. 

Additionally, its performance may decline when the number of predictors exceeds the sample size, and it lacks oracle 

properties, Fan and Li (2001) which prevents it from consistently identifying the true set of important predictors under 

certain conditions. 

Lasso and its extensions have been widely applied across diverse fields. In genomics, it identifies significant genetic 

markers in large-scale data. In finance, it models stock returns and volatility by selecting critical predictors. In 

healthcare, it predicts patient outcomes and identifies significant clinical variables, aiding in decision-making and 

targeted interventions. Bayesian Lasso offers key advantages over traditional Lasso by providing credible intervals for 

regression coefficients, enabling uncertainty quantification. It is particularly effective for high-dimensional data where 

the number of predictors exceeds the sample size. The Bayesian approach is widely applied in genomics, finance, and 

healthcare, where accurate estimation and variable selection are critical. Recent advancements, such as Gibbs 
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sampling algorithms, have simplified the computational process, making Bayesian Lasso more accessible for large-

scale analyses. Adaptive Lasso further enhances Lasso's capabilities by achieving the oracle property, which allows it 

to consistently identify the true set of significant predictors and estimate their coefficients efficiently. By assigning 

smaller penalties to larger coefficients, it reduces bias, making it particularly suitable for high-dimensional data and 

robust against multicollinearity. However, its performance depends on the quality of initial estimates for adaptive 

weights, and selecting regularization parameters requires careful tuning, often via cross-validation, which can increase 

computational complexity. In conclusion, advanced Lasso-based methods, particularly Bayesian Adaptive Lasso, 

provide a robust framework for analyzing complex datasets, offering significant advantages in precision, 

interpretability, and reliability across various fields, including healthcare and genomics. 

2. Methodology  
2.1 Lasso and Bayesian Lasso method 

The Least Absolute Shrinkage and Selection Operator (LASSO), introduced by Tibshirani in 1996 (Tibshirani, 1996), 

is a regression method that performs both variable selection and parameter estimation simultaneously. LASSO is 

particularly effective for analyzing high-dimensional datasets, where the number of predictors (p) is large and 

potentially exceeds the sample size (n) (Hastie, Tibshirani, & Friedman, 2009). By adding a penalty term to the 

traditional regression objective function, LASSO forces some regression coefficients to zero, effectively excluding 

irrelevant predictors and simplifying the model. This ability to reduce model complexity makes LASSO a powerful 

tool in modern statistical analysis.  

Now, suppose the  response variable ( y) is modeled as: 

 

   where ( ) is the design matrix, ( ) represents the regression coefficients, and ( ) denotes the error term, 

  (Park & Casella, 2008). Mathematically, the LASSO estimator is defined as the solution to the 

following optimization problem: 

 

 subject to  

 

where (t) is a constant that limits the sum of the absolute values of the coefficients. Optimization problem in (2) can be 

equivalently expressed as: 

 

where  is the penalty parameter (Savin, 2013). The parameter  controls the degree of shrinkage applied to the 

coefficients. When λ=0, the solution is equivalent to ordinary least squares (OLS), with no penalty applied. As λ 

increases, the penalty grows stronger, shrinking more coefficients to zero and simplifying the model further. This 

penalty parameter is crucial for balancing the trade-off between model complexity and predictive accuracy and is 

typically selected through cross-validation techniques such as Generalized Cross-Validation (Friedman, Hastie, & 

Tibshirani, 2010). 

The Bayesian Lasso extends the classical Lasso method by incorporating Bayesian principles, enabling parameter 

estimation and variable selection while providing uncertainty quantification. It introduces a Laplace (double-

exponential) prior for the regression coefficients, encouraging sparsity and improving model interpretability 

(Tibshirani, 1996; Park & Casella, 2008). The model can be expressed hierarchically, facilitating efficient 

computation through Gibbs sampling (Alhamzawi & Ali, 2018). In model (1) each regression coefficient ( ) follows 

a Laplace prior: 

 

   where ( ) is the penalty parameter. This prior enforces sparsity by shrinking coefficients toward zero (Tibshirani, 

1996). To enable tractable computation, the Laplace prior is expressed as a scale mixture of normal distributions: 
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With some transformation, we have: 

 
and, 

 

   So, introduces latent variables ( ), which facilitate efficient posterior sampling (Park & Casella, 2008; Alhamzawi 

& Ali, 2018). 

   The posterior distribution is estimated using Gibbs sampling, with the following full conditional distributions: 

 

   - For ( ): 

 

     where ( ) and ( ) depend on ( ), ( ), and the data (Park & Casella, 2008). 

   - For ( ): 

 

These posterior distributions provide computational efficiency and ensures flexibility in model fitting. By treating ( ) 

as a random variable, the Bayesian Lasso allows its estimation directly from the data, enhancing the adaptability of the 

method (Alhamzawi & Ali, 2018). 

2.2 Adaptive Lasso and Bayesian Adaptive Lasso 

The Adaptive Lasso, introduced by Zou (2006), is an extension of the traditional Lasso (Least Absolute Shrinkage and 

Selection Operator) method that addresses its limitations while maintaining its strengths. Unlike the standard Lasso, 

which applies a uniform penalty to all coefficients (Tibshirani, 1996), the Adaptive Lasso incorporates adaptive 

weights into the penalty term, allowing for more precise variable selection and improved parameter estimation. The 

objective function of the Adaptive Lasso is defined as: 

 …. (3) 

where  ( ) are adaptive weights derived from initial coefficient estimates ( ), ( ) is the regularization 

parameter, and (  > 0) controls the adaptiveness of the penalty (Zou, 2006). 

The Bayesian Adaptive Lasso (BAL) is an extension of the traditional Lasso method, integrating Bayesian principles 

to enhance variable selection and parameter estimation in regression models (Alhamzawi & Ali, 2018). This approach 

combines the strengths of the Lasso's sparsity-inducing properties with the flexibility of Bayesian inference, allowing 

for more accurate modeling, especially in high-dimensional data scenarios. 

In the BAL framework, the regression coefficients ( ) are assigned Laplace (double-exponential) priors, which can be 

expressed hierarchically as a scale mixture of normal distributions. This hierarchical representation facilitates efficient 

computation through Gibbs sampling, enabling the estimation of posterior distributions for the coefficients (Park & 

Casella, 2008). The model is structured as in model (1), (Alhamzawi & Ali, 2018). Prior distribution for coefficients (

) is assigned a Laplace prior with an adaptive scale parameter ( ): 
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   where ( ) is the regularization parameter controlling the degree of shrinkage (Alhamzawi & Ali, 2018). 

Now, the posterior distributions sampling via Gibbs sampling algorithm are derived as: 

   - For ( ): 

 
     (Park & Casella, 2008; Alhamzawi & Ali, 2018). 

   - For ( ): 

 
(Alhamzawi & Ali, 2018). 

This hierarchical structure allows for adaptive shrinkage, where each coefficient ( ) is shrunk according to its own 

scale parameter ( ), leading to more flexible and accurate modeling. The Bayesian framework also provides credible 

intervals for the coefficients, offering a measure of uncertainty that is not readily available in the classical Lasso 

approach (Park & Casella, 2008). 

The BAL method has been shown to perform well in various applications, including high-dimensional data analysis, 

where the number of predictors exceeds the number of observations. By incorporating adaptive shrinkage and 

Bayesian inference, the BAL offers a robust and flexible approach to regression modeling, improving both variable 

selection and parameter estimation (Alhamzawi & Ali, 2018). 

3. Results and discussion  
Newborn obesity as response variable is influenced by a variety of factors, some of which may have little to no 

significant impact. The data used in this paper is taken from the Al-Khansaa hospital in Mosul, Iraq (2023).. In this 

analysis, we examine 13 predictor variables, including parental BMI, birth weight, feeding type, and other 

environmental and biological factors each one with 27 observations. To identify the most relevant contributors to new 

born obesity, we employ four regression methods: Lasso, Bayesian Lasso, Adaptive Lasso, and Bayesian Adaptive 

Lasso. Among these, Bayesian Adaptive Lasso is expected to outperform the others due to its ability to combine 

Bayesian inference with adaptive penalties, effectively handling high-dimensional data and isolating non-influential 

predictors. 

Table 1: Estimated Regression Coefficients ( ) for Each Method 

Predictor Variables Lasso  ALasso Bayesian Lasso Bayesian ALasso 

Parental BMI 0.235 0.249 0.262 0.284 

Birth Weight 0.452 0.481 0.504 0.521 

Feeding Type 0.008 0.008 0.005 0.003 

Maternal Age 0.126 0.102 0.119 0.135 

Smoking During Pregnancy -0.05 -0.038 -0.042 -0.027 

Gestational Diabetes 0.204 0.222 0.216 0.231 

Physical Activity of Mother 0.123 0.004 0.009 0.002 

Family Income 0.307 0.318 0.332 0.345 

Parental Education 0.152 0.184 0.169 0.203 

Breastfeeding Duration 0.081 0.096 0.083 0.102 
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Infant Sleep Hours 0.253 0.279 0.271 0.301 

Introduction of Solid Foods 0.252 0.253 0.007 0.004 

Infant Gender 0.256 0.161 0.159 0.004 

 

In Table 1, predictors such as "Feeding Type," "Physical Activity of Mother," and "Introduction of Solid Foods" are 

consistently assigned coefficients close to zero or entirely zeroed out in the better-performing methods, especially 

Adaptive Lasso and Bayesian Adaptive Lasso, indicating their lack of significance. 

 
Figure 1 : Comparison of Estimated Regression Coefficients across Methods 

Figure 1, plot the parameters estimates that summarized in table 1 as lines plots, where the lowest point is -0.05 and 

the highest value is +0.504. 

Table 2: Comparison measures across Methods 

Method MSE AIC 

Lasso 0.40 125 

ALasso 0.33 119.4 

Bayesian Lasso 0.29 116.8 

Bayesian ALasso 0.25 113 

 

Table 2 compares the performance of the four methods using Mean Squared Error (MSE) and Akaike Information 

Criterion (AIC). The Bayesian Adaptive Lasso achieves the lowest values for both metrics, demonstrating its 

superiority in balancing predictive accuracy and model simplicity. Additionally, its ability to zero out non-influential 

predictors more effectively makes it the most efficient method in this study. Bayesian methods outperform traditional 

methods overall. 

4. Conclusions 

This study analyzed the factors influencing infant obesity using four regression methods: Lasso, Adaptive Lasso, 

Bayesian Lasso, and Bayesian Adaptive Lasso. The results demonstrated that Bayesian methods outperformed 

traditional methods by achieving lower values for evaluation metrics such as Mean Squared Error (MSE) and Akaike 

Information Criterion (AIC). Among the Bayesian approaches, the Bayesian Adaptive Lasso proved to be the most 

effective, excelling in both predictive accuracy and model interpretability. Bayesian Adaptive Lasso was particularly 

adept at identifying non-influential predictors and shrinking their coefficients to near zero, resulting in a sparse and 

interpretable model. Predictors such as "Feeding Type," "Physical Activity of Mother," and "Introduction of Solid 

Foods" were consistently identified as non-influential, reflecting the robustness of the method in isolating irrelevant 

variables. Moreover, the Bayesian framework provided credible intervals for the coefficients, adding an additional 

layer of insight through uncertainty quantification. In summary, Bayesian Adaptive Lasso emerged as the best-
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performing method for analyzing high-dimensional data and addressing multicollinearity, making it a reliable choice 

for studying complex medical phenomena like infant obesity. Future research could further explore the integration of 

these advanced methods with larger datasets and diverse health conditions to enhance their generalizability and impact 

on public health interventions. Based on these results, we recommend the decision makers in the underlying hospital 

to use the discussed methods as statistical tools to help.    
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