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Abstract 
Lung cancer is the most common dangerous disease that, if treated late, can 

lead to death. It is more likely to be treated if successfully discovered at an early 
stage before it worsens. Distinguishing the size, shape, and location of lymphatic 
nodes can identify the spread of the disease around these nodes. Thus, identifying 
lung cancer at the early stage is remarkably helpful for doctors. Lung cancer can be 
diagnosed successfully by expert doctors; however, their limited experience may 
lead to misdiagnosis and cause medical issues in patients. In the line of computer-
assisted systems, many methods and strategies can be used to predict the cancer 
malignancy level that plays a significant role to provide precise abnormality 
detection. In this paper, the use of modern learning machine-based approaches was 
explored. More than 70 state-of-the-art articles (from 2019 to 2024) were 
extensively explored to highlight the different machine learning and deep learning 
(DL) techniques of different models used for the detection, classification, and 
prediction of cancerous lung tumors. The efficient model of Tiny DL must be built 
to assist physicians who are working in rural medical centers for swift and rapid 
diagnosis of lung cancer. The combination of lightweight Convolutional Neural 
Networks and limited resources could produce a portable model with low 
computational cost that has the ability to substitute the skill and experience of 
doctors needed in urgent cases. 

Keywords: Lung Cancer, Tiny Machine Learning, Tiny Deep Learning, Automated 

Diagnosis. 

التنقل بين التحديات والفرص التي يوفرها التعلم العميق الدقيق والتعلم الآلي الدقيق في "

 التعرف على سرطان الرئة 

 احمد فائق حسين، انس قصي هاشم، ياسر سلام عبد الغفور

 الخلاصة 

الموت. من الارجح معالجته  ان سرطان الرئة هو اكثر مرض شائع وخطير والذي اذا عولج بصورة متاخرة ممكن ان يقود الى  

بنجاح اذا تم اكتشاف هذا المرض في مرحلة مبكرة قبل ان تصبح الحالة مرضية اكثر سوءا. ان اختلاف شكل و حجم وموقع العقد  

العقد هذه  حول  المرض  انتشار   عن  يكشف  ان  يمكن  يعتبر    ،اللمفاوية  المبكرة  المراحل  في  الرئة  سرطان  على  التعرف  فان   ولهذا 

الخبرة ذوي  الاطباء  طريق  عن  بنجاح  تشخيصه  يمكن  الرئة  سرطان  ان  للاطباء.  ملحوظ  نحو  وعلى  حال  ،مساعدا  كل  ان    ،على 

للمريض طبية   مشاكل  وتسبب  المرض  تشخيص  عدم  الى  تؤدي  ان  ممكن  للاطباء  المحدودة  او    ،الخبرة  الكمبيوتر  انظمة  مجال  في 

المساعده لتوفير    ،الحاسوب  مهم  دور  تلعب  والتي  الخبيث  السرطان  مس توى  عن  للتنبؤ  والستراتيجيات  الطرق  من  العديد  هناك 

 71اكثر من  ،في بحث المراجعة هذا تم الاطلاع على اس تخدام الطرق الحديثة لتعلم الالة ،تشخيص دقيق للحالات الغير طبيعية

( للس نوات  حديث  الالة  2024-2019بحث  لتعلم  مختلفة  تقنيات  على  الضوء  لتسليط  واسع  نطاق  على  عليها  الاطلاع  تم   )

الخبيثة الرئة  باورام  وللتنبؤ  وتصنيف  لتشخيص  اس تخدمت  مختلفة  ولنماذج  العميق  العميق    ،والتعلم  للتعلم  كفوء   نموذج  بناء  يجب 

الرئة سرطان  لمرض  سريع  تشخيص  اجل  من  النائية  الطبية  المراكز  في  يعملون   الذين  الاطباء  لمساعدة  مابين   ،الدقيق  الدمج  ان 

على   وله القابلية  منخفض الكلفة الحسابية  محمول  ينتج نموذج  مع المصادر المحددة ممكن ان  الش بكات العصبية الملتوية الخفيفة الوزن 

 . تعويض خبرة ومهارات الاطباء اللازمه والمطلوبة في مثل هذه الحلات الطارئة. 
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1. Introduction 
Numerous techniques have been introduced to 

evaluate clinical records to obtain useful information 
and create a meaningful projection of the prognosis 
of patients with cancer in response to the public’s on-
going scares about the identification of cancer. On 
the basis of clinical datasets, precisely predicting the 
proficiency of a given medication or identify a 
combination of effective therapies on clinical practice 
is immanent. Even if traditional methods of machine 
learning (ML), such Artificial  Neural  Networks and 
Support  Vector Machines, have demonstrated 
promise, more space for advancement undoubtedly 
still exists. 

Lung cancer is one of the deadliest diseases 
known to science because it causes many fatalities 
worldwide. A study estimated that 2.21 million cases 
of lung cancer were found in 2020, and that lung 
cancer killed 1.8 million people [1]. According to the 
World Health Organization’s 2020 report, which 
predicted the mortality rate to be 1.80 million, lung 
cancer is the deadliest type of cancer overall [2]. 

Furthermore, 80%–90% of lung cancer cases 
resulted from smoking, making it the main and 
primary cause of lung cancer. In addition to smoking, 
the following factors increase the risk of lung cancer 
to 10%, 9–15%, and 1%–2%: radon exposure, 
exposure to carcinogens (such as uranium and 
asbestos), outdoor air contamination, respectively. 
The total risk of developing lung cancer may reach 
100% because of the interactions between exposures 
[3, 4]. 

Small-cell lung cancer (SCLC) and non-SCLC 
(NSCLC) are the two main categories of lung 
malignancies. NSCLC accounts for 80%–85% of all 
lung cancer cases, and it is the most recurrently type, 
progressing and sophisticating more slowly than 
SCLC [5]. The stages I–IV of lung cancer progression 
can be discriminated, with stages I and IV 
representing the least and hardest stages, respectively. 
Fig. 1 [6, 7] shows the chest X-ray sample images of 
SCLC and NSCLC. The majority of NSCLC stages I 
and II can be administered and ablated surgically. 
Chemotherapy, targeted therapy, immunotherapy, 
and other treatments are used to treat NSCLC in 
stages III and IV when surgery is not a choice among 
other medications [8-10].  

Figure (1): SCLC & NSCLC chest X-ray sample 
images, a) is SCLC, and b) is NSCLC 

Lung malignancies usually do not show any 
noticeable signs.  However, when the disease 

advances,  other symptoms that may arise include 
shortness of breath, chest pain, coughing, and abrupt 
weight loss. Meanwhile, 75% of patients with lung 
cancer receive their initial diagnosis at the progressed 
stage (III or IV) because lung cancer typically remains 
nonvisible during the early stages (only 16% of cases 
are discovered at this time) [11]. 

ML is a branch of artificial intelligence (AI) that 
employs arithmetical algorithms to find patterns in 
data and make forecasting [12]. It has been widely 
used in sophisticated approaches for early detection, 
cancer type classification, signature extraction, tumor 
microenvironment deconvolution, prognosis 
prediction, and drug response assessment [13, 14]. 
AI’s ML branch of research uses statistical and 
mathematical procedures to teach computers how to 
learn from data and solve problems  on the basis of 
whether the data are labelled or not, and learning can 
be either supervised or unsupervised [15, 16].  

The United Nations has established the 2030 
agenda for sustainable development, which is a 
comprehensive framework focused on fostering 
peace and prosperity, anchored by 17 sustainable 
development goals [17]. These goals serve as a 
universal call to action for all countries to strive for a 
future that balances environmental, economic, and 
social sustainability. In response, Edge ML (EML) 
and Tiny ML (Tiny ML) have risen as sustainable 
alternatives, enabling the execution of ML models on 
smaller, lower-powered devices like mobile phones, 
wearable devices, and Internet of Things (IoT) 
devices [18]. 

This study provides a comprehensive review of 
state-of-the-art ML and deep learning (DL) 
techniques for lung cancer diagnosis, focusing 
specifically on Tiny ML and Tiny DL models. These 
models were highlighted as key solutions for 
resource-constrained medical environments, offering 
low-power, efficient alternatives to traditional DL 
models. In this paper, optimization techniques, such 
as quantization, pruning, and clustering, which reduce 
computational costs, were discussed. Future research 
directions aimed at improving model accuracy and 
practical deployment in real-world healthcare settings 
were outlined.  

Designing accurate and efficient models for these 
devices is challenging due to their limited computing 
and memory resources. Model compression 
techniques,  including pruning, quantization, and 
knowledge distillation, have been widely used to 
address these challenges by reducing the size and 
computational complexity of the models. Moreover, 
most of these model compression techniques target 
uni-modal models to be compressed for sustainable 
edge hardware deployment [19]. 

A typical ML method is unable to provide 
outcomes that can be trusted because medical photos 
of variant people differ fundamentally. Recently, DL 
techniques have been successfully used in several 
fields, most notably in medical image analysis. These 
methods are feasible and streamlined for analyzing 
medical imaging to determine diseases, particularly 
cancer. 



NJES 28(1)97-120, 2025 
Abdulghafoor et al. 

99 

The paper is organized as follows: Section 2 
provides an in-depth review of the applications of AI 
in biomedical image processing, with a focus on DL 
techniques and their relevance to lung cancer 
diagnosis. Section 3 discusses Tiny ML, outlining its 
potential for developing lightweight models suitable 
for resource-constrained environments. Section 4 
details various methods for optimizing computational 
resources in Tiny ML, such as quantization, pruning, 
and clustering techniques. Section 5 explores Tiny 
DL (Tiny DL), with a focus on compact DL models 
designed for embedded systems. Finally, Section 6 
presents the application of Tiny ML in healthcare, 
followed by a discussion of the limitations of existing 
models and a conclusion summarizing the paper’s 
findings and potential future directions. 

 

2. Scope of AI in Biomedical Image 
Processing 

DL techniques are adjacent to ML techniques that 
permit the training of a model on the basis of the 
result and guess the outcome by using a given data 
set. Neural Networks (NNs) with many layers, such 
as an input layer, multiple hidden layers, and an 
output layer, are used in DL techniques. DL models 
are taught with higher precision because they have 
multiple layers. Four categories of DL models can be 
recognized by their learning approaches: supervised 
learning models, unsupervised learning models, semi-
supervised learning models, and reinforced learning 
models [20].  

In many different scopes, the algorithms of DL 
can be applied to enhance picture identification 
performance, with prominent and fructified 
outcomes. One type of DL application outside of the 
clinical domain for biometric palm vein attribute 
distinction is the Convolutional Neural Network 
(CNN) [21]. It was applied to text categorization and 
classification of texts into shared datasets [22, 23]. By 
implementing trait extraction with Karhunen–Loève 
Transform and Haar wavelet, NNs were utilized as a 
novel response to the expanding fixture for dial 
emotion discrimination [24]. Strong stock market 
prediction models were constituted by the 
implementation of efficient methods of ML [25]. 

Researchers in medical sciences were inspired by 
the success of DL networks to implement them to 
medical data images for errands such determination 
of lung disease. The outcomes showed that deep 
networks can potently extract beneficial features that 
characterize between different image classes [26]. 
Fig.2 [6, 27-29] shows different medical image 
modalities of lung cancer and COVID-19. The most 
widely employed DL framework is CNN. Its ability 
to extract variant type attributes from images has led 
to its application in the classification of different 
medical photos [30]. 

Deep neural networks can decipher and handle 
complex problems like remedying of natural 
language, image manipulation and image processing 

(Fig. 3) [31], and machine vision. DL can also be used 
for identifying dynamic image traits [32]. DL is 
progressing for results improvement [33]. These 
inventions were made possible for data rather than 
handmade traits that depend on domain-related 
information [34]. 

 
Figure (2): Different samples of medical images 

modalities, a) chest X-ray lung cancer image, b)CT 
lung cancer image, c) MRI lung cancer image, d) 

chest X-ray image of Covid19 

 
Figure (3):  Methodology of deep learning for image 

processing 

The CNN group of ML models contain multiple 
layers of convolution that may be taught to 
discriminate image traits. Most of these layers are 
salutary for image processing in computer vision 
applications. During the training process, deep CNN 
can close the contrast between its thrash model and 
seeded components. During this procedure, the 
characteristics of various components are produced 
in numerous lapped layers, as shown in Fig. 4 [35]. 
This method has the ability of precise structural 
component identification and classification while 
testing a fresh input image [36-38]. Various 
techniques of ML and DL used for lung tumor 
detection are shown in Tables 1 and 2. 
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Figure (4):  Design of classical CNN for medical diseases prognosis. 

Table (1): Different machine learning techniques used to detect lung tumours. 

Authors Year Technique Results Limitation 

Punithavathy et 
al. [39] 

2019 

Using Support Vector Machine SVM 
techniques for lung cancer 

classification for Computed 
Tomography/Positron Emission 
Tomography CT/PET images 

98.1% achieved 
accuracy 

Using traditional hardware 

Saleh et al. [40] 2021 
Using Convolution Neural Networks 
with Support Vector Machine CNN-

SVM classifier using CT images 
97.91% accuracy 

Limited dataset& using 
traditional hardware 

Morgado et al. 
[41] 

2021 
Using image phenotypes and the 

mutation status investigation 

range values of area 
under curve AUC is 

0.725 -0.737 

Limited features selection 
using traditional hardware 

Zhang et al. [42] 2021 
Using Machine Learning ML for 
radiomics approach in CT images 

specificity 96%, 
AUC = 78%,   and 
sensitivity = 92% 

Individual limitations  &  using 
traditional hardware 

Hussain et al. [43] 2022 

Using Naïve Bayes NB, Decision 
Tree DT, SVM classifiers with 

Gaussian Radial Basis Function RBF 
polynomial in MRI images 

Accuracy = 100% 
Limited dataset, low severity 

level, using traditional 
hardware 

Perumal et al. [44] 2022 
Using Partial Least Square Linear 

Discriminant PLS-LD binary 
classifier with Raman spectroscopy 

specificity = 83%,  
Accuracy = 85%, 
sensitivity = 87%, 

and 

Small patient cohort, using 
traditional hardware. 

Ishii et al. [45] 2022 
Using Artificial Neural Networks 

ANN to classify photomicroscopic 
images into 4 groups 

Batches accuracy is 
0.94%to 0.99% 

prediction accuracy 
is 0.75%to 0.95& 

Criteria of cases is limited, 
limited number of cases, using 

traditional hardware 

Carrillo Perez et 
al. [46] 

2022 
Using ML techniques to study 

Ribonucleic Acid RNA modalities in 
whole slide imaging 

Area Under the 
Precision-Recall 

Curve AUPRC of 
0.980 +-0.016, AUC 
of 0.993+-0.004 & 

F1 score of 96.81+-
1.07. 

Limited diagnosis capabilities, 
using traditional hardware 

Nancy et al. [47] 2022 

Using different ML techniques with 
Contrast Limited Adaptive Histogram 

Equalization CLAHE algorithm in 
CT images 

Good performance 
of PSO SVM 

Limited training data, using 
traditional hardware 

Kwon et al. [48] 2023 

Use three ML algorithm: Adaptive 
Boosting AB, Multi-Layer Perceptron 

MLP, Linear Regression LR. 
detecting cancer marker cell free 

Deoxyribonucleic Acid DNA & Copy 
Number Variation CNV 

Higher value of 
AUC in combined 

analysis 

The process is not efficient, 
limited data, using traditional 

hardware 

Huang et al. [49] 2023 
Using the Multi-Instance Learning 
(MIL) model was to classify lung 

neoplasms using scleral images screen 

Specificity of 0.828 
+- 0.095, AUC of 

0.897 +-0.041, 
sensitivity of 0.836 

+-0.048, 

Limited data, limited diagnosis. 
limited algorithm 
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Kumar & Rao 
[50] 

2023 
Using a based Weighted Classifier of 

Labeled Priority for lung tumor 
detection in MRI images 

96.6% is achieved 
specificity, 

Limited diagnosis, limited data, 
using traditional hardware 

Earnest et al. [51] 2023 

Using different ML techniques were 
employed to predict the quality and 
timeliness of Victorian Lung Cancer 

Registry VLCR dataset 

AUC IN SVM 0.89, 
in K Nearest 

Neighbour KNN is 
0.85, SVM is better 

than KNN, 

Limited tools and data, not 
vulnerable population, using 

traditional hardware 

Mohan & 
Thayyile [52] 

2023 
Using different ML techniques in x-

ray, CT images 

Random Forest RF 
technique is better 

performance 

Limited training data, using 
traditional hardware 

Dirik [53] 2023 
Using a different ML algorithms for 

lung cancer detecting 
91%. of accuracy 

Limited training data, using 
traditional hardware 

Bhuiyan et al. [54] 2024 

Using different models of ML models 
and compare between them such 
Light Gradient Boosting Machine 
light GBM, SVM, LR, Adaptive 
Boosting AdaBoost & Extreme 
Gradient Boosting XGBoost 

XGBoost is the best 
with accuracy of 

96.92% 

Limited number of cases, 
using traditional hardware, 

need to innovative 
technologies such block chain 

 
Table (2): Various techniques of traditional deep learning for lung cancer detection 

Authors Year Technique Results Limitation 

Xu et al. [55] 2019 

Using CNN and Recurrent Neural 
Networks RNN for solitary 

sclerosing papillary SSP tumor 
detection in CT images 

Probability value p<0.05, 
AUC =0.74%, 

Less interpretable feature 
presentationusing traditional 

hardware 

Jakimovisky & 
Davcev [56] 

2019 

Using a double and regular 
Convolution Deep Neural 

Networks CDNN for lung tumor 
detection in CT images. 

0.876 % accuracy of 
regular CDNN. 

Lower certainty of 
classification, DNN need to be 

modified, using traditional 
hardware 

Park & 
Monahan [57] 

2019 
Using CNN with genetic algorithm 
for lung cancer detection in X-ray 

images 

97.15% is achieved 
accuracy 

Need to user interface, using 
traditional hardware 

Subramanian et 
al. [58] 

2020 

Using Visual Geometry 
GroupVGG-16 Net, LeNet& 

AlexNet, with SoftMax classifier to 
predict lung cancer in CT Images 

99.5% of  Accuracy 

Internet of Thing IoT 
application and cloud 
computing need to be 

developed, using traditional 
hardware 

Al-Yasriy et al. 
[59] 

2020 
using AlexNet CNN to classify lung 

cancer in CT images 

95% for 
Specificity, accuracy ups 

to 93.548%.  95.714% for 
sensitivity 

Limited training dataset, limited 
classification tools, using 

traditional hardware 

Elnakib et al. 
[60] 

2020 

Using different compact Deep 
Learning DL model including 
Alex, VGG16, and VGG19 

networks. for lung tumor detection 
in CT images 

Specificity of 95%, 
accuracy of 96.25%, 
sensitivity of 97.5%, 

Needed to fusion of different 
models, high false positive and 

false negative cases, using 
traditional hardware 

Lin et al. [61] 2020 
Proposed Taguchi parametric 

optimization with (two-dimension 
2D CNN) in CT images 

The proposed method is 
finer than the 

original 2D CNN by 
6.86% and 5.29% 

Depth layer &optimal size 
algorithm should be developed, 

using traditional hardware 

Kalra et al. [62] 2020 
Using a convolutional neural 

network and designed a 3D CNN 
model in CT images 

Specificity with 97.68 
%.0.97% accuracy 

precision with 87.31 %, 
recall with 74.46 % 

Need to initial lung 
segmentation and to deeper 

layer and extensive parameters 
tuning, using traditional 

hardware 

Amma et al. 
[63] 

2020 

Using architecture of Visual 
Geometry Group with 16 layers for 

lung cancer identification in CT 
images 

Probability rate of lung 
cancer was approx. 59% 

and of not occurring lung 
cancer was approx. 40%. 

Limited convolution layers, 
using traditional hardware 

Zhan [64] 2021 
Developed (CNN) sensors to train 

the model by CT images used 
dynamic sampling techniques & 

0.84% accuracy rate 
limited data source, low 

specificity, model require 
further research and validation, 
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transfer learning. using traditional hardware 

Mohammed & 
Cinar[65] 

2021 

Using different CNN models 
include: AlexNet, ResNet18, 
GoogleNet, and Residual Net 

ResNet50 model for lung cancer 
detection in CT images 

Accuracy range of all 
models are 88.4 &to 

100% 

Data is limited, the model need 
to compare with other models, 

using traditional hardware 

Abd Al-Ameer 
et al. [66] 

2022 
proposed a different CNN model 
including Inception V3, Random 
Forest, using histopathological 

Specificity measure 
96.88%., accuracy 

97.09%, F-score measure 
97.09%, precision 

96.89%, 
recall 97.31%, 

Limited features &convolution 
layers, need to user interface, 

using traditional hardware 

Ren et al. [67] 2022 

Proposed a hybrid framework called 
Latent Constraint Generative 

Adversarial Network LCGANT 
framework with 2 parts to generate 
and to classify lung cancer images in 

histopathological images 

99.84% +-0.156% (F1-
score).,99.84% -+0.156% 

(accuracy), 99.84% +-
0.156% (sensitivity 
99.84%+- 0.153% 

(precision).), 

Limited dataset, low resolution 
synthetic images, using 

traditional hardware 

Humayun et al. 
[68] 

2022 
Employ a different CNN models, 

compared for 20 epochs structure in 
ImageNet dataset 

The accuracy 
of VGG 16 is 98.83 %, 

VGG 19 is 98.05 %, and 
Xception is97.4 %. 

Limited clinical data, using 
traditional hardware 

Said et al. [69] 2023 

They proposed UNet with 
Transformer UNETR network of 2 

parts for segmentation and 
classification lung cancer using CT 

images 

98.77% as classification 
accuracy and 

segmentation accuracy of 
97.83%. 

Requires a high-rendition GPU 
to run easinessly, using 

traditional hardware 

Üzülmez & 
Çifçi [70] 

2024 

They suggested 4-layer CNN with 
uncertainty quantification and 

compare it with other CNNS such 
ResNet50, AlexNet, VGG16 and 

inceptionv3 using CT images using 
CT images 

The proposed 4-layer 
CNN is the best by 

achieving accuracy of 
0.971 

Using traditional hardware, 
limited training data, 

 
DL and other AI-based methods have been 

developed in recent years to detect lung cancer early 
[71]. By using medical imagery, such as X-rays, CT 
scans, and MRI scans, DL techniques have greatly 
improved medical diagnosis. A doctor’s physical 
diagnosis based only on the photographs may differ 
from another’s. DL-based techniques yielded more 
accurate outcomes [72]. In contrast to the 
conventional approach, ML has demonstrated 
remarkable success in the medical domain, primarily 
in the areas of disease detection and diagnosis. Most 
recently, the DL technique reduced the challenge of 
manual feature extraction and improved classification 
accuracy [73]. In accordance with previous studies 
(Tables 1 and 2), some questions were asked here: 
What are the features (memory, Central Process Unit 
CPU and Graphical Process Unit GPU) of computers 
or hardware that have been used in these studies? 
How much power and energy have been consumed 
in the hardware system? How much computing time 
has been taken to provide results? Are these research 
studies beneficial for physicians who are working in 
rural medical centers? 
The limitations of the existing works 

Previous studies have shown several limitations 
for ML and DL techniques (Tables 1 and 2). The 
most common limitations are the limited or small 
medical training data that had been used, which could 
reflect on the model’s accuracy. The traditional 
techniques also used traditional hardware that 

requires high computational cost (large memory and 
long processing time). Even the deployment of 
traditional DL models in devices of edge computing, 
such as Raspberry-Pi or Jetson Nano, is considered 
challenging due to high computational costs in terms 
of space and time [74]. Tens of millions of 
parameters are typically present in well-known deep 
NNs, which require a large amount of memory to run 
the most advanced model. Furthermore, deep NNs 
require high-performance hardware resources, which 
makes it difficult to implement the most advanced 
model on portable devices [75].  

Even while ML and CNN models have shown 
encouraging outcomes in earlier research apart from 
the technical limitations, a number of issues still need 
to be resolved. One significant drawback is the 
computational cost of these models, which are 
unsuitable for devices with limited resources due to 
their millions of parameters that require fine tuning 
and longer time. For this reason, researchers started 
using Tiny ML and Tiny DL techniques. They 
developed lightweight CNN models that can be 
applied on limited constrained resources and used in 
many medical applications and the diagnosis of 
different diseases, especially lung tumor/cancer 
prediction. 

 

3. Tiny ML 
Tiny ML is a nascent field that combines ML and 
embedded systems. Tiny ML tools are effectively 
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provided to develop models of ML, which can be 
implemented on limited resource devices. The 
process of Tiny ML prevalence begins with data 
collection from the hardware, where an inference 
engine is needed. The data could either be closely 
imported into tools of friendly user. Edge Impulse 
Studio can be logged on onboard storage. The 
collected data set is trained by the ML model, and 
then the model is forwarded into a shape that can be 
implemented straightaway on the Microcontroller 
Unit (MCU). The trained model is employed by the 
MCU for inference in subsequent iterations. Two key 
challenges need to be identified to open the full 
possibility of ML for IoT systems. 
A. Interoperability: No unified standard exists for 
employing Tiny ML, and the MCU market is 
relatively segmented. Manual application and 
hardware-specific optimizations are required because 
the implementation of specific platforms is not 
scalable [76]. 
B. Characterization of performance: Tiny ML is 
limited by nonexistence of a standardized framework. 
The hardware’s performance is difficult to appraise in 
a vendor-agnostic and neutral manner. When 
rendition boosts are documented, it is so hard for 
disbanding either they are involved to 
implementation of software or to hardware and 
whether these winnings popularize through different 
implementations. TensorFlow Lite (TFL) localized 
these two contestations [77]. TFL libraries facilitate 
the most feasible implementations of ML models, so 
it has become synonymous to Tiny ML 

Tiny ML is a prototype that easily implements the 
ML actuating at the brim devices with base rate 
memory requirements and processor [78]. Hence, a 
few milliwatts power or less is expected to consume 
within such systems [79]. Tiny ML practiced 
challenges are tremendous. In recent NNs, the order 
of billions of number of required parameters have 
increased among the best presently plenteous 
technologies [80]. With chunkier networks having 
wider applicability and choicer results, the size of 
these networks is proportional to the energy required 
to run them, making this direction of upward NNs 
uncomfortable at a wide range [81]. Research 
direction is another reason why Tiny ML can be 
considered as essential rather than overgrown. 

The solution development of Tiny ML needs two 
core traditional workflows: ML-guided and Hard 
Ware (HW)-guided, and co-design a third that can be 
considered more fangled method. The design of ML 
framework and its hardware embodiment can be 
arbitrated by classical workflows [82, 83]. First, a 
suitable model can be created, trained, and tested by 
the connoisseurs of ML for the scope of problem.  

They ameliorate the parameters of the model, and 
a satisfactory device is deployed by this solution. 
Second, sophistication targets the produced 
ameliorated hardware because the bandstand of the 
hardware is not pre-tidied, and then utilization 
particularly tiny techniques and models. The co-
design represents the holistic methodology, whereas 
ML-guided and HW-guided represent Tiny ML 
solutions (Fig. 5) [84] 

In the workflow of ML-oriented (Fig. 5a), the 
majority of experience are in the layout, rehearsal, 
adaptation, and assessment of ML models. The 
hardware bandstand selection is sustained or 
bounded because of the necessity or specific 
industrial requirements [84, 85]. Embedded devices 
ported by modern NN models are a typical example 
of this workflow [86]. The efficient implementation 
of power amortization, usage memory, and latency is 
required for extensive experimental investigations and 
cloud solutions compared with such devices of short 
supply resources. 

The ML-guided workflow can be identified by the 
next stages: 

Model layout: ML experts mold, rehearse, and 
validate an exhaustive model comfortable for the 
scope of problem. The hardware bandstand is 
ignored in this stage to actualize maximum rendition 
and generalization, but it is highly hinged on the 
complexion of this scope. 
• Model optimization: Various strategies are included 
in this stage to bargain efficiency rendition. 
• On-host assessment: In the specifications, the 
ameliorated model is evaluated against the 
parameters; rendition needed, and it is redesigned if 
there is any destitution. 
• Objective deployment: Specific amelioration is 
implemented to the model to increase inference 
efficiency, and the specific features of the hardware 
device are leveraged. 
• Objective assessment: Assessment of the system 
in output is performed.  

In the HW-oriented approach (Fig. 5b), the 
design of improved hardware bandstand that are 
ameliorated for embedded applications is mainly 
focused by the developers. Dealing with the 
bottlenecks in subsistent architecture with respect to 
ML framework computations is required to deploy 
present and greeter algorithms of ML. Such hardware 
expedition modules and NNs needed to be designed 
to enhance throughput depreciation, e.g., decreasing 
the degree of complication in convolution layers [87, 
88]; efficient, feature-rich, and low-robustness 
perceptron [89]; and enhanced caches of data [90]. In 
other cases, new hardware platforms optimized for 
embedded applications are designed by developers 
with outreached competencies of digital signal 
processing [91]. This sophistication of ameliorated 
libraries is required [92, 93] to extract the most 
performances.  

As shown in Fig. 5c of co-design workflow, both 
sides of the development from the start is integrated 
by the approach to obtain more benefits from further 
rendition enhancement and resource depreciation. In 
particular, while the previous workflows steps are 
separated by model optimization and hardware design 
in Figs. 5a and Fig. 5b, they are co-optimized and 
intertwined. In some situations, detailed architectures 
are developed for rimmed algorithms of ML on Fine-
grained Balanced Graph Attention [94]. In other 
situations, neural computations of networks, upon 
request of an expeditor, are allowed through HW-
enlightened rehearsed methodologies using compute 
in-memory hardware [95]. 
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Figure (5): Tiny ML based system work flow. 
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4. Methods for Resource Optimization 
Arithmetical resources of microcontrollers, such 

as usage processor and memory, can be saved by 
different approaches and methods [96] when used in 
Tiny ML devices. Simply sending dense arithmetical 
assignments headway to yate ledge [97] is one of the 
overall routes for decreasing arithmetical gestation on 
basal edge devices. However, this method may lead to 
increased depreciation of power in Tiny ML devices 
because powering an on-device NN is less energy 
amortizing than the process of uploading and 
extraditing data [98]. This may be climactically 
leastwise for battery-operated devices. So, a resource 
problem is preferably resolved within the edge device 
by arithmetical means. The processes of pruning, 
quantization, and clustering methods can achieve this 
reduction in processor usage and size of the ML 
model. 

4.1 Quantization 
 a microcontroller, floating-point operation is 

performed. This method is usually needed for 
running NNs. In the output and heuristics mode, 
NNs typically use high-exactness 32-bit floating-point 
data [99]. However, a great deal of memory is 
required for these floating-point NN operations, 
productivity power of system, and celerity of 
timepiece from a microcontroller [100]. In some 
trims, hardware floating-point operations cannot be 
performed by microcontrollers, such as M4F 
processors beginning with the hardware floating-
point unit in the Advanced RISC Machine Arm 
Cortex-M processor series [101]. Still, employing the 
C library of the arm software floating-point by 
computational means can solve this problem through 
emulation software of floating-point (EFP), or fixed 
data point format can be converted by the floating-
point data [73, 102]. The model’s memory footprint 
by 75% is lowered by quantization of 32-bit floating-
point data to 8-bit fixed point data, and the 
microcontroller could be run much faster by integer 
operations [103]. In [104], the quantization of fine-
tuned CNN with different activations and weight bit-
width and 30 epochs of subdivision was tested. The 
error rate of categorization increased from 6.98% to 
8.30% only, as shown using four-bit fixed-point 
activation and weight values, compared with the 
values of floating point. Good results were 
documented in [105] when inspecting variant datasets 
with four bit precision quantization, with 50% 
memory and 75% provident computation reported 
with plopping in accuracy by 5%. However, the 
results indicated that the accuracy began to drop 
more briskly when 3-bit or 2-bit ultralow precision 
was used.  
A model’s bit-width activation and weighing can be 
ameliorated partly by the CPU restriction memory of 
a microcontroller [106] by mixed-precision 
quantization. In this method, each layer can be 
quantized partly to variant bit widths to avert data 
loss and enable accuracy [107]. However, a major 
computational challenge is typical bit widths 
investigating for all layers. 

4.2 Binarization 

Binarization is another form of quantization, 
whereby weightings, operands, and activations are 
reduced to a single bit, and the compact level of bit 
width is enabled [108, 109]. In binarized neural 
networks, all calculations use the binarized weightings 
of the activation and weights and bit-wise. XNOR 
operations are substituted by arithmetic operations. 
As a result, the power efficiency increased, and the 
memory required (32) is reduced by 1-bit operations 
and the kits of memory entrance (32). In [110], the 
authors proposed dual enclosure NNs particularly 
styled for limited enclosure devices.  

4.3 Pruning 
  The pruning of unused features of an NN can 
lower computational complexity. Pruning techniques 
can be divided into two main classes: modulated and 
non-modulated pruning [111]. In modulated pruning, 
the conduits or filters are eliminated. In non-
modulated pruning, the weight capitation relevance is 
eliminated by concocting it to zero [96]. In addition, a 
different pruning approach is possibly combined. For 
example, in [112], the authors introduced a procedure 
whereby neural architecture search was combined 
with unstructured and structured pruning approaches, 
which spontaneously meticulous, strewn, and 
lightweight CNN architecture was found. The 
pragmatism of NN model’s weightings zeroing out is 
named quantum pruning when a sixfold 
improvement in model compression can be brought 
and it performs to a sprinkled model [113]. The 
method’s downside is that it also leads to the use of 
sparse convolution libraries and complications of 
sprinkled matrix that require additional arithmetic 
power [114, 115]. 

The procedure of weight pruning comforts the 
use of microcontrollers because of the importance of 
the benefits of model size compression, and it can be 
more significant than the additional arithmetical 
problem from sprinkled complications. The forms of 
layers and matrices of weight is changed by 
eliminating the combinations of weight links in 
modulated pruning method [112]. When conduits or 
filters are eliminated, the network’s heuristics rapidity 
increases, and the size of the model decreases. A 
lightweight network is produced by channel-level 
pruning, but when the bade of the whole network is 
slashed, it can downgrade the model’s rendition and 
nicety. Hence, methods of unstructured pruning are 
recommended to be used whenever possible. In 
[116], a 3.54-fold mean size model was reduced by 
88%, and performance speedup was reported when 
the variant weight and burl pruning groups were 
tested with a two-manner single instruction multiple 
data (SIMD) unit for 16-bit stationary-point 
mathematics by Arm Cortex-M4 microcontroller, 
512kB flash storage, and 128kB Static Random-
Access Memory SRAM. The authors suggested a 
pruning procedure, named Scalpel, which is a 
combination of burl pruning and SIMD-aware 
pruning of weighing. The benefits were smaller 
memory and better efficiency for the model than the 
basal procedures of pruning. 
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4.4 Clustering 
The process of reducing the number of individual 

weight values is known as clustering, whereby a 
smaller number of centroid weight values are 
replaced with the model’s weight values that are 
computed from the grouped weights of the original 
model [113]. Weight clustering does model 
compression by reducing memory usage. So, the 
original CNN is five times bigger than the 
compressed model. If the weight clustering process is 
compared with quantization process, higher accuracy 
and compression ratio is brought by weight 
clustering, but the two can still be used effectively 
together [117]. The k-means clustering algorithm is 
used with the weight clustering process [117, 118] 

4.5 Software and Libraries of TinyML 

A number of bandstands, libraries, and 
frameworks are chosen, and they can be updated with 
the technology of Tiny ML as follows: 
4.5.1 TFL: TLF 

Is an open source of a DL framework that 
supports edge-aware learning inference. Edge-aware 
ML at the device may be approached by this 
framework by employing five significant constrains 
(size, time, correlation, power amortization, and 
privacy) [119]. Other software libraries of tiny ML are 
available, such as NanoEdge, Pytorch, Edge impulse, 
micro Tensor Virtual Machine mTVM, u Tensor, 
STMicroelectronics STM32cubeAI, and Embedded 
Learning Library. 

 

5. Tiny DL 
Lightweight DL is a branch of ML and AI 

possessing compactness and efficiency while 
developing DL models. It is a typical model for IoT 
devices, low-powered mobile phones, and embedded 
systems because of low latency and speed. Pruning 
and quantization processes are employed to remove 
nonessential parameters and reduce the accuracy of 
model weight to make lightweight DL models. Fine-
tuning a pre-trained DL model on a smaller dataset is 
implemented using Transfer Learning [120]. 

At a historical rate, many devices of IoT 
depended on microcontrollers is briskly augmented, 
reaching 250 B [96], granting applicability to many 
applications, including precision agriculture, 
automated retail, smart manufacturing, and 
personalized healthcare. A marque modern prospect 
of Tiny ML is given by these decreased-cost, 
decreased-stamina microcontrollers when these tiny 
devices are run by DL models. Data analytics can be 
performed directly close to the sensor. Thus, the AI 
applications’ domain can be dramatically expanded. 

Microcontrollers have a budget of extremely 
constrained resource, particularly storage (Flash) and 
(SRAM). The mobile devices are three times quantum 
larger than on-chip memory, and cloud GPUs is 5- or 
6-times quantum larger than on this memory chip, 
making the deployment of DL extremely hard. M7 
MCU-ARM Cortex solely has 1 MB Flash storage 
320 kB SRAM, which make the-shelf DL models 
impossible to be run off. In ResNet-50 [121], the 
bound of storage is exceeded by 100. In 
MobileNetV2 [122], the crest of memory bound is 

exceeded by 22. A huge hiatus exists between the 
required and affordable hardware ability till the int8 
muzzled model of MobileNetV2 still encroaches the 
bound of memory by 5.3 times. 

In contrast to cloud and mobile devices, 
microcontrollers have no operating system, which is 
considered a bare-metal device. Therefore, laying out 
the DL model and the heuristic library are needed to 
combine to administrate the tiny resources efficiently 
and suit the virulence budget of storage and memory. 
The presence of streamlined design of network [106, 
123, 124] and procedures of neural architecture 
search [112, 124-126] overemphasized GPU or 
smartphones, whereby any storage and memory are 
plentiful. Therefore, the produced models do not suit 
microcontrollers 

When they just ameliorate to decrease latency or 
Floating-Point Operations per Second, and ML on 
microcontrollers have been studied in limited 
literature [127-130]. Microcontrollers’ inference by 
DL is a fast-growing area. The presented frameworks 
have many limitations, such as TensorFlow Lite 
Micro [131], Cortex Microcontroller Software 
Interface Standard Neural Network CMSIS-NN 
[132], CMix-NN [133], and Micro Tensor Virtual 
Machine MicroTVM [134]. One method is to 
compress off-the-shelf networks by pruning [135-
140] and quantization [97, 141-146]. Redundancy is 
removed, and complexity is reduced. An effective 
compression method is served by tensor 
decomposition [147-149]. Close design of streamlined 
and mobile-pally network is considered another 
method [106, 121, 122, 150]. Recently, efficient 
network design is dominated by Neural Architecture 
Search (NAS) [124, 125, 151-154]. The finesse of the 
search space is highly related to the performance of 
NAS [155]. Traditionally, inference prospectus design 
for NAS design search space is followed by people. 
For example, MobileNetV2 [122] is originated by the 
broadly used mobile-preparing search space [124, 
125]. The input of 224 resolution with a same norm 
number of conduit form is used by both while 
investigating for block deepness, kernel sizes, and 
elaborating ratios.  

Tiny ML can be applied by NN model 
compression because computational resources are 
relatively lacking [156]. The overstocking resources 
and bandwidth of memory entrance in subsumed 
systems are limited.  

Nowadays, the compression methods of neural 
network, such as trimming, muzzling, forfeiture of 
model designing procedures, and procedure of 
transfer learning, have been widely used. The concept 
of overfitting in ML is originally emerged by pruning; 
and removing the convolutional kernels that have less 
impact or less weight conduits in the model NN is 
considered its main concept. The authors in [157] 
proposed a procedure that link filter trimming and 
weight trimming when the NN parameter 
redundancy is reduced. However, recovering the 
training operation is difficult, and its accuracy has no 
guarantee. The quantization process of the model not 
only augments the rapidity of actuating the enclosure 
model but also reduces its storage [158].  
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When the quantized model is applied, storage is 
reduced, and the embedded model running speed is 
increased. The trio weight muzzling procedure [159] 
is less precise than the asymmetric trio weight 
muzzling method [160], but the influence of compact 
is average. The forfeit model design includes 
SqueezeNet [161] and ShuffleNet [133]. The main 
notion is to collect the conduits and then calculate 
them for arithmetical cost reduction. However, fine 
model design methods highly require skill and 
experience. 

Removing a huge number of excrescence or 
almost unnecessary neurons from model of the 
neural network could decrease the computational 
power for the subsumed device and decrease the 
amortizing of the power.  

5.1 NN Compression Concept 
5.1.1 Group Convolution 

 The spatial complexity of the model [155] is 
reduced using a number of deeply separable 
convolutional compression parameters [162]. 
The concept of process can be seen in Fig. 6. The 
size of systematic convolution input trait map is C × 
H × W. There are M output conduits, if C × K × K 
represents the size of convolution kernel. Afterwards, 
the map of feature is subdivided into G groups in 
accordance with the concept of group convolution, 
Then, the overall number of the original convolution 
parameters C × K × K × M becomes C/G × K × K 
× M, so the overall number of parameters (1-1/G) is 
decreased. 

 
Figure (6): Set up of grouped or aggregated 

convolutional neural networks. 

In conclusion, the configuration of aggregated 
convolution has a very crucial role in parameter 
compression. Aggregated convolution could be 
employed by more researchers because it is easy, and 
therefore, no experience and skill are needed 
compared with the procedures of fine-granulated 
model design. Furthermore, model overfitting can be 
prevented, and the precision of the model can be 
improved because of the regularization effect that 
exists in using grouped CNN. 
5.1.2 Pruning 

In this procedure, the pruning operation is 
performed when the group convolution is completed. 
Puring is a customary and broadly used approach in 
NNs. It emanates from the problem of the 
overfitting classical ML. The regular trimming of 
CNN is better than some weights trimmed in Fig. 7. 
So, this employ the matrix booting, opposite that, the 

implementation of GPU actuating is difficult and 
incremental. 

 
(a) 

 

(b) 

Figure (7): The pragmatism diagrams of (a)regular 
trimming & (b)irregular trimming. 

Depending on previous precautions, the 
determination of the importance of each channel in 
each layer [163] adopts the ongoing schematizing 
pertinence of Batch Normalization layers. Pruning 
[164] removes the conduits and parameters that have 
lower case weights in CNN. 

The weights and elements are updated to be more 
suitable to the original data set by performing 
recovery training to eliminate the amount of 
redundancy after pruning. afterwards, the data are 
recorded and remapped to another interval by 
quantization. 

Inconsistent trio weight muzzling is a type of 
regular manipulating, in which the hazard of 
overfitting can be reduced. Then, the model is 
converted to TFL format by using the TFL converter 
[160]. Table 3 shows various studies of lightweight 
CNN that have been used in the detection of lung 
cancer, lung disease, and other diseases.  

 

6. Healthcare and Tiny ML 
The sector of healthcare is inexorably touched by 

the development of Tiny ML, which is essential in 
each worldwide community. Different organs in the 
human body can emit signals, so the human body is 
considered as a signal issuer. These data can be 
collected and used to abate impasses involved in 
healthcare by deploying sensors. The deployment of 
Tiny ML could solve these issues. 

Previous surveys [165-167] indicated that the 
healthcare sector would be revolutionized by the 
integration of these edge devices, and enhance the 
well-being of people. Quality and reliable healthcare 
monitoring can be provided by the latter; 
furthermore, many health products will be improved. 
Moreover, modern hues of medical censoring, 
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prognostics, and treatment is enabled by the potential 
of technology, the finesse of care is improved, and 
patient findings is ultimately improved. Especially 
with processing of data will be in real-time and in low 
profile devices by the ability of TinyML. Patients are 
treated and monitored by healthcare professionals in 
a more potent and streamlined manner [168] when 
this new possibilities is opened. The previous works’ 
analysis permit the merging of commonality 

pragmatism adopted to Tiny ML application in 
healthcare, as seen in Fig. 8[169]. Biological signals 
are provided by the human body, and these signals 
are identified by specific sensors and then transported 
to the enclosure system that includes DL or ML 
algorithms combined with a cloud habitat. This 
combination could give permission to the device to 
reveal deficiency type, censor, forecast, or help the 
patient. 

 
Figure (8): Evincing of the general pragmatism adopted to implement TinyML technology in the healthcare sector. 

Table (3): The literature studies of using a various light weight neural networks for detection of lung cancer, lung 
diseases and other diseases 

Authors Year Method Results Limitation 

Nasrullah et al. 
[170] 

2019 

Proposed novel deep learning for 
lung nodule detection by Region-

based Convolutional Neural Network 
RCNN based on learned features 
extracted by Compound MixNet 

CMixNet then classified by gradient 
booster machine using CT images 

Specificity (91%), sensitivity 
(94%). 

Long Training 
time, using 
traditional 
hardware 

Sanagala et al. 
[171] 

2019 

The study proposed a fast and 
lightweight CNN for lung cancer 

detection and comparing the results 
with traditional CNN using chest CT 

images, 

Accuracy of 99.5%, 
*Using traditional 

hardware 

Pasa et al. [172] 2019 

The study proposed a compressed 
CNN model with 5 convolution 

layers and& average pooling layer 
using x ray chest images 

reducing the computational, 
memory and power requirements 

significantly, the output with 
saliency maps and grad-CAMs 

found that a good visual 
explanation 

Using traditional 
hardware. limited 
dataset, dataset 

need to pre-trained. 

Rajaraman et al. 
[173] 

2020 

Study demonstrated use pruned CNN 
and fine tuning for detecting 
pulmonary manifestations of 

COVID-19 with chest X-rays. 

99.01% of accuracy and AUC of 
0.9972 in detecting COVID-19 
findings on Chest X-rays CXRs 

images 

Using traditional 
hardware. 

Shuvo et al. [174] 2020 

Proposed a light weight CNN for 
lung disease detection using 

scalogram based features utilizes 
Empirical Mode Decomposition 

EMD & Continuous Wavelet 
Transform CWT 

98.70% for six-class pathological 
categorization are done & weighted 

accuracy values of 98.92% for 
three-class chronic categorization 

Using traditional 
hardware 

Sumari et al. [175] 2021 

Proposed CNN with Gray-Level Co-
occurrence Matrix GLCM for 

Covid19 detection using quicker & 
detailed diagnosis features in chest x-

ray images 

97.06% of accuracy 
Using traditional 

hardware. 

Srinivasu et al. 
[14] 

2021 
This study proposed light weight DL 
based mobilenetv2 and Long Short-

Method has 85% accuracy more 
than other methods and faster 

The model’s 
precision is low for 
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Term Memory LSTM for skin disease 
detection and compared the 

performance with Feedforward Time-
Delay Neural Network FTNN, CNN 
&VGG. using dermatoscopic images 

recognizing & lesser computation 
than the conventional MobileNet 

model results in minimal 
computational efforts. 

poor illumination 
photograph 

conditions, the 
proposed approach 
is less efficient than 

laboratory test, 
using traditional 

hardware 

Gouher et al. 
[176] 

2021 

The study proposed a lightweight 
CNN called UNet that used to detect 

the lung cancer from chest X-ray 
images dataset 

Accuracy of 90% 

Using traditional 
hardware, and 
limited training 

dataset 

Shukla et al. [177] 2021 

This paper focuses on detecting lung 
nodule in CT scan images using 

lightweight CNN MobileNet 
&SqueezeNet 

Reduces the computational 
memory cost of hardware 

*Using traditional 
hardware 

Kumar et al. [178] 2021 

The study proposed a light weight 
“MobiHisNet,” deployed on 

Raspberry pi2 for histopathological 
image classification 

Experiments on breast cancer 
MobiHisNet on edge devices 

shown that a higher accuracy, lesser 
complexity, and lesser memory 

requirements 

*Using 
histopathological 

images 

Saddam Bekhet et 
al. [179] 

2021 

The proposed light weight CNN that 
could run smoothly on a normal 

Central Process Unit CPU (0.54% of 
AlexNet parameters) for Covid19 

detection in CT images 

96% accuracy. 
*Using traditional 

hardware 

Guo et al. [180] 2021 

Proposed a light weight CNN 
(SequeezeNet & shufflenet) models 

compared with ResNet 18 for thyroid 
tissue recognition in Single Photon 
Emission Computed Tomography 

SPECT images 

The accuracy and sensitivity rates 
are 96.69% and 94.75%, the 

specificity and precision rates are 
99.6% and 99.96%, respectively, 

and there is no significant 
difference compared with other 

models. (P > 0.05). 

Limited dataset. the 
residual thyroid 
tissue was less 

finely classified, 
using traditional 

hardware 

Jha et al. [181] 2021 

The study proposed a light weight 
CNN named NanoNet, used 

architecture for the partition of video 
capsule colonoscopy and endoscopy 

images using a dataset containing 
endoscopy biopsies and surgical 

instruments 

Experiments demonstrate the 
performance of model is increased 

rendition of architecture in terms of 
a trade-off between model 

complication, rapidity, model 
parameters, and metric renditions 

resulting a tiny size with 36000 
parameters compared with 

traditional model that having 
millions parameters 

Using traditional 
hardware 

Gunraj et al. [182] 2022 

Introduce a novel lightweight neural 
network architecture called COVID-
Net CT S, which is smaller & faster 

than COVID-Net CT. 

Accuracy of 99.0%, COVID-19 
sensitivity99.1%, positive predictive 
Valu98.0%, specificity99.4%, and 

negative predictive value of 99.7%. 

The model is not 
suitable for 

downstream tasks 
,using traditional 

hardware 
 

Mehrrotraa et al. 
[183] 

2022 

Proposed a light weight CNN and 
ML algorithm for tuberculosis & 
Covid19 detection in x-ray chest 

images. 

AUC of 0.94 and 1 with accuracy of 
87.90% and 99.10% respectively in 

categorizing Tuberculosis TB 
infected images from Normal and 

COVID images. 

Limited dataset, 
manual feature 

extraction & cross 
population test 
techniques are 

needed, not 
suitable for real 
time application, 
using traditional 

hardware 
 

Tsivgoulis et al. 
[184] 

2022 

Proposed modified light weight 
SequeezeNet v1, v2 and compared 
with SequeezeNet for lung cancer 
detection in 2D&3D CT images 

For 2D images dataset, accuracy are 
93% & 94% for SequeezeNetv1 & 
SequeezeNetv2 respectively and for 

3D dataset the accuracy are 94% 

*Using traditional 
hardware 
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&96%, the proposed models is 1.3-
1.5 faster time and 0.8-2.5 better 
performance than SqueezeNet 

Ukwandu et al. 
[185] 

2022 

Proposed lightweight deep learning 
procedure for the prediction of 

COVID-19 using the MobileNetV2 
model in CT images 

MobileNet model delivers a high 
efficiency and competitive accuracy 

with lesser computational cost 

*Using traditional 
hardware 

Al-Naqeeb & Al-
Shamma [73] 

2022 
This work developed a lightweight 
CNN model, identified as DuaNet 

99.87% of accuracy 
*Using traditional 

hardware 

Awasthi et al. 
[186] 

2022 

Proposed Left Ventricle Network 
LVnet for left ventricle segmentation 

and it was compared with other 
models, like MiniNetV2, UNet and 
Fully Convolutional Dense Dilated 
Network (FCdDN).in Ultra Sound 

US cardiac images 

Show improvement in 
segmentation performance high as 

5% &18.5% with & without 
papillary musckes, method requires 
only 5% of the memory by a UNet 

model. 

Post processing 
quality is limited, 
the method not 
suitable for real 
time application, 
using traditional 

hardware 

Heidari, et al. 
[187] 

2022 

Proposed light weight DL based 
block chain CNN with TR to reduce 
the layers of CNN in different dataset 

using python programming 

Technique outperform F1 (2.9%), 
precision (2.7%), recall (3.1%), and 

accuracy (2.8%) 

Using traditional 
hardware 

Arvind et al. [188] 2023 

Proposed modified light weight Unet 
with multiple dropouts in 

deconvolution layers for lung cancer 
detection using x-ray chest images 

Accuracy of 92.71% 

*Using traditional 
hardware, 

insufficient 
resolution of small 
size organ images, 

limited 
optimization & 

equalization, 
limited training 

parameters &cost 
functions 

Hao et al. [189] 2023 

The study proposes a lightweight 
model, named Global Spatial Context 
Enhanced U-Net GSCEU-Net, using 
modified convolution module Shifted 
Convolution SConv with MLP and 

GSC module for encoding and 
Efficient Channel Attention ECA for 
decoding, the proposed model used 

to detect skin lesion using 
microscopic images 

Compared to U-Net, the proposed 
model, reducing the computational 

complexity by 170 times & the 
parameter 

count by 190 times 

Model’s training 
convergence low 

rapidity, the 
floating-point 

operations have not 
touched the fastest 

level, using 
traditional 
hardware, 

Wang et al. [190] 2023 

Proposed light weight SequeezeNet 
model with SVM classifier for breast 

cancer detection using mammography 
images. 

Sensitivity of 94.30%.and accuracy 
of 94.10% a 

Data pattern was 
not captured 

effectively. fine-
tuning of the 

model’s 
hyperparameters 
was not pursued, 

the model is noisy, 
using traditional 

hardware 

Hou & Navarro-
Cía[191] 

2023 

Proposed light weight Efficient Net 
of limited parameters with advanced 

normalization tools for Covid19 
detection in CT images 

Classification accuracy increases 
from 91.15% to 95.50% and (AUC) 

from 96.40% to 98.54%. 

Limited dataset low 
quality, dataset was 
not cleaned, limited 
similarity metrics, 
the model need to 
fine tuning, using 

traditional 
hardware 

Liu & Li [192] 2023 

The study tested several popular 
CNN architectures by using biopsy 

samples images for lung cancer 
detection 

Accuracy range (0. 8808–0. 9121). 

*Using traditional 
hardware 

*limited training 
dataset 

*biopsy samples 
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dataset collection 
more cost 

Raza et al. [193] 2023 

Proposed light weight EfficientNetB1 
model with modified classifier layer 

for lung cancer detection in CT 
images. 

Accuracy of 99.1% 

*Using traditional 
hardware 

*limited training 
dataset 

*comparative study 
was achieved by the 

same type of net 

Mothkur et al. 
[194] 

2023 
Proposed light weight SequeezeNET 

& MobileNet for lung cancer 
detection in CT images 

Accuracy of 85.21% 

*Using traditional 
hardware 

*need to fine 
tuning the 

lightweight NN 
*need to various 

segmentation 
techniques 

Roy & Satija [195] 2023 

The study proposed  lightweight 
inception network, namely, 

Respiratory Disease Lightweight 
Inception network (RDLINet). To 

classify a wide spectrum of respiratory 
diseases using lung sound signals 

Accuracy of 96.6%, 
*Using traditional 

hardware 

Islam et al. [196] 2023 

Study proposed the different CNN 
architecture VGG19,ResNet50,& 
light weight  MobilNetV2 for lung 
cancer detection using chest CT 

images 

MobileNetV2 provided the highest 
level of accuracy with less 

overfitting compared to other 
models 

*Using traditional 
hardware 

Al-Ofary & IIhan 
[197] 

2023 

Proposed to use AlexNet with light 
weight SequeezeNet & shuffle Net 

with 2 different classifier softmax and 
SVM for lung & colon cancer  in CT 

images 

The ShuffleNet occurred the better 
accuracy of 99.93% 

*Using traditional 
hardware 

Xiao et al. [75] 2023 

Proposed light weight fast NN called 
FastNet using weight accumulation 
for tumor identification in mobile 

assisted device using histopathological 
images 

The cost was reduced, efficiency 
was improved the highest accuracy 

of 97.34%, 

*Using 
histopathological 

images 

Biswas & 
Barma[198] 

2023 

Proposed light weight 
MicroMobileNet employed on mobile 

device for cancer detection in 
histopathological images 

Accuracy upto 98.43%, the new 
network has been implemented on 

an edge device with high speed 
(140ms) and very low memory (7.4 

MB). 

*Using 
histopathological 

images 

Awan et al. [199] 2023 

Proposed light weight NN called 
EfficientB5 with fine tuning for lung 

cancer detection using chest x ray 
images 

Recall (99.5%) for biclassification. 
remarkable accuracy (99.5%) and 

The algorithm 
presented was 

innovated to detect 
another lung 

diseases, disease 
severity levels was 

not identified, 
using traditional 

hardware 

Sait & Rahaman 
[200] 

2023 

proposed light weight MobileNetv3 
for lung cancer detection with A 

Optimization AO algorithm of fine 
tuning for reducing training time, the 
study used DenseNet 121 for feature 

extraction 

Kappa value of 95.8 with less 
elements & parameters, accuracy of 

98.6% 

Need to liquid 
neural networks 
and ensemble 

learning techniques, 
using traditional 

hardware 

Asif et al. [201] 2023 

The study proposed Lightweight 
Stacked Ensemble model, known as 
LWSE by combining MobileNet & 

light weight CNN with MLP classifier 
for different infection chest diseases 

using CT & x ray images 

An outstanding accuracy of 98.83% 
on the CT dataset and an accuracy 
of 96.40% and 97.89% on the CXR 

dataset, low computational cost, 
faster performance than other 

models 

Using traditional 
hardware 
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Hadi et al. [202] 2023 

Proposed CORONA Net light weight 
NN included CNN for features 
extraction, and Digital Wavelet 
Transform DWT for features 

reduction and LSTM for Covid19 
classification in chest x ray images 

The proposed method achieves a 
high performance in comparison 
with the existing deep learning 

methods 

Using traditional 
hardware 

Raiaan et al. [203] 2023 

Proposed a light weight shallow CNN 
called ResNet 10 with 3 blocks of 

convolution layers with 64 batch size 
and 0.0001 learning rate to classify 
fundus images in 5 classes with 3 

augmentation techniques 

MobileNetV2, VGG16, Xception, 
VGG19, InceptionV3 and 
ResNet50 achieved testing 

accuracies of 91.42%, 90.16%,  
89.57%, 88.21%, 87.68% and 

87.23%, respectively. Proposed 
RetNet-10 model performed the 
best, with a testing accuracy of 

98.65%. 

Using traditional 
hardware 

Lang et al. [204] 2023 

This paper, proposed a Lightweight 
Contextual and Channel Fusion 

network (LCCF-Net) for medical 
segmentation, this net included 

different blocks for feature decoding 
to reduce parameters features to 

reduce parameters 

Results show that the proposed 
method better than other state-of-
the-art methods for kidney tumor 

recognition, retinal vessel detection 
and COVID 19 segmentation 

Using traditional 
hardware 

Hareesh & 
Bellamkonda[205] 

2023 

Proposed using different DL 
techniques such CNN VGG16 and 
light weight MobileNet model for 

lung cancer detection in CT images, 
using 8 batch size,0,01 learning rate 

&50 epochs 

Achieved a peak accuracy of CNN 
is 95.15%. accuracy of VGG-16 

is95.88%. Furthermore, MobileNet 
demonstrated exceptional 

performance with an accuracy of 
98.39% 

Using traditional 
hardware 

Wanasinghe et al. 
[206] 

2024 

The study proposed light weight 
CNN to extract features from 
Melodic Mel spectrogram, Mel 
frequency cepestral coefficients 

&chromogram to classify lung disease 
through lung sound detection using 

lung sound recording 

The highest accuracy achieved in 
the developed classification is 

91.04% for 10 classes. 

Need to 
augmentation 

&preprocessing 
techniques, using 

traditional 
hardware Need to 

quantization 
technique, need to 
validation model. 

Nahiduzzaman, et 
al. [207] 

2024 

Proposed a Lightweight Parallel 
Depth-wise separable Convolutional 

Neural Network (LPDCNN) for 
features extraction and computational 
cost reduction also the method used a 
Ridge Regression Extreme Learning 
Machine (Ridge-ELM) for precise 
classification of three lung cancer 

types using CT images., 

The framework offers exclusionary 
efficacy, with a time of testing just 

0.003s in binary categorization, 
outstanding results are obtained 
with average recall and accuracy 
values of 98.25 ± 1.031 % and 

98.40 ± 0.822 %, respectively, recall 
and accuracy values of 99.70 ± 

0.671 % and 99.70 ± 0.447 %%, 
respectively, for four-class 

categorization. 

Using traditional 
hardware 

 

7. Results and discussion  
The previous studies enumerated in Table 3 

showed that the most common limitations are limited 
training dataset and the use of traditional hardware 
(super computers). Most studies have applied 
lightweight CNN as part of Tiny DL techniques, but 
they still use the traditional hardware or super 
computer. The computational time may be reduced, 
but the traditional supercomputers need a large space 
memory to process data as fast as possible, and large 
computer memory requires high cost. The traditional 
hardware can be considered a big challenge for the 
physicians who work in rural areas. The traditional 
hardware used in ML and Tiny ML techniques 
requires a high-speed processor, which means high 

cost is needed. This type of computer also consumes 
a large amount of power and energy. Moreover, most 
of the datasets that have been used in studies were 
collected from CT devices or PET/CT and a few 
literature used X-ray data set. Medical CT images 
show physicians more details about the location and 
size of lung tumors. These CT medical data are more 
beneficial for diagnosis. However, patients are 
exposed to more radiation, and this type of 
examination requires high cost. A Kumar et al. [178] 
and S Biswas and S Barma [198] used Tiny DL and 
applied lightweight models on a mobile device and a 
single-board computer, which are considered limited 
constrained devices. They used histopathological and 
microscopic data that can be considered complicated 
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data, requiring a long time and high cost for 
collection. This type of data is not always available 
compared with X-ray chest image data. Then, using 
X-ray or chest X-ray image data is preferable, Using 
X-ray data images as the first medical imaging choice 
is possible for doctors with limited experience. X-ray 
images may provide doctors rapid primary diagnosis 
if they use an efficient Tiny DL model. Even 
although less details are shown in X-ray images, using 
these data in efficient Tiny DL models could avoid 
the high cost of CT exam and receiving a high dose 
of radiation in further examinations. 

 

8. Conclusion 
This review concludes the potential challenges 

and opportunities in employing TDL and Tiny ML 
for the identification and classification of lung cancer. 
Despite significant advances, most existing studies 
still rely heavily on traditional DL models that require 
extensive computational resources, such as large 
memory and high-powered hardware, which are 
costly and energy consuming. This poses a substantial 
difficulty for physicians working in resource-
constrained environments such as rural medical 
centers.  

This review underscores the importance of 
designing lightweight, efficient models such as 
compressed CNNs that can operate effectively on 
limited-resource devices like mobile phones and 
single-board computers. By relating lightweight 
CNNs with limited devices, offering physicians in 
remote areas a portable, low-cost, and accurate 
diagnostic tool for lung cancer detection is possible. 
This methodology could significantly reduce reliance 
on expert physicians and expensive, high-powered 
computers. Moreover, such solutions can support 
rapid decision-making, which is crucial for the early 
diagnosis and treatment of lung cancer.  

Future work in this area may help achieve 
accuracy levels comparable to those of traditional DL 
models while minimizing computational costs and 
resource demands, thus democratizing access to 
advanced diagnostic technologies. 
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