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Abstract 
The behaviour of slabs under impact loading differs significantly from 

that observed under short-term or long-term static loading conditions. Such 
dynamic loading scenarios typically arise from vehicular collisions, explosive 
events, or other forms of sudden impact. This paper aims to synthesise and 
critically evaluate the extant literature concerning the response of slabs 
subjected to impact loading. The investigation encompasses an analysis of 
the salient factors influencing slab behaviour, elucidation of failure 
mechanisms, examination of methodologies for simulating impact loading, 
and a critical appraisal of pertinent design code recommendations. Through 
this comprehensive review, it has been ascertained that reinforcement 
configuration plays a pivotal role in augmenting the resistance of slabs to 
impact loading. Furthermore, the predominant mode of failure observed in 
such scenarios is punching shear. This finding underscores the necessity for 
meticulous consideration of shear capacity in the design of impact-resistant 
slab structures.  
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 السقوف تحت تاثير الحمل الصدميمراجعة ادبية شاملة لسلوك 
 فهد عبد الله الرشودي مصطفى حميد العلاف،  ، سلطان احمد داود ،ائد احمد داودر 

 الخلاصة: 

يختلف سلوك الألواح تحت تأأثير الأحمال الارتطامية بشكل كبير عن السلوك الذي يتم ملاحظته في ظل ظروف 

عادةً من  الديناميكي  المتعلقة بالتحميل  السيناريوهات  مثل هذه  تنشأأ  الأمد.  أأو طويلة  الأمد  الساكنة قصيرة  التحميل 

أأخرى من التأأثير المفاجئ. تهدف هذه الورقة ا لى تلخيص الاصطدامات بالمركبات أأو الأحداث الانفجارية أأو أأشكال  

وتقييم الأدبيات الموجودة فيما يتعلق باس تجابة الألواح المعرضة للحمل الارتطامي بشكل نقدي. يشمل التحقيق تحليل  

، والتقييم  العوامل البارزة التي تؤثر على سلوك الألواح، وتوضيح أ ليات الفشل، وفحص منهجيات محأكاة الحمل الارتطامي

النقدي لتوصيات كود التصميم ذات الصلة. من خلال هذه المراجعة الشاملة، تم التأأكد من أأن تكوين التعزيز يلعب دورًا  

محوريًً في زيًدة مقاومة الألواح للحمل الارتطامي. علاوة على ذلك، فا ن الوضع السائد للفشل الملحوظ في مثل هذه  

يؤكد هذا الاكتشاف على ضرورة مراعاة سعة القص بدقة في تصميم هيأكل الألواح  السيناريوهات هو القص الثاقب.  

 المقاومة للتأأثير. 

1. Introduction  
In the realm of structural engineering, the accurate 

prediction of long-term deflection in slabs is of 
paramount importance. This critical parameter 
informs the determination of requisite slab thickness, 
thereby ensuring compliance with essential 
serviceability limits. The significance of this 
consideration cannot be overstated, as it directly 
impacts the longevity and functionality of structures. 
Slabs, as fundamental structural elements, are 
frequently subjected to impact loading from diverse 
sources. These dynamic forces may originate from 
vehicular collisions, blast events, or the impact of 
falling objects. The assessment of slab response under 
such transient loading conditions is crucial for 
maintaining the safety and serviceability of buildings 
and infrastructure [1]. This evaluation process is 

inherently complex, necessitating a nuanced 
understanding of various influential factors. The 
behaviour of slabs under impact loading is governed 
by a multitude of parameters. Primary among these are 
slab thickness, reinforcement configuration, material 
properties, foundation stiffness, and the characteristics 
of the applied load—both in terms of duration and 
magnitude [2, 3]. These factors interact in intricate 
ways producing complex patterns of deformation, 
stress distribution, and energy dissipation within the 
slab structure [4-6]. The boundary conditions of the 
slab further modulate these responses, adding another 
layer of complexity to the analysis. In light of these 
challenges, the development of robust design and 
retrofit strategies has become a focal point of research 
and practice. Such strategies may encompass the 
incorporation of additional reinforcement the 
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utilisation of energy-absorbing materials, or the 
implementation of advanced damping systems. These 
interventions aim to enhance the impact resistance and 
overall resilience of slab structures [5]. Thereby 
mitigating the risk of catastrophic failure under 
extreme loading conditions. It is crucial to recognise 
the fundamental distinctions between impact loads 
and static loads. The former are characterised by their 
abrupt onset and short-lived nature with their effects 
on structures being primarily dependent on the rate of 
loading rather than its duration. This transient quality 
of impact events significantly influences the response 
mechanisms of structural slabs [6, 7], necessitating 
specialised analytical approaches and design 
considerations. Given the complexity and importance 
of this subject, this paper endeavours to present a 
comprehensive synthesis of published data pertaining 
to the behaviour of slabs subjected to impact loading. 
Through a rigorous examination of the extant 
literature, we shall elucidate the critical factors 
influencing slab behaviour, delineate the predominant 
failure mechanisms, scrutinise methodologies for 
simulating impact loading scenarios, and critically 
appraise the recommendations put forth by pertinent 
design codes. 
 

2. Experimental Studies on Impact-
Loaded Slabs 
2.1 Test Methods and Setup 

Experimental investigations used various methods 
to simulate real-world impact loading scenarios on 
slabs, including the Falling Weight Impact Test 
(FWIT), Drop Tower Tests (DTT), Impact Pendulum 
Tests (IPT), and Shock Tube Experiments (STE) [8,9]. 
Tests method selection was depending on the specific 
research aims and required accuracy in representing 
actual impact events. Data acquisition was employed 
to capture the transient slab behaviour under impact 
loading. Tooles such as high-speed cameras, 
accelerometers, strain gauges and LVDTs were 
typically used to quantify and record the displacement 
and dynamic behaviour [10,11]. Test samples and 
boundary condition selection was critical to ensure the 
accuracy in experimental studies [12]. Full-scaled or 
scaled models were used based on available resources 
and objectives. Boundary constraints i.e. simply-
supported, clamped or free edges are influencing slab 
response under impact loads significantly [13]. 
Material properties were important to understand its 
dynamics behaviour under impact loading [14]. 
Experimental investigations involve material testing to 
determine properties such as compressive strength, 
tensile strength and dynamic modulus. Furthermore, 
meticulous control and documentation of impact 
parameters like drop height, impact angle and velocity 
were necessary to ensure reliability and reproducibility 
of results [15]. 

2.2 Response Characteristics 
Studies of how slabs react when hit hard teach us a 

lot about their behaviour when things happened 
suddenly. Researchers tested slabs in various methods 
to study their respond. These experiments show some 
consistent traits of slab reactions to impacts that were 
worth reviewing. 

In general, slabs tend to bend then break in certain 
ways when impacted. Mapping out the deformation 
patterns tells us how well a slab might stand up to a hit 
and where the weak points were. Stress inside the slab 
also shapes its reaction. Tests show strikes often create 
concentrated stress hot-spots near the point of impact. 
The specifics depend on the slab's materials, supports, 
and what hits it. Understanding the stress landscape 
was important for designs tough enough to take an 
impact. Studies also showed slabs absorb a lot of 
energy when slammed, which differs from each other 
depending on their boundary conditions, material 
proprieties and reinforcement conditions. Measuring 
the energy loss was key to predicting potential 
cumulative damage and engineering better shock 
absorbers to improve resilience. The ratio between a 
slab's peak reaction to a sudden hit versus a slow push 
another critical dynamic was the possible failure limit 
and inform the safety margins needed in impact-ready 
designs. 

2.3 Failure Modes and Damage Assessment 
Experimental investigations into slab response 

under impact loading provide important insights into 
failure modalities and damage mechanisms induced by 
sudden, dynamic loading. Elucidating failure modes 
and damage patterns was imperative for the safe, 
resilient design of structures subjected to impact 
events. This overview summarizes key findings from 
experimental impact loading studies regarding slab 
failure and damage assessments. Various failure modes 
manifest in slabs under impact loads, including 
flexural, shear, and punching shear failures (Figure 1). 
Flexural failure arises from excessive bending 
moments, leading to cracking and rupture [22]. Shear 
failure involves sliding along slab interfaces, while 
punching shear stems from concentrated loads 
inducing failure around supports [23]. Various 
methods were utilized to assess damage in 
experimentally tested slabs subjected to impact 
loading. Visual inspection and crack mapping provide 
initial damage detection, while strain analysis, imaging 
techniques, and digital image correlation (DIC) 
quantify crack patterns and surface strains to 
characterize damage distribution and intensity [25]. 
Structural health monitoring (SHM) techniques had 
emerged to continuously monitor slab condition 
during and after impact events. SHM technologies like 
embedded sensors and wireless systems deliver real-
time structural response data, enabling damage 
detection and diagnosis. SHM was critical for 
evaluating post-impact integrity and remaining service 
life. [26, 27]. 

Advanced techniques including DIC and SHM 
were invaluable for quantifying and characterizing the 
extent of damage in impacted slabs. By elucidating 
damage progression, these technologies inform 
effective retrofitting and mitigation strategies. Overall, 
the multifaceted experimental damage assessment 
methodologies provide critical insights into failure 
modalities and fracture behaviour under impact 
loading. 
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Figure (1): Failure modes of RC slab under impact 

load [24] 
2.4 Influence of Material Properties 

Experimental research showed that, mechanical 
proprieties might significantly influence the slab 
behaviour under impact loading. Concrete tensile and 
compressive strength showed a direct response to the 
slab’s resistance to the impact loading. Where the 
higher strengths lead to the greater load resistance and 
energy dissipation. Nevertheless, reinforcement 
configurations also improve flexural and shear 
resistance during impact events dramatically [28-30]. 
Moreover, ductile materials endure substantial plastic 
deformation before failure and enhancing energy 
absorption. Were high toughness materials resist crack 
development, reducing the brittle failure risks under 
impact loads [30-31]. Material anisotropy, such as in 
fiber composites or orthotropic mediums, also affects 
slab impact response as shown through studies on 
directionally-dependent performance. Furthermore, 
material heterogeneity and variability influence 
structural safety under variable dynamic demands [32-
34]. 

 

3. Numerical Simulations of Slab 
Response  

Finite element analysis (FEA) was widely utilized 
in numerical simulations to complement experimental 
slab impact studies by enabling detailed investigations 
into dynamic response and failure. This overview 
summarizes FEA model applications in experimental 
impact research and their significance for advancing 
structural behaviour insights. Experimental results 
serve to validate FEA models by comparing simulated 
versus observed deformation patterns, stress states, 
and failure modes. [35,36] FEA enables extensive 
parametric studies by systematically varying material 
properties, reinforcements, boundary conditions, and 
impact characteristics to quantify their influence on 
response. This facilitates identifying critical design 
factors and optimizing slab performance under 
dynamic loads. [37] Simulations can pinpoint regions 
of concentrated stress, crack formation, and failure 
initiation for enhanced response characterization. [38] 

Analyzing simulated failure modes and damage aids in 
elucidating failure mechanisms to inform structural 
assessments and retrofitting. [39] Sensitivity analyses 
quantify the effects of uncertainties in material 
parameters, loading, and modeling assumptions on 
slab response. The synergistic use of simulation and 
experimentation significantly empowers impact-
resistant and resilient structural design. Overall, FEA 
modeling forms an invaluable numerical complement 

to experimental slab impact testing. 
 

4. Dynamic Response of Slabs on Elastic 
Foundations 
4.1 Natural Frequency and Resonance 
Effects 

The natural frequency, representing the inherent 
vibration mode of a structural system, wasa key 
dynamic response parameter for slabs on elastic 
foundations. The natural frequency depends on slab 
stiffness, foundation properties, and boundary 
constraints, with higher frequencies indicating greater 
dynamic load resistance [40, 41]. Resonance effects 
arise when dynamic loading frequencies coincide with 
natural frequencies, inducing amplified vibrations and 
concentrated stresses [42]. Strategies exist to mitigate 
resonance hazards, including added structural 
damping using energy-absorbing materials and 
damping devices to dissipate energy. Adjusting 
foundation properties or redesigning slabs to avoid 
frequency matching can also minimize resonance 
[43,44] 

4.2 Vibration Damping and Energy 
Dissipation. 

Vibration damping in slabs on elastic foundations 
enables energy dissipation through material damping, 
viscoelasticity, and energy-absorbing devices. Material 
damping, inherent in construction materials, involves 
mechanical-to-thermal energy conversion under 
dynamic excitation [45]. Viscoelastic materials, like 
damping coatings or pads, provide additional damping 
through vibration amplitude reduction [46]. Higher 
energy dissipation capacity confers greater resilience to 
impact loading [47]. Resilient bearings, isolators, or 
base isolation systems also effectively reduce 
vibrations and improve energy dissipation [48]. 
Retrofitting strategies often incorporate energy-
absorbing materials, damping systems, or base 
isolation to enhance the dynamic response and 
resilience of foundation-supported slabs [49].  

4.3 Impact Mitigation Techniques. 
Impact mitigation techniques were vital for 

enhancing the resilience of slabs on elastic foundations 
and averting potential damage or failure under 
dynamic loads. Effective mitigation strategies 
empower structures to withstand impacts and ensure 
occupant and asset safety. Energy-absorbing materials 
like foams, rubber pads, and shock-absorbing coatings 
can be incorporated to dampen impact forces through 
deformation or stress relaxation, reducing force 
transmission to slabs [50]. Damping systems including 
tuned mass dampers and tuned liquid dampers absorb 
and dissipate impact energy [51]. Base isolation 
decouples slabs from ground motion using isolators 
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between slabs and foundations, enabling relative 
movement and decreasing impact force transferal, 
thereby minimizing potential damage. [52] 
4.4  Effect of Dynamic Soil-Structure 

Interaction 
Dynamic soil-structure interaction (SSI) 

significantly influences the behaviour of slabs on 
elastic foundations under impact loads. SSI governs 
the dynamic response, frequencies, and energy 
dissipation through complex interplay between the 
structure and underlying soil. Elucidating SSI 
mechanisms was critical for accurate prediction of 
structural performance and safety. SSI involves 
multifaceted phenomena including wave propagation 
through soil, soil energy dissipation, and the effect of 
soil properties on structural response. SSI also induces 
coupling between the slab and surrounding soil, 
modifying vibration modes and frequencies [53, 54]. 
The frequency-dependent nature of soils crucially 
affects the dynamic response of slab-foundation 
systems. Soil stiffness and   vary with loading 
frequency. Capturing these frequency dependencies in 
analysis was vital for accurately modeling SSI [55]. SSI 
can amplify or attenuate structural impact response 
based on soil characteristics and excitation frequency 
[56]. 

 

5. Failure Mechanisms and Critical 
Impact Loads 
5.1 Slab Cracking and Spalling  

Cracking represents a prevalent failure mode in 
slabs subjected to impact loading. Sudden dynamic 
forces, like dropped objects or vehicular impacts, can 
induce tensile stresses exceeding the material strength 
and initiating cracks. Cracking arises from: 
a) Flexural cracking due to excessive bending stresses, 
with tensile cracks on the bottom and compression at 
the top surface propagating slab lengthwise [57]. 
b) Shear cracking when applied shear stresses surpass 
the shear strength, typically propagating diagonally 
across the slab. 

Additionally, spalling was a notable impact-
induced damage mechanism, whereby the concrete 
surface layer detaches in small fragments owing to 
high-energy impacts. The intense dynamic forces can 
cause the surface layer to break off, resulting in spalling 
damage [58]. 

5.2 Punching Shear Failure 
Punching shear failure represents a critical failure 

mode for slabs subjected to impact loading. 
Concentrated loads from falling objects or high-speed 
impacts can induce localized stresses at slab-column 
interfaces, resulting in sudden punching shear failures. 
Elucidating the mechanisms underlying punching 
shear wasvital for ensuring impact-loaded slab 
integrity. Experimental tests by Nikpour et al [59] on 
reinforced concrete slabs under drop hammer impacts 
highlighted punching shear failure predominance. Li et 
al. [60] investigated punching shear in impacted fiber-
reinforced concrete slabs, proposing improved design 
recommendations. Punching shear arises from 
concentrated impact forces propagating as stress 
waves and generating localized high stresses around 

supports. Exceeding the shear capacity precipitates 
brittle punching shear failures [61]. Studies reveal that 
impact loads surpassing identified thresholds 
substantially increase punching shear failure risks, with 
the critical loads depending on parameters including 
slab thickness, concrete strength, and reinforcements 
[62]. Proposed enhancements for punching shear 
resistance include increased slab thickness, additional 
shear reinforcement near supports, and high-strength 
concrete use in critical zones. 

5.3 Progressive Collapse Analysis 
Progressive collapse poses a major risk for impact-

loaded slabs as critical building components. 
Experimental and analytical studies provide insights 
into slab collapse mechanisms and load redistribution 
under impacts. Huang et al. [67] experimentally 
assessed reinforced concrete slab progressive collapse 
resistance under impacts, elucidating failure modes 
and redistribution behaviour. Wang et al. [68] 
proposed finite element simulation methodologies to 
investigate slab collapse under impacts. Localization of 
impact forces and moments can initiate failure at 
specific slab zones, with failed region loads 
redistributing to other areas, potentially triggering 
progressive collapse. Impact load dynamics further 
complicate collapse assessments [69]. Calibrated finite 
element models complement experiments by enabling 
detailed examinations of progressive collapse 
mechanisms through parametric studies on design 
factors influencing slab collapse resistance [70].  
Proposed impact-resistant design measures include 
redundancy, slab-to-element connection enhancement 
and, optimized reinforcement for improved load 
redistribution [71]. 
5.4 Slab-Foundation Separation 

Slab-foundation separation represents a severe 
failure mode for impact-loaded slabs, involving 
detachment between the slab and foundation due to 
excessive impact forces. Studies by Kim et al. [63] 
highlighted the significance of slab-foundation 
separation as an impact-induced failure mode. 
Additionally, Lee et al. [64] provided insights into the 
interface behaviour and separation mechanisms under 
dynamic loads. 

Typically, high interface stresses and displacements 
from impact events lead to cracking and debonding, 
causing load transfer loss and subsequent slab 
detachment. The dynamic nature of impacts 
exacerbates these effects, precipitating rapid 
separation [65]. Critical impact loads depend on 
parameters including slab and foundation properties, 
slab thickness, and support conditions. Design 
considerations involve adequate reinforcement and 
anchorage to resist dynamic separation forces [66]. 

 

6. Design Considerations for Slabs under 
Impact Loading 

Designing slabs to withstand impact loading was 
crucial for ensuring the safety and structural integrity 
of the entire building. This section will explore various 
design considerations that should be taken into 
account when designing slabs to resist impact loads 
effectively. 
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6.1 Load Estimation and Load Distribution 

Impact load estimation for slabs necessitates 
determining load types and magnitudes based on 
impactor mass, velocity, height, and other parameters 
using empirical data, experiments, or simulations [72]. 
As dynamic loads, impacts impart higher forces than 
equivalent static loads. 

Dynamic load factors account for impact duration 
and frequency, converting dynamic loads into 
equivalent static loads for analysis [73]. Load 
distribution paths critically transfer impact loads from 
the application point through the slab into the 
supporting structural system and foundation. Paths 
should minimize stress concentrations and enable 
efficient load transfer [65]. 

6.2 Reinforcement Strategies  
Multiple reinforcement strategies can enhance slab 

impact resistance: 

• Increased bottom reinforcement improves tensile 
capacity, crack resistance, and failure prevention 
under tension from impacts [74]. 

• Proper shear reinforcement detail, like stirrups or 
transverse bars, augments shear resistance to 
mitigate common punching shear failures [75]. 

• Steel fibers or mesh added to concrete increase 
crack resistance, post-cracking ductility, 
toughness, and energy absorption [76]. 

• Ductile reinforcement detailing enables 
controlled deformation and energy dissipation 
through reinforcing bar yielding or ductile 
connectors to prevent sudden failure [77,78]. 

Experimental and analytical studies had revealed 
various reinforcement approaches, including 
augmented bottom bars, shear elements, steel 
fibers/mesh, and ductile details, that improve slab 
performance, toughness, and failure resistance when 
subjected to dynamic impact loads. 

6.3 Retrofitting and Strengthening 
Techniques 

Various retrofitting and strengthening techniques 
can enhance the impact resistance of existing slabs by 
improving structural capacity, ductility, and energy 
dissipation: 

• External steel plating or shear reinforcement 
increases flexural and shear capacities while 
distributing loads to mitigate localized stress 
concentrations under impact [79]. 

• Fiber reinforced polymer (FRP) materials like 
carbon or glass fibers bonded with polymer resins 
provide lightweight slab strengthening when 
externally bonded or near-surface mounted. FRP 
enhances tensile and flexural capacities, preventing 
sudden failure [80]. 

• Added steel mesh or fibers as surface 
reinforcements or cast into the concrete mix 
improve slab toughness and crack resistance to 
better distribute and absorb impact energy [81]. 

• Providing additional support or connection details 
improves load distribution and transfer. 
Strengthening slab-column and slab-beam 
connections prevents premature detachment under 
impacts 

• External reinforced concrete jackets constructed 
with bonded concrete layers increase slab strength, 
durability, and load capacity. 
Experimental and analytical studies had 

demonstrated the effectiveness of retrofitting methods 
including supplemental external or near-surface 
reinforcement, FRP bonding, and cast-in steel 
mesh/fibers for strengthening existing slabs against 
impact loads. The techniques aim to enhance slab 
structural integrity for resilient resistance to dynamic 
impacts. 

 

7. HPC and UHPC Slabs under Impact 
Loads 

The behaviour of concrete slabs under impact 
loading is a subject of paramount importance in 
structural engineering, particularly in contexts where 
dynamic forces pose significant risks. The response of 
these structural elements to sudden, high-intensity 
loads varies markedly depending on the type of 
concrete employed. This discourse aims to elucidate 
the distinctions between standard concrete, High-
Performance Concrete (HPC), and Ultra-High-
Performance Concrete (UHPC) slabs when subjected 
to impact loading, drawing upon recent research and 
empirical observations. Slabs with normal concrete 
when subjected to dynamic forces typically display a 
relatively brittle behaviour [82]. This brittleness is 
characterised by the rapid propagation of cracks which 
often leading to extensive spalling and in severe cases 
catastrophic failure. The energy absorption capacity of 
standard concrete is limited. This resulting in a 
significant portion of the impact energy being 
transferred to the supporting normal concrete 
structures [83].  

Moreover, the strain rate sensitivity of standard 
concrete is pronounced with its strength and stiffness 
properties showing marked increases under high 
loading rates [84]. This phenomenon potentially 
beneficial in some respects which lead to unpredictable 
behaviour and complicates the design process for 
impact-resistant structures. Whereas High-
Performance Concrete (HPC) represents a significant 
advancement over standard concrete in terms of 
impact resistance. HPC is characterised by its 
enhanced strength, typically achieved through the 
optimisation of the mix design and the incorporation 
of supplementary cementitious materials such as silica 
fume and the fly ash. The improved mechanical 
properties of HPC translate to superior behaviour 
under impact loading. HPC slabs generally exhibit 
higher energy absorption capacities and reduced 
cracking propagation compared to the normal 
concrete counterparts [85, 86]. The enhanced 
durability of HPC also contributes to its improved 
impact resistance, as the denser microstructure and 
reduced permeability limit the ingress of deleterious 
agents that could compromise the slabs integrity with 
time [87].  

The behaviour of HPC slabs under impact loading 
is further distinguished by their enhanced strain rate 
sensitivity. Research showned that the dynamic 
increase factor for compressive strength in HPC can 
be significantly higher than that of standard concrete 
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[88]. This property allows HPC slabs to better resist 
the high-intensity stresses generated during impact 
events. Additionally, the improved bond strength 
between reinforcement and concrete in HPC leads to 
more effective load transfer and energy dissipation 
mechanisms [89]. Consequently, HPC slabs often 
display  more distributed damage pattern under impact 
loading with multiple smaller cracks as opposed to the 
few large cracks typically observed in standard 
concrete slabs. Similarly, Ultra-High-Performance 
Concrete (UHPC) represents the pinnacle of concrete 
technology in terms of impact resistance. The 
behaviour of UHPC slabs under impact loading is 
markedly superior to both standard concrete and HPC 
slabs, exhibiting unprecedented levels of energy 
absorption and damage resistance. The exceptional 
performance of UHPC slabs under impact can be 
attributed to several factors. Firstly, the ultra-dense 
microstructure of UHPC, achieved through optimised 
particle packing and very low water/binder ratios, 
resulting in a material with minimal porosity and 
exceptionally high strength [90, 91]. Similar to HPC, 
the dense matrix of UHPC provides superior 
resistance to crack initiation and propagation. 
Secondly, the incorporation of high volumes of steel 
fibres (typically 2-3% by volume) imparts significant 
ductility and tensile capacity to the material [92]. These 
fibres act to bridge micro-cracks, allowing for the 
development of multiple cracking under impact and 
significantly enhancing the energy absorption capacity 
of the slab. The strain rate sensitivity of UHPC is 
particularly noteworthy. Studies have shown that the 
dynamic increase factor for both compressive and 
tensile strengths in UHPC can be substantially higher 
than those observed in standard concrete or HPC [93]. 
This pronounced strain rate effect contributes to the 
material's exceptional performance under high-
velocity impacts. Furthermore, the fibre reinforcement 
in UHPC plays a crucial role in energy dissipation 
during impact events. The pullout and yielding of steel 
fibres consume significant amounts of energy, 
contributing to the material's ability to withstand 
repeated impacts without catastrophic failure [94].  

The failure mode of UHPC slabs under impact 
loading is distinctly different from that of standard 
concrete or HPC slabs. While the latter may exhibit 
punching shear failure or extensive cracking, UHPC 
slabs often display a more localised damage pattern 
with minimal spalling [95]. The high tensile strength 
and ductility of UHPC allow for the development of 
membrane action in the slab, which can significantly 
enhance its load-carrying capacity under large 
deformations. It is crucial to note that the superior 
performance of UHPC comes at a considerable cost 
premium compared to standard concrete or HPC. The 
complex mix design, specialised production processes, 
and high fibre content contribute to significantly 
higher material costs [95, 97]. However, in applications 
where impact resistance is paramount, such as 
protective structures or critical infrastructure, the 
enhanced performance of UHPC may justify the 
additional expense. 

 
 

8. Conclusion  
 This review paper aims to serve as a valuable 

resource for researchers and engineers involved in the 
design and assessment of slabs subjected to impact 
loading. By consolidating findings from a wide range 
of studies, the paper addresses key knowledge gaps, 
highlights challenge: 
a) Higher natural frequencies indicate increased 

stiffness and better resistance to dynamic loading, 
b) Vibration damping mechanisms and energy 

dissipation capacity improve the structural 
resilience and reduce the risk of failure.  

c) Vibration isolation techniques and retrofitting 
strategies can further improve the dynamic 
response. 

d) Advanced techniques, such as digital image 
correlation and structural health monitoring, had 
significantly contributed to quantifying and 
evaluating the extent of damage in slabs. 

e) Concrete strength, reinforcement detailing, material 
ductility, toughness, anisotropy, heterogeneity, and 
strain rate sensitivity play essential factors in 
determination of the impact resistance. 

f) Punching shear failure is a crucial failure 
mechanism for slabs subjected to impact loads.  

g) Progressive collapse analysis of slabs under impact 
loads was crucial for ensuring the safety and 
resilience of structures.  

h) Reinforcement configurations play a vital factor 
that provide resistance of slabs under impact 
loading  

i) Retrofitting and strengthening techniques were 
valuable tools for upgrading existing slabs to 
withstand impact loading. 
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