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Abstract
The goal of this paper is to estimate the states of two-phase permanent magnet synchronous
motor (PMSM). The system is highly nonlinear and one therefore cannot directly use any linear
system tools for estimation. However, if one can linearize the system around a nominal
(possibly time-varying) operating point then linear system tools could be used for control and
estimation. Firstly, the error covariance matrices of measurement and process would be derived
when the system inputs and outputs are subjected to uncertain variations. Then, the corrupted-
noise nonlinear model of the system will be discretized and extended to be suitable for applying
standard discrete Kalman filter (KF) for state estimation purpose. The entire state estimated
system has been modeled using MATLAB/SIMULINK blocks. The state estimation algorithm
and the motor discretized mode are coded inside special S-functions of m-filetype.

Keywords. Two-Phase Permanent Magnet Synchronous Motor, Kalman Filter, Extended
Kaman Filter, Modeling, Matlab/Simulink/s-function.
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I ntroduction

In controlling AC machine drives,
speed transducers such as tacho-generators,
resolvers, or digital encoders are used to
obtain speed information. Using these
speed sensors has some disadvantages [1]

They are usually expensive,
The speed sensor and the corresponding
wires will take up space,
In defective and aggressive environme-
nts, the speed sensor might be the weakest
part of the system.
Especially the last item degrades the
systems rdiability and reduces the
advantage of an induction motor drive
system. This has led to a great many speed
sensorless vector control methods.

On the other hand, avoiding sensor
means use of additional agorithms and
added computational complexity that
requires high-speed processors for real time
applications. As digital signal processors
have become chegper, and ther
performance greater, it has become possible
to use them for controlling dectrical drives
as acost effective solution [2].

Estimation of unmeasurable state
variables is commonly called observation.
A device (or a computer program) that
estimates or observes the states is called a
state-observer. An observer can  be
classified according to the type of
representation used for the plant to be
observed [1].

If the plant is deterministic, then the
observer is a deerministic observer;
otherwise it is a stochastic observer. The
most commonly used observers are
Luenberger and Kalman types [2]. The
Luenberger observer (LO) is of the
deterministic type, and the Kalman Filter
(KF) is of the stochastic type. The basic
Kaman filter is only applicable to linear
stochastic systems, and for non-linear
systems the extended Kalman filter (EKF)
can be used, which can provide estimates of
the states of a system or of both the states
and parameters[1,2].

The EKF is a recursive filter (based on
the knowledge of statistics of both the state
and noise created by measurement and
system modelling), which can be applied to

non-linear time varying stochastic systems.
EKF is insensitive to parameter changes
and used for stochastic systems where
measurement and modeing noise is taken
into account.

Model of PMSM and Development of
Error

Covariance Matrices

The continuous-time electromechanical
model of two-phase permanent magnet
(PM) synchronous motor is fourth order,
nonlinear and can be described by [3]

k=-(Ry/L)ia+(1 /L)W, sing, +(YL) u,
b =-(Ry/L)iyp - (1/L) w, cosq, +(YL) u,
W, =- (31 /23)ising, +(3 /20)ipcosg, (D)
- (F/I)w, - (YI) T,

d‘r :WI'

where i, and i, are the currents through
the two windings, R, and L are the
resistance and inductance of the windings,
g, and w, are the angular position and
velocity of the rotor, | is the flux constant
of the motor, u, and u, are the voltages
applied across the two windings, J is the
moment of inertia of the rotor and its load,
F is the viscous friction of the rotor, and
T, istheload torque[3,4].

However, the system is highly nonlinear
and one therefore cannot directly use any
liner system tools for estimation.
However, if one can linearize the system
around a nominal (possibly time-varying)
operating point then linear system tools
could be used for control and estimation.
We start by defining a state vector as

x=[i, i, w, q,]" and the output vector
as y=li, i,]". With this definition, Eq.(1)

can be written compactly
ask=[l, % Kk %[
A=AX+Bu+M T, @)
y=Cx ©)

where
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é R, | . U where
e "L O s Oy aop RT o 1T . _ 3T
e u 1~ T, r M3 T Y931 T T T o
A=é 0 R Lsx, aa L L 2]
¢ - 0 =1- L ag=T and by =
e 3 F U g =1 57y A =1 aAd by =
~ ——SinX, COSX, -— 0>
e 23 J J u :
g o 0 1 OH If the noises Du,, Du, have corrupted the
inputs u, and u,, respectively, and the
gl/L) 0 u é0u & 0oy noise Da has been admitted to account for
o W L)Y Sol & 14 uncertainties in the load torque, then a noise
B=¢ 0 0 o =2 14 andC:go OH vector will arisein Eq (4)
é a € Ju e +Du, 0
e 0 0 @ g0q & 0Og Xk+1_Aka+Bk €1 +Du l:I+Mk(TL+DTL)
bUk
The motor Equation (2) is to be discretized or
for the digital implementation as: Xi+1 = A X + B g + My T +w, - (10)
X = AX +BuU +M, T, (4) where
Y = Ci X, (5) e (T /L)Du, u
I (11)
A, and B, are the discretizd system and g' (T/‘])DTLU
input matrices, respectively. They are e O Q
[1,4,5] Similarly, if the measurements i, and i,
A = el =) +AT+(AT) are dltstorted by noises D, and Di,
2 respectively, then Eq.(5) becomes
Cl+AT (6)
. . N
6, +Diyu éDi, U
By = (3 Bdz =[eAT - |] A'B &” & U
0 y, =C b+DIbU Cy X, +C by
rar? k k:Wr o KXk k:Ou
é a é 0
D 0
M EMT ®) =Cka+§D-aH:Cka+Vk (12)
C,=C ) &Diy
where
where T is the sampling time and | is an éDi,
matrix. The above ' (13)

identity (4" 4)
approximation is justified due to the small
size of sampling time and the presence of
increasingly large factorials, which further
diminishes the magnitude of the higher-
order terms.

¢ ay 0 azsinx, (k) 0
Ac=a O ay - agoosy(K) 0
€ag Sinx, (k) - ag CosX,(K) g3 0d
e u
é 0 0 a3 15
éy 00 eou
é a é,u
€0 b, Y <0 .
B, =¢© 0 and M, =€ TY
““éo ou =& L
é u e Ju
e0 0q g0 g
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i, |
where the vectors w, and v, are called the
process and  measurement Nnoises
respectively.

The Kalman filter theory and algorithm

Theaim in al estimation problemsisto
have an estimator that gives an accurate
estimate of the true state even though one
cannot directly measure it. Two obvious
requirements should be attained [6]:

q First, the average value of our state
estimate is to be equal to the average
value of the true state. That is, the
estimate has not to be biased one way or
another. Mathematically, one would say
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that the expected value of the estimate
should be equal to the expected value of
the state.
Second, the state estimate varies from the
true state as little as possible. That is, not
only one wants the average of the state
estimate to be equal to the average of the
true state, but also want an estimator that
results in the smallest possible variation
of the state estimate. Mathematically, an
estimator with the smallest possible error
varianceis sought.
It so happens that the Kalman filter is the
estimator that satisfies these two criteria
But the Kalman filter solution does not
apply unless certain assumptions about the
noise that affects the system under study
must be satisfied:
1.1t is firstly to assume that the average
value of both w, and v, are zero.
2.0ne has to further assume that no
correlation exists between w, and v,.
That is, at any time k, w, and v, are
independent random variables. Then the
noise covariance matrices S,, and S, are
defined as:

Process noise covariance:

SW = E(Wk WI)

M easurement noise covariance;
S, =E(vvy) (15)
where w' and v' indicate the transpose of
w and v random noise vectors, and E(.)
means the expected value.

Substituting Eq.(11) into Eq.(14), and
Eq.(13) into Eq.(15), one can get the
following process and measurement noise
covariance matrices:

(14)

g 8%9(&;) gal:oDuDub -gL‘DuDTL 0a
e
Ge o 9 2
S, EgggL o O  (ou,) -@mbon 0u
ge a2 20 5
gg é‘éﬂi 'éT—;meTL 9*- (©T,)? 0
e o0 0 0 ohs
(16)
5=E ®o, oo, @)

SélaD'b (D'b) l;a

If the noises Du,(Du,),DT, ,Di,(Di,) are
white, zero mean, uncorrelated, and have

g

%]
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known variances s?, sZ and s?,
respectively, then the covariance matrices
S, and S, will become

: 0
g?;i%z 0 0 0
elo U
& FE ) y
=€ 0 —<S; 0 0d
Sw=g &g 0
é 2 U
& 0 o &%z og
e edg
g o 0 0 Of
(18)
&2 ou
S=¢ M (19)
e0 swao

One may summarize the recursive state
estimation of the discrete Kalman filter as
shown in Fig.(1). In the figure, the
superscripts "-1", "T", "+" and "-" indicate
matrix inversion, matrix transposition,
posteriori and priori of variable
respectively. The K matrix is caled the
Kalman gain and the P matrix is called the
estimation error covariance. The flowchart
includes the initialization of state X, in the
absence of any observed data at k=0, and
the initial value of the a posteriori
covariance matrix P, [7].

The timing diagram of the various
quantities involved in the discrete optimal
filter equations is shown in Fig.(2). The
figure shows that after we process the
measurement at time (k-1), we have an

estimate of x,,, (denoted X, ;) and the

covariance of that estimate (denoted P’ ;).

When time k arrives, before we process the
measurement at time k we compute an

estimate of x, (denotedx,) and the

covariance of that estimate (denotedP, ).

Then the measurement is processed at time
k to refine our estimate of x, . The resulting

estimate of x,

covarianceis denoted P, .

By substituting error covariance update
equation into propagation equation, and the
state estimate propagation equation into
update equation, the algorithm of Fig.(1)
will be summarized as[3,4,6,7-11]

is denoted X, and its
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_ T T -1 block, from the SIMULINK nonlinear
K= ARG ISAG * Rl (20) library, links this m-file into a graphical
Xk = Ao Xk-1+ K (Y- Cex) - (21) block for use within the overall state
P = A 1((1 - KeC)P) A1+ Qi1 estimation system.
(22) Two quadrature sinusoidal

Extended Kalman Filter (EKF)
The state-space model of EQs.(10) and
(12) can berewritten in the following form:
X+l = f(X!u!k)+Wk (23)
Yie = Cy X Ve (24)

where

f(x,u,k) =

a3 %, (K) +ay3%5(K) sinx, (k) +hby; U,
3% (K) - a3 %3(K) cosx,(K) +hy; Uy
€51 % (K) Sinxy(K) - 85, % (K) 08X, (K) + g3 X3 ()1
A3 %a(K) +%4(K)

oooc

D: (‘Dﬁ) D D D
oOcC

It is clear that f(x,uk) is nonlinear.
However, to use nonlinear modd with the
standard KF, the model must be linearized
about the current operating point, giving a
linear perturbation model represented by
Jacobian matrix F(x,u,k),

Tf (x,u, k)

F(xuk) = 2
(k) = ) + uk) (25)

é & 0 RSl (Y a6l coz,K

& 0 4 -a:005K Al
gsﬁ XK -ac050)  ag

g O 0 a3 1

By now, the Jacobian matrix is replaced by
A, into Eq.s(21) and (22).

Modeling of Motor State Estimation
System Using MATLAB/SIMUL INK

SIMULINK is an extension to MATLAB
and alows graphical block diagram
modeling and simulation of dynamic
systems. It is easier to develop state
estimator using this package, as many
components of the system are aready
included in the SIMULINK block diagram
library [12].

The discretized moddl of the motor and
the state estimation algorithm has been
entered into a S-function-type of m-ile. An
m-file is a MATLAB program that allows
algorithms or equations to be entered in a
progranmming language. An S-function

1443

waveforms drawn from the SIMULINK
library have fed both the blocks of
motor dynamic system and the state
estimator, as shown in Fig.(3). The load
change has been permitted and the
repeating sequence block, from the
SIMULINK  source library, is
employed. The S-function block of
motor model generates the actual states.
The state estimator block receives, in
addition to inputs u,, u, and T, the
actua currents i, and i, . The estimator

produces the estimated states of the
motor.
Simulated Results

The parameters of the motor are listed in
Table (1). The SIMULINK modd of
Fig.(3) has been run and the estimated and
actual states representing stator currents and
rotor velocity and position are shown in
Fig.(4). The system was simulated at
sampling time (T=2.5 ms). One can easily
Hotice that the EKF estimator could
léuvely estimate the motor states and

a XK cosR+K) sim®fhe estimator showed an excellent noise

Hgection capability. However, one can
Observe that the estimator does hardly
estimate the speed and the angular position
at the motor starting, but there is a perfect
overlap at steady state.

Figure (5) shows the outputs of the
estimtor when the sampling time is
increased to (T=2.95 ms). The performance
of estimator shows a great degradation in its
responses. This unstable behavior of the
estimator is attributed to matrix singularity
problems in the Kalman gain matrix. As
this would assign the gain K large values,
which  will reflect directly to updated state
estimates.

In Figure (6), a mechanical load having
the waveform of Fig.(7) has been applied. It
is clear from the figure that the estimated
speed state stillwell tracks the actual state at
times of load changes. A nice overlapping
between states has been observed. One may
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conclude that the EKF works properly
under load conditions.

In figure (8), the standard deviation of
measurement noise has been changed and
the trace of error covariance matrix,
Trace(P), is calculated in each time. Being
the covariance matrix P is a measure of
how we are certain in the measurements,
one can expect that the trace of matrix will
show large values for large values of
standard deviation of measurement noise.
This conclusion has been reported in
Fig.(8).

Conclusion

Based on the observations of the
simulated results one might highlights the
following points:

Inspection of the figure (8) shows that if
the measurement noise is large, so P will
be large too and we don’t have much
certainty about the measurement y when
computing the next x . On the other hand,
if the measurement noise is small, so P
will be small and we will have a lot of
certainty to the measurement when
computing the next x .

One can easily conclude that the EKF
estimator could successively estimate the
motor states and the estimator showed an
excellent noise rejection capability.

The application of Kaman Filter is
resticted by the limitation of sampling
period. Serious stability problems will
arise as the sampling time is increased to
a gpecified value. As the Kalman gain K
suffers singularity at the increased
sampling time.

The EKF estimator shows good tracking
performance in spite of load exertion
during estimation process.
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Table 1. Parameters of two-phase motor

Winding resistance

Winding inductance

Motor flux constant

control input noises

Sandard deviation of

load torque noise

Sandard deviation of

measurement noise

Sandard deviation of

Moment of Inertia

Frequency

R, | 2w
L 3 mH
| 0.1
0.001
0.05
T | rad/sec?
0.1
Snl A
J 0.002
f 1Hz
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Initialization
%o = E[xo]
R = El(xo - E[Xo])(xo - E[Xo])TJ

State estimate prpogation

A 4

% = Ac1Xe1

|

Error covariance prpogation

R = AcRAG+ Qs

Kalman gain matrix

K =R CllcRcl +R]"

A
State estimate update

% =% + K (¥ - G &)

Error covariance update
R =(- KCIR

Figure (1) Recursive Algorithm of Discrete Kalman Filter

Ce1y Ry G Ry
Rica| i1 Sic| %ic
Act Qe [ A Q [
Pk 1 Pk+-1 Pk Pk+
> time
tes t

Figure (2) Timeline showing a priori and a posteriori state estimates
and estimation- error covariance.
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Figure (3) SSIMULINK Modeling of Motor State Estimation System
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Figure (5) Estimated and actual states (current and speed) of

the motor at sampling time
(T=2.93 mg)
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Figure (6) Estimated and actual states of the motor.
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