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Abstract

The Effect of wing, vertical tail, and fuselage design parameters on airplane stability
with failed outboard engine presents in this study. Boeing (747-400) have been selected
for available data. The semi empirical equations (Datacom) have been used with
modification of unbalance engines thrust. It had been seen that the wing sweep angle had
negative effect but the vertical tail sweep angle had a positive effect toward directional
and lateral stability and other results established by using modified datacom computer
program which could be used as a real design requirements for further configuration
improvements of the airplane.

Keywords: Wing; Vertical tail; Fusdage, Airplane stability

ie 3 yilall 4y ) 8l Ao acadl g 53 gandl Judl, 7 Uad) daala
%@J&’ <lS Al Lgdai dﬁaé
Ladal

Sle osed JAls awally ZUall Lpeeall el Gamy Ao Cad 1 S
S Apad) @l yiall A il @S el aal Jhe Al 3 A Al daladY) ) g
o MDatacom)  Amoadl Glabeal) dasiuily ilagladll 35 (747-400) sl 5k sl
L ol JS50 5 glall aal i 4l of o By S padd )5 pae Ll dila) &
gobes Ay A LalaW) A WY e s JShy i gasend JAU aal 5 A5
il (Kae ) Datacom gl sk aa lgle Jpeanll & S &l (e 4o sana Canl

Agiaall @l iUl apebai 3 Apapaaill Jal 2l e Jliet) hay
Nomenclature

b Wing span ft

DC,.. Changein vertical tail C, duetocirculation control T

D,., PDragduetowindmilling of failed engine Ib
K, Fusdage correction factor e
KL Compressibility correctiontosweep -
Ko Compressibility correction to dihedrld -
K, Empirica factor for body and body with wing effects -
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K, Reynoldsnumber factor for thefusdage -
K,  Factorfor fusdagelossinthelift curvesop -

I, Horizontal distance between CG and engine nozzle ft
| i Horizontal distance between CG and aerodynamic center of vertical ft
tail
M Mach Number
q Dynamic pressure at the engine-out flight condition Kg ,
m.s
S,  Cross-sectional area of fuselage ft?
S, Wingreferencearea ft?
S, Vertical tail area ft?
T. Static thrust at sea level b
Y, External sideforce Ib
z, Vertical distance between CG and engine nozzle ft
Z i Vertical distance between CG and aerodynamic center of vertical ft
tail

a Angle of attack rad.

b Sidedlip angle (positive with relative wind from right) rad
by Compressibility factor = v1- M 2 red
d, Aileron deflection (positive for right up, left down) rad
d Rudder deflection (positive right) rad
e Downwash angle rad
f Bank angle (positiveright roll ) rad

Dynamic pressureratio at thehorizontal tail -

K  Ratioof actual lift curveslopeto 20~~~ -
S Ratio of dengity at a given atitudeto density at sealevd -

L a Quarter-chord sweep angle rad

L o2 Half-chord sweep angle rad

C Dihedral angle rad
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1.Introduction

One of the major problem in the
aircraft is maintains steady flight if one
failed outboard enging[1] .this paper
discuss the contribution of wing vertical
tail and fuselage by using datacom
method,[2]. And the establishment of
the engine out constraint based on the
required yawing moment coefficient.
The use of thrust vectoring and
circulation control to provide additional
yawing moment is also described,[3].
The coefficients of the variables and
their derivatives are seen to be
dependent upon a large number of
factors. These factors are describing the
geometry of vehicle and other factor
describes the speed of vehicle at which
the failure occurs,[4]. The last group of
terms is composed of the rates of
change of the rolling moment
coefficient and vibration of sideforce
coefficient and vibration of yawing
moment coefficient. These terms were
introduced into the original equations of
stability Fig. (2),[4].

2. Mathematical Analysis

The estimation of stability and control
derivatives for  outboard engine
constraint depend thrust vectoring and
circulation control which can be
determined from the sideforce, rolling
and yaw moment contribution using the
Roskam method,[1]. The stability and
control derivatives which illustrated the
above analysis are formulated in the
following equations.

Boeing (747-400) had been selected for
available data Figure (2).

1860

2.1 Sidefor ce equation

In a conventional control system, the
vertical tail is the dominant controller
for generating a yawing moment, [1].

Cy.d, +Cy,d, +Cy,b+C sinf (1)
] Tsine_ Sl _ Voo
S« He S« S« Wher

e Cy..CY4, Cy, Variation of

sideforce coefficient  with  aileron
deflection, rudder deflection and yaw
angle respectively.

However, thrust vectoring and
circulation control can be used to
generate additional yawing moments.
Since the engine out condition is critical
constraint for a truss braced wing with
tip mounted engines, the capability to
model thrust vectoring and circulation
control on the vertica tail also
determine. The fifth tem in the

Tsne

equation above ( ) is due to the

ef
thrust being vectored at an angle (€) to
the centerline, and the sixth term

Sltai |

Lcc

(DC

) is due to the change in
ef

(C) a the vetica tail
circulation control. Since the external
sideforce (Y, ) is zero, and (Cy,) is
assumed to be zero, this equation can be
simplified and solved for the sideslip
angle[1].

due to

Sl
“Su

.. Tsire
- - f+—
A
Cy

(2
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The aileron deflection required to
maintain equilibrium flight is obtained
by summing the rolling moments about
the x-axis.

2.2 Rolling moment quation

By setting the external rolling moment

(L) equal to zero, this equation can be
solved for the aileron deflection,[2].

Cl,d, +Cl.d +Cl.b-19N€ 2
S« b 3)
} Stait Zaait - Led
Lcc
S« b aS«b
- Cl,d, - Cl,b+13N€ 2
0S« b
+ DCLcc S/tajl @ (4)
d. = S« b
: cl,
Where:Cl,, Cl,, Cl, ae the
variation of rolling moment coefficient
with  aileron  deflection,  rudder

deflection and yaw angle respectively.
The rudder deflection isinitially set to
the given maximum allowable steady
state value, and the sideslip angle and
aileron deflection for equilibrium flight
are determined by equations (2) and (4).
The maximum allowable steady state
deflection is typically (20" - 25°). This
alows for an additiona (5) of
deflection for maneuvering, [7].
The maximum available yawing
moment is found by summing the
contribution duo to the ailerons, rudder
and sideslip.
2.3 Yawing moment equation
The value of the available yawing
moment coefficient is then constrained
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in the optimization problem to be
greater than the required yawing
moment coefficient, [6].

Cn, =Cn,d, +Cn,d, +Cn,b

S/Iail Ivlail

Tsinel,
+ + Lce
S« b

quef b

(5)

Where the

variation of yawing moment coefficient
with  aileron  deflection,  rudder
deflection and yaw angle respectively.

This is far below the angle of attack
corresponding to the maximum lift
coefficient of a typical vertical tail. It
could be expect that the maximum
available yawing moment is obtained
when the vertical tail is flying at its
maximum lift coefficient, but this is
not true, because the equilibrium
equations above must aways be
satisfied for steady flight. To illustrate
this point, equation (1) has been solved
for the bank angle with no thrust
vectoring and no circulation control,[8].

Cng,.Cn, ,Cn, are

. 4 +Cv b
f=sin'lg- (Cyy rCQ/b )E (6)
e L u

2.4 Sidefor ce coefficient

The variation of sideforce coefficient
with sideslip angle has contributions
from the wing, fuselage, and vertical
tail, [8].

CX) :%ng-l-cyvfuse-l-%ajl (7)
The wing contribution is a function of
the dihedral

180

q/bwing = - 00001|G|p—

(8)
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The fuselage and nacelle contributions
are estimated by:

CY prue = - 2K SS—O 9)
ref
Where(K,;) is the wing body
interference factor, [1]
2.5 Rolling moment coefficient due
to SideSlip
The variation of rolling moment
coefficient with sideslip angle has
contributions  from the wing body,
horizontal tail, and vertical tail,[8].

CL, =ClLClai*C¥uai

The contribution from the wing body is
estimated by,[ 3]

(10)

é @&, .
ét;ga@bgKKE— <4

cl :é§ q @— 18C

wb — X
) up
A o€l OCl 6
S E& 2K ® ~+DC), )z, 1
FEe oy

The contribution from the horizciitai
tail is approximately zero, since it has a
small lift coefficient, small dihedral, and
small area rdative to the wing.

Clypar =0 (12

The contribution from the vertical tail is
estimated by,[8]:

C bvtail = Cybvtail (Z/tail Cog.t; I\/tails na) (13)

2.6 Yawing moment coefficient due
to SideSlip

The variation of yawing moment
coefficient with sideslip angle has

contributions from the wing, fusdage,
and vertical tail,[8].

Crl] :C@Mng+crl]fuse+crllﬂai\ (14)
The
wing contribution to the yawing

moment coefficient is negligible for
small angles of attack.

CNn iy @O (15)

The fuselage contribution to the yawing
moment coefficient is
determined by,[2]:

S, s 180
S« b p
The contribution from the vertical tail is
estimated by the following equation,[2].

(16)

Cnbfuse =- KNKRI

(1 COSA +Z,48ima)  (17)
b

Cn)vtau (. CybvtaJ |

2.7 Rolling moment coefficient due to
Rudder Deflection
The variation of rolling moment

coefficient with rudder deflection is

given by,[1]:

%a”COSi Ivtaulsnao
7]

C:Idr - q/d (18)

2.8

Yawing moment coefficient due to
Rudder Deflection The
variation of yawing moment coefficient
with rudder deflection is given by,[2]:

(Ivtai |CO$. + Z/tai ISi ra)
b

Cn =-Cy, (19)
3.Results & Discussion

Wing surface Area( S« ) it had positive
effect toward yaw and lateral stability
due to negative slope with Cng and
positive slope with Clg because wing
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surface Area( S ) aways increases
lift(Fig(3),Fig(4)).

Increases of wing sweep angle lateral
and directional stability decreases as
shown ( Fig (5) , Fig (6)) due to positive
sope with Cng and negative slope with
Clg because wing sweep angle shifted
aerodynamic center back and decrease
the lift.

Upper wing location decreases the
lateral and directional stability for the
same reason mention above, (Fig (7),
Fig (8)).

Wing dihedral had no effect on
directional stability due to zero slopes
with Cng becauseit doesn’t generate any
extra sideforce. And also it had no
effect on the aerodynamic center and
it had little effect on lift and negative
effect on lateral stability due to negative
dope with Clg, because it generate
extra couple around the x-axis(Fig(9),
Fig(10)).

Fuselage diameter had positive effect
to directional stability and negative
effect toward lateral stability because it
increase the couples arm toward lateral
stability (x-axis) and increase diameter
request more force to rotate fuselage
around y-axis (directional stability), [
Fig (11), Fig (12)].

As shown in Fig (13) vertical tail tip
chord had positive slope with Cng and
that mean negative effect toward
directional stability and from Fig (14)
it had same behavior toward lateral
stability.

Vertical tail tip and vertical tail root
had exactly same behavior toward
directional and lateral stability (Fig
(15) ,(Fig (16)). The increases of
vertical tail sweep angle had positive
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toward lateral and directional stability
as shown in Fig (17) , Fig (18). this was
all because increase lift of vertical tail
which would be more powerful toward
lateral and directional stability(Fig(1).
Airplane speed had positive effect to
directional stability and negative effect
to lateral stability, (Fig (19), Fig (20))
because had two component one toward
x-axis (lateral stability) and other
against y-axis (directional stability).
4. Conclusion

Airplane outboard engine failure is
danger without proper care design and
it becomes very serious with two engine
airplane one on each side.

Wing area, sweep angle, wing location,
dihedral and fuselage design are part of
solution but the major solution of
airplane outboard engine failure was the
vertical tail with powerful rudder device
and limited airplane speed.
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Figure (2) Boeing 747-400 views
with specific important data, [2]
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