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Abstract

In this investigation, steady two — dimensional natural convection heat
transfer of Newtonian and non-Newtonian fluids inside sguare endosure has been
analyzed numerically for a wide range of the modified Rayleigh number of (10° <
Ra < 10°), with non-dimensional parameter(NE) of Prandtl — Eyring mode ranging
from (0 to 10), and modified Prandtl number in the range (Pr* =1,10, and 100).
Two types of boundary conditions have been considered. The first,is when the side
walls are heated at different uniform temperatures and the horizontal walls are
insulated. The second, when the bottom wall is heated by applying a uniform heat
flux while the other walls are at the constant cold temperature. Also, the non-
Newtonian fluids under consideration were assumed to obey the Prandtl — Eyring
model. The numerical results of the values of average Nussdt number have been
confirmed by comparing them to similar known yeslts of previous works using the
same boundary conditions. Good agreement was obtained. The results are
presented in terms of isotherms and streamlines to show the behavior of the fluid
flow and temperature fields. In addition, some graphics represent the relation
between average Nussdt number and the parameters that are mentioned
previously. The results show the effect of non — dimensional parameter (NE) on the
velocdity and temperature profiles. It aso shows that the average Nussdt number is
a strong function of modified Rayleigh number, modified Prandtl number, non-
dimensional parameter, and the boundary conditions. Four different correlations
have been made to show the dependence of the average Nussdt number on the

non-dimensional parameter, the modified Rayleigh and Prandtl numbers.
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Nomenclature x& y = Cartesian coordinates.
NE = Fluid index of Prandtl — Eyring P = Pressure (Pa).
mode = T_—ZB . g = Gravitational acceleration (m/
A & B = Fuid consistency indices for g).
the Prandtl — Eyring modd (kg/m.s%) & L = Width and Height of
9 enclosure (m).
u = Fluid velocity in x-direction k = Thermal conductivity of fluid
(mvs). (Wm. K).
v = Fluid velocity in y-direction g = Hest flux (W/nr)
(mvs). Pr = Prandtl number = (v /a).
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Pr' = Modified Prandtl number =
AB
Polt

Ra = Modified Rayleigh number

i LT, - T

1RaE:p°gB (T - Te) for B.C.1

} ABa

. . L4

. Rag = RagNu _PodPLq forB.C.2

t AB ok

h = Heat transfer coefficient (W

Im?. K).

Nu = Nusselt number = q—L
k(T, - Te)

Nua = Average Nusselt number.
T =
AX& Ay= Grid dze in the x and y

Temperature (K).

directions, respectively (m).

Greek Symbols
Ty = Shear dtress  (Pa)
i Tu
T — For Newtonian fluids
! Ty
:

non-Newt. Fluids

t

1., = Normal stressin the x direction.

Asinh (B
0%

t,, = Normal stressin they direction.

= Density (kg/m”).

= Thermal diffusivity (m?/s).
Thermal expansion coefficient
= Stream function (m?/s).
Vorticity (1/9).

2§ ™>™» & ™
1

AT = Temperature difference (K).

6 = DimensonlessTemperature
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i

: LF forB.C.1

T Th - Tc
=i

iT-

i T- T for B.C.2

i db

Tk
6r = The dimensionless Temperature
of the heated wall.
« = Dynamic viscosity, (kg/m.s).
v = Kinematic viscosity of fluid
(nfls).

1. Introduction :-

Natural convection  hesat
transfer of Newtonian and non —
Newtonian fluids inside enclosures has
been the subject of severd studies in
the last years. The attention is due to
the wide range of applications such as
building insulation, solar cavity
receivers, ventilation of rooms, storage
of grease, minera oil, or crude oil in
containers, nuclear reactor insulation,
crystal growth in liquids, and the
cooling of electrical components [1].
Natura convection heat transfer in
enclosures involves different aspects
of problems. This variety of problems
comes from possibly geometry
characteristic of enclosures, kind of
fluid, nature of fluid flow, orientation
of the enclosure etc. Most studies on
natural convection in enclosures, based

on 2D or 3D pardleogram enclosure
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investigation, annuli and cylinders
with  different aspect ratio or
diameters, or cdiber. It's very

interesting because of sensibility of
natural convection phenomena from
geometry. Also there is, type of fluid
with influence on natura convection
phenomena [2]. In the present work, a
numerical study is performed to
analyze the natural convection heat
transfer of Newtonian and non -
Newtonian  fluids

enclosure under two different cases of

indde square
boundary conditions. The fluid motion
and heat transfer are affected by
modified Rayleigh number, modified
Prandtl
dimensona parameter (NE) of Prandtl
The

parameter

number, and non —

— Eyring modd. non -—

(NE)
determines the nature of fluid, that is,
Newtonian (NE =
Newtonian fluids (NE > 0). The mass,

dimensond

0) and non -

momentum, and energy conservation
equations, which are considered to
describe the fluid flow and heat
transfer for natural convection are
nonlinear and because of this non-
linearity, some difficulties have arisen
in numerical as well as in analytical
studies. One of the greatest difficulties
with the numerica studies is the
problem of divergence of the iterative
methods since an analytical solution of

the actual problem is extremely
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difficult, if not possible, a number of
assumptions together with using the
fluid

technigues are made to

computational dynamic
obtain

approximate results.

2 .Mathematical Formulation :-

Consider steady state, two —
dimensional, laminar flow of a non —
Newtonian fluid with constant physical
properties
thermal

(kinematics  viscosity,

diffusvity, and thermal
expansion coefficient) enclosed in a
square enclosure of side length (L)
under two different cases of thermal
boundary conditions, these boundary
conditions are:
CasHl) :-

The vertical walls are heated
uniform

(T,, &T.) and the horizontal walls are

to different temperatures

perfectly insulated (B.C.1), as shown
in Fig.(1a).
Casll) :-

The lower wall is heated by
applying a uniform heat flux (q) and
the other walls are isothermally cooled
(T,) (B.C.2), as shown inFig.(1b).

Density is also considered as
constant value but for buoyant term it's
linearised by relation:
p=poll- B(T-T,)] )
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where S is therma expansion

coefficient for temperature T, .

The governing egquations are

the following:

WilV_o @
™>x Ty

E+Vﬂu = ﬂp+ﬂr_>°<+ﬂr_yx(3)
> Ty x ™ 1

po(U

VoM T Ty Ty

Po (ui TV

" v v K v

1T 1T 7T 97
x Ty ’ ®> Ty ) ®)

pg (4

In the above equations, (u, v,
a, P, T ) ae the fluid veocity
components  (Fig.1), the thermal
diffusivity, the pressure and the
temperature. In fact Egs.(2 to 5) are
system of partial differential equations.
They are base for natural convection
phenomenon for 2D enclosures,
presented by mass, momentum and
energy conservation equations.
As mentioned in Ref.[3], the Prandtl —
Eyring model for non — Newtonian

fluids can be represented as:

o flu
= Asnh*(B— 6
T ( ‘ﬂy) (6)
Hence, the shear stresses: are

. =2Asnht(BM) (7

Ix

. v
=2Asnh(B— (8)

Ty ( ‘ﬂy)

T, =1, = Asinh'l[B(% +%)] 9)
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the fluid

consistency indices for the Prandtl —

where A and B ae

Eyring model.

Since it proves to be more
convenient to work in terms of a
dream function and vorticity, the
stream function w(x,y) isintroduced in
the usual manner:

u=W g y=-W g
0% X

It is evident from Eq.(10) that
the stream function satisfies the
continuity equation identically. more
Further, for this plane flow field, the

only non — zero component of the

vorticity is:
_v fu
w=—_1T
x Ty

Combining the definition of
vorticity and the velocity components
in terms of the stream function, and
cross — differentiating the Egs.(3) and
(4) reduce the number of equations and
eliminate the pressure terms, and
substituting for (p) from Eq.(1), a new
st of eguations is obtained with
independent variables v, w and T:

Ty , Tv_.

ﬂXZ ﬂyZ

o i _, o Fo oS
Pl 9 'rkjrtvu] %W;)H i
SIS

gy et



Eng.& Tech.Vol.26,No1,2008

7200 7 LI L
B 5y g

§-= A$Tﬂ/ Ty, ‘H“w

(15)
TV‘ W ggw
Ty Ty

3
g P W e

\/1+(B‘Hw ‘Hw))

Ty Ty
B W ¢ e
\/1+(B(‘Hw ‘Hw))

32:

Ty
xTy?

S; = (160)

1+(BM)2
xty

Now, the mathematical problem
formulated above was placed in
dimensionless form by defining the new

dimensionless variables [4]:

X .y
X =— , = Z
L y L
i
TT-T
i < forB.C.1
T Th - Tc
0 =i
TT-T
i £ for B.C.2
i at
T kK
. . _ol?
W :ﬂ , O = @
o o

Inserting al the dimensionless
variables into Egs.(12) to (16), vidds the
following find non - dimensiond

equations:
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1-[2%/* .\ ﬂzlé/* _ a)* (17)
T[X 2 ﬂy 2
* * * * 2 * 2 *
v fo M fo_pfo T
Ty ™ W™ Ty ix Ty
[ﬂsl ﬂsz ) 4ﬂS§] +S:3 (18)
Ix Ix
(19)

RN IO 0 0 S .

WX Wy W T2

where;

4
R = AL W
™*  qy ™y

(20)
+Pr Raﬂ
‘ﬂx
Ty T
g = KWE N (21)
Ty T
\/ )
Ty T
) 3 02
g oW ~ Ty 'nﬂz =
v Y \\2
1+ (NE -
\/ ( (ﬂy*z ﬂx*z ))
Ty
. X Ty ?
8 = @
W
1+(NE
\/ ( (.” y )’
Pr* :ﬁ is the modified Prandtl
Po @
number.
i 3
IRaE pogBL (Th T )
i ABa
= Tisthemodified Rayleigh number for B.C.1
=i
:R —RaENU—pogB q
AB ak

0 |sthemod|f|ed Rayleigh number for B.C.2
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NE = aL—E’ isthe non- dimensional

parameter of Prandtl — Eyring modd.

3. Numerical Method :-

Numericd methods have been
developed to handle problems involving
nonlinearities in the describing equations,
or complex geomeries  invalving
complicated boundary conditions. A
finite-difference technique is applied to
solve the governing equations. These three
equations (Egs.(17), (18), and (19)) are to
be solved in a given region subject to the
condition that the values of the stream
function, temperature, and the vorticity, or
their derivatives, are prescribed on the
boundary of the domain. The finite
difference approximation of the governing

equations is based on dividing the

(0£X £1)
segments  separated by (mt+l) nodes.

interval into (m) equal
Likewise, the (y') interval was divided
into (n) segments. The usual procedure for
obtaining the form of partial differentia
equation with finite-difference method [5]
is to approximate all the partial derivatives
in the equation by means of their Taylor
series expansions.

Eq.(17) can be approximated using
central — difference at the representative
interior point (i,j), thus, Eqg.(17) can be
written for regular mesh as:
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W:,j = [Z(W:+1,j + W:-l,j )(Ay?) + 2(W:,j+l +
Vi 12)(AX?) + 2(Ax?)(Ay* o,  1/14(AY?)
+ 4(AX7)]

Also, a centra - difference
formulation can be used for Egs.(18),
and (19). But this problem will need to
be solved for reasonably high values of
modified Rayleigh numbers, it is
known that such a formulation may not
be satisfactory owing to the loss of
diagonal dominance in the sets of
difference equations, with resulting
difficulties in convergence when using
an iterative procedure.

A forward — backward technique
can be introduced to maintain the
diagonal dominance coefficient of
(i) in Eq.(18) and (&) in Eq.(19)
which determines the main diagona
elements of the resulting linear system;
his technique is outlined as follows
[6]:
Set; =iy - Via and
B=Vij- v (25

Then approximate Eq.(18) by:
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- (2Ay?)+ 2o, +PY (Yo +
03?—1,1') + (AXZ)((D:M + Ojikj D)+ (Ax*)(Ay?)
e
iy %
B %=
oy’ (26)

and Eq.(19) by:

- (2(Ay?) +2(AX%)) 0, + ((Ayzxem,- + ei-l,,->

+ (AXZ)(ei,j+1 ij- 1)

Laminar Natural Convectionof Newtonian and Non—
Newtonian Fluids in a Square Enclosure (27)

expressed in the following difference

forms:

; ; =[(0.5yb, (AX)(Ay) + Pr’ (AX*))o; 4
+(0.5Ba, (AX)(Ay) + Pr™ (Ay*))o -
(0.58a, (AX)(AY) - Pr' (Ay*))oja; - (
0.5vb, (AX)(AY) - Pr’ (AX*))o; ;4 + P’
Si)i+a2,j B Si)i'alvj )

(AX®)(Ay?)( ™
Sik2)i,j+b_L - S*Z)i,j-bz _ 4S;)i+a2,j - S;)i-al,j)
(Ay) (AX)

+ Sgy | (AX)(Ay ) /[2(Ay®) + 2(Ax?)

2A Ty +(Ax3)(Ay?)( !

2(AX)(Ay)™ (- Ay)™

R o ;
2Ay? X +
o 20 497
Now, if
0 foa- f 0;; =[(0.5yb, (AX)(Ay) +(AX2))ei,j+l
720 Ty (D and (.20 555 (Ax(Ay) + (Ay2)6 L4, - (28)
0.58a, (AX)(AY) - (Ay®))0;,; - (0.5
C b, (AX)(AY) - (AX?))0; ;,]1/[2(Ay?)
p<0, =T (=0, and (b, =1) + 27 + ()Y
' Y
; 2AX)(AY)"™ (- Ay, )™ =9
0 - f P )]
B0 o= (=D, and (3, =0)2(A)(A% ) (- A0
i fi+1j _ fij An under — relaxation technique
B <0, ﬁ:T (,=0), and(a, =Dy, pe gpplied to accderate the

To assure the diagonal dominance

of the  coefficient matrix for
(w;;)and (6,;), which depends on the
sign of () and () , Egs.(18) and (19) are
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convergence of EQ.(28); the expression is
used in this technique presented in the

following :

o =(1- FVe | +(FYa;; (computed
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Where (Fv) is the rdaxation factor for the
vorticity. The value of this rdaxation
factor isin the range of (0 to 2).

In order to obtain results of the
equations, The
equations (Egs.(24), (28), and (29)) are
subjected

conditions [7]:

conservation above

to the following boundary

p y*:ﬂy* :O ﬂq* _O
Ty iy
0OE£EX £1 vy =1
b y*:ﬂy*: ﬂ—q*:o
iy iy
X =0 O0f£y £1
[») y*:ﬂy* =0 gq=q,
Ix
X =1 O0f£y £1
by =W -0 q=q
Ix
Case(ll) :-
0E£EX £1 vy =0
b y*:jlrzo .Ei+1:o
Ty 0%
0OE£X £1 vy =1
.y
Py =2-=0 q=q,
iy
X =0 O0f£y £1
.y
Py =2-=0 q=q,
Ix
X =1 O0f£y £1
.y
Py =2-=0 g=q,
qIx
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Also, the finite

difference equation for the vorticity a a

following

wall is adopted as the boundary condition
for the vorticity equation:
_3yo-yi) o
Wy =——— -
An 2
Dn=Dy or Dx

where,

The physica quantities of interest
in this problem are the local Nussdt
number along the heated wall [8], defined
by:

L
Nu = q—
k(T - Te)
and dso the average Nussdt number,
which is defined as:

Case(l) :-

l‘ 1-[6

Nu, = d
e Wx*=00rl Y

Case(ll):-

11
Nu, = o dx

o O

The numerical work starts with
giving the distributions of stream function
and temperature for natura convection as

Then,

obtain the zeroth-order approximation of

the zeroth-order agpproximation.

vorticity: no flow and pure conduction.
Based on these old fidds, equation (24) is
used to determine point-by-point the new
(y ') field, and equation (28) is used to

determine the new (W), while the energy
equation (29) is used to determine the
new (@) fidd. The iteration process is

terminated under the following condition:

(31)

(32)

(33)
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§1|l -t ri,j|/§1t "L £107°
i i3

i,J
(r) denotes the iteration step.
where,(7) stands for (y ~,w",0rq);
ether

Before starting the computational
solution, the grid independence of the
results must be tested. Thus, numerical
experiments have been carried out to solve
a two — dimensional convection problem
in which the non — dimensional parameter
(NE = 0). The modified Prandtl number in
this test is set to be (6.7), while the grid
size varies from (10x10) to (60x60) for
different values of modified Rayleigh
number as shown in Fig.(2). It is found
that the change in the Nussdt number for
grid size of (35x35) and (45%x45) is less
than (0.8) percent for
modified

the range of
Rayleigh number
(10% £ Rag £10°).
number of grid that is adopted in the
present study is (35x35) for both two

Therefore, the

cases. The number of grid point was
sdected as a compromise between

accuracy and speed of computation.

4. Results and Discussion :-
Case (1) :- Square enclosure under B.C.1
a-Temperature and Flow Fields:

The
temperature distribution and flow fieds

contour lines of the
for different values of system parameters
are presented in Figs.(3) to (6). In this
case, the energy is transported from hot
wall by conduction (i.e
Nu,=1) at modified Rayleigh number and

to cold wall
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non — dimensional parameter (NE) are less
than (10% and (1) respectivey. In the
conduction regime, the isotherms are
amost paralle to isothermal wals. As Rag
or NE increases, a circulatory motion is
established because of

efects. The flow consists of a single cdll

the buoyancy

filling the entire enclosure and rotating
dowly in the clockwise direction. Initially,
the convection cdl show a diagond
symmetry about the two central lines of
enclosure, and, it has a maximum vaue

for the stream function (ymx=1.549) at
Rag =100, Pr" =1,and NE =10. The
smal value of ym Characterizes a very
weak convective flow. However, an
increase in Rag or NE results in an
asymmetric flow pattern producing doser
streamlines near the walls, and change the
direction of the isotherms, as shown in
Figs.(3) and (4). As Rag is increased
further for a given NE, or NE is increased
for high values of Rag , the streamlines
more closr to the vetica wals,
producing strong boundary layer effects
on the isotherma walls. As a result, the
dratified region become bigger, as shown
in Figs.(5) and (6). Although the flow
unicdlular at al modified

Rayleigh numbers and non- dimensional

remains

parameters (NE), the velocity in the upper

right corner and lower left corner
increases substantialy.

Fig.(7) represent the variation of
sream function with modified Rayleigh
number compared for different values of
dimensional

non -— parameer and

modified Prandtl number (Pr*=10). At
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low Rayleigh (Rag < 10°%), i seems to be
invariable with Pr* and NE (i.e. a NE <
1), this is due to dominance of conduction
as mentioned before. At higher Rag, the
increases  with

stream function (y)

increasng Pr* or NE, and reaches a
stationary value for NE > 1, at Rag > 10
It is also seen that the vaue of Wi
increases and reaches the pesk vaue at
Rag = 10°, for Pr* = 100 and NE = 1. It is
also show that the pesk vaue Of wyax
depends on Rag and NE at afixed Pr*.
Fig.(58) shows the streamlines at
Rag = 10% Pr* =1 and NE = 0. This flow
consists of one large cdl rotating in the
enclosure. It also shows the flow rising in
a layer near the heated wall, turning the
corner at the top of the enclosure, moving
adjacent the insulated wall, and flowing
downward in a layer near the cooled wall.
It also indicates the flow has a maximum
vaue for the stream function (Ymac=
11.24). This case has been studied by
many investigators [9 to 11] for a square
endosure filled with a Newtonian fluid

(NE = 0), and serves as a base case

b-Heat Transfer Coefficient:
To understand the heat transfer

process by natural convection, the heat
transfer coefficient (h), must be to
evaluated but to make the present work
the calculated
must be in dimensionless form. Therefore,

one must be needed to evaluate Nussdt

have generdity, results

number (Nu) as a function of influence
parameters. Fig.(8) shows the variation in

average Nussdt number versus modified
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Rayleigh number with different values of

non — dimensiona parameter and
modified Prandtl number (Pr*=10) on the
hot wall of the enclosure. It is clear that
Nu, equa to one in the conduction

regime. The reason is that the viscous
force is greater than the buoyancy force
therefore the heat is transported by
conduction. It is also seen that for range of
modified Rayleigh number before (10°),

the rate of increase in Nu, against Rag
for different values of NE and a fixed Pr*
is rdativdy small. But, Nu,increases
rapidly as NE incresses for Rag > 10°

expressing the increase in convective heat
transfer. It is also noticed that the effect of

NE on Nu, is more pronounced as the

Rag numbers increase.

Case (1) :- Square enclosure under B.C.2
a-Temperature and Flow Fields:
Figs.(9) to (14) show the contour

lines of the temperature distribution and
flow fields for the present case.

A change in boundary conditions
from (Case (1)) to (Case (1)), modifies the
fidds

temperature and velocity

significantly. Initially (i.e a Rag= 10)
the flow consists of a single cdl filling the

entire enclosure and rotating slowly in the

dockwise direction. However, an increase
in Ra*E or NE results in changing the flow

pattern from unicelular to multicelular

flow. Fig.(13c) shows the streamlines at

Rag = 10° NE = 0.1, and Pr* = 10. This
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flow exhibits two counter — rotating cells,
each covering half of the enclosure. Both
components have the same maximum
magnitude (ymx = 24.36), but are of
opposite sign indicaties an opposite
direction of flow. These two cdls are
symmetric about the center line of the
encdosure. The convective velocity near
the wall is lower than that along the line of
symmetry. It aso indicates the flow rising
dlightly in the middle, turning at the top of
the enclosure, moving adjacent the cold
wall, turning, and falling down the vertical

cold wall.

As Ra*E or NE increases more the

streamlines moves closer toward the line
of symmetry, producing a strong boundary
layer effects on the middle region of the
endosure, and increase the convective
velocity in the upper and lower middle
region of the endosure as shown in

Figs.(9) and (11). Fig.(15) represent the
variation of y with Rag for different

values of NE and Pr*=10.

Furthermore, the isotherms are
symmetric about the vertical lineat x =0.5
for different values of system parameters,
and the maximum temperature Opax

always occurs at the middle of the lower
wall, and is a function of Ra*E, NE, and
Pr*.

Furthermore any increase in Ra*E

or NE causes a high change in temperature
fidd which concentrates in the small
region near the top surface as shown in
Figs.(10), (12), and (14). The isotherms in

the upper region are ailmost horizontal for
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a large portion of the enclosure which
dlows a large amount of heat to be
rgected on the top wall, and gives the
vertical walls weaker effects than that in

case (l). For a fixed Ra*E , the amount of

energy
increased with NE. Indeed, the large scale

modification in the temperature and flow

removed on the top wall is

fields due to the change in the boundary
conditions from (Case(l)) to (Case (1)) is
mostly concentrated in small region, near
the top surface. A significant amount of

energy is also rgected a the vertica
surfaces when the Rag or NE is small.
However, the heat transfer on this surfaces
decreases with an increase in Raz or NE

which clearly implies that the effect of the

vertical  wals boundary Conditions

diminishes with higher velocities or higher
Rag .
b-Heat Transfer Coefficient:

The average Nussdt number as
defined by EQ.(33) is presented in
Fig.(16). It is seen that Ra; and NE are
less than (10%) and (1) respectively, the

rate of increase in Nu, is relatively small.

Then, Nu, increases rapidly as Ra*E or
NE increases expressing the existence and
increase convective heat transfer. As
dready indicated by the temperature field,
the average Nusselt number for the present
case is higher than that for the case (I) for
the same given condition.

Finally, four correlation eguations
have been predicted depending on

variation in modified Rayleigh number,
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modified Prandtl

dimensional parameter of the Prandtl —

number, and non -

Eyring modd for both two cases, by using

least square method.
Case (I):  Square enclosure  under
B.C.1

Laminar Natural Convectionof Newtonian and Non—
Newtonian FHuids in a Square Enclosure

numerical and predicted results.

Agreement  between  numerical  and
predicted is close, dthough most the
predicted points lie near the theoretical
line.

Further, vdues of the average
Nusselt number along the hot wall of the

square enclosure under (B.C.1) a the

Nu, =0.151Ra2*® pPr" %% (NE+1)*"®, (34pteady-state flow for (Rag= 10°, 10*, 10°

OE£NE£01, R=0.9336

and,

Nu, =0.264 Ra2®® Pr’ %1% (NE +1)%1 (35

0.1<NE, R=0.9427

Case (I1): Square endosure under B.C.2

Nua =1.542 Ra*EO.l45 Pr.* 0.0296 (NE + 1)2.28’

OENEE£01, R=009127

and,

and 10°) and at modified Prandtl number
of (Pr* = 0.71 and 6.7)
Table (1). It is seen again that the present

are given in

)values of (Nu,) ae in vey good
agreement with that obtained by different
authors, such as Elbaet al.[1]. Subba [9]
has andyzed a similar problem for
different values of modified Rayleigh
numbers. The comparison with his results
show agreements within (+ 4 %). Subba
[9] presented his results in a graph and

(37)some errors might have been introduced in

Nu, =1.475 Ra*EOle pr* 0102 (NE + 1)0.0611’ reading the graph. Also, as shownin Table

0.1<NE, R =0.9491 (1,b), there are some differences between

The
acceptable in the range of modified
Rayleigh number (10 to 10°), modified
Prandtl number (1 to 100), and non —

above corrdations are

dimensional parameter (NE= 0t0 10).

To ensure that these approximation
corrdations are usable, the coefficient of
determination (R) had been obtained for
each eguation. The minimum vaue of (R)
was (0.874), that means these approximate
equations are good for predicting the value
of average Nussdt number. Figs.(17) and
(18) between

show the comparison
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the present work and those of Hortmann et
a.[10] and Davis [11]. These differences
ae due to the finite difference
gpproximation and the computing system

used.

5. Conclusions :-

The present numerical solutions
for natural convection heat transfer of
Newtonian and non-Newtonian fluids for
square enclosure under two different cases
of boundary conditions (B.C.1 and B.C.2),
show that the effects of the enclosure and
the type of fluid on the flow development
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and the energy transfer are dominant and
complex. The main conclusions of the
present study are;

1- For the two cases that have been
solved, it has been demonstrated that the
average Nussdt number is a strong
function of modified Rayleigh number,
non — dimensional parameter (NE), and
modified Prandtl number, aso the results
show the average Nusselt number:

& increases as (Ra) increases, for a given
values of (NE) and (Pr*).

b- increases as (NE) increases except for
(NE > 0.1) at (Ra >10°), for a given value
of (Pr*).

C- increases as (Pr*) increases, for a given
values of (Ra) and (NE).

d- Nu, for the second case of boundary

conditions (B.C.2) is aways higher than
for thefirst case (B.C.1).

2- For large modified Rayleigh number,
the non — dimensiona parameter (NE) of
the Prandtl — Eyring model has, for a
gven modified Rayleigh and Prandtl
numbers, a large effect on the heat transfer
rate. The peak in average Nussdt number
occurs between (0.1< NE <10), depending
upon modified Rayleigh and Prandtl
numbers. As the (Ra) increases, the value
of non — dimensionad parameter at which
maximum average Nussdt number takes
place shift towards lower values of (NE)
for al vaues of (Pr*), while for small
(Ra), it does not have much effect on the
heat transfer because in this situation, the
convection is very weak and the dominant

maode of energy transfer is conduction.
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Case(ll),

dimensionless

3 For The

temperature

maxi mum
is dways
located at the middle of the bottom wall.
4- In the first case of the boundary
conditions (B.C.1), the flow is mainly
single cdl flow, while in the second case
(B.C.2), the flow consists of two counter-
rotating cdls, each covering hdf of the
enclosure  This flow causes significant
increasing in the heet transfer rate as (Ra
or NE) increases, since it has stronger
cdreulation warm effects on the fluid
motion.
5- The study shows how to predict the
effectiveness of a given enclosure in terms
of energy transfer or to design an efficient
one by suitably sdecting the type of fluid

or the shape of the enclosure or both.
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Fig.(5) Pattern of streamlinesfor Rag =10°
and Pr'=1. (@) NE=0, (b) NE=0.003, (c)
NE=0.01, (d) NE=0.1. For Case(l) Rag
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Pr*=10. Case(l)
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Fig.(8) Variation in Nu, with the Rag for
different values of NE and Pr*=10.
Case(l)

(©)
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35

(d)

Fig.(14) Pattern of isothermsfor Ra'¢ =10°
and Pr'=10. (a) NE=0, (b) NE=0.03, (c)

NE=0.1, (d)NE=1.  For Case(ll)
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Fig.(18) Numerical resultsvs. Predicted
results of correlation equation. Case(l1)
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