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I. Introduction 
 
In 1949, Wielandt proved that the difference between the 
commutator of any two elements in the unital normed algebra 
is not equal to the identity [7]. In 1995, Bhatt-Dedania have 
proven that each element of a complex Banach algebra 𝔄𝔄 is a 
zero topological divisor if 𝔄𝔄 was an infinite-dimensional and 
has admits an orthogonal basis [1]. In this paper, especially in 
the second section, we prove that if 𝔄𝔄 is a 2-normed algebra, 
then the difference of any two commutator elements is not 
equal to the identity. In the third section, we prove that each 
element of the complex 2-Banach algebra 𝔄𝔄, is a zero 
topological divisor, if 𝔄𝔄 is an infinite-dimensional, and has 
admits an orthogonal basis. Note that, in this paper, all fields 
are considered complex. Now, we recall that, Srivastava, 
Bhattacharya, and Lal [5],[6], proposed the definition of 2-
normed algebra and 2-Banach algebra as follows: Let 𝔅𝔅  be a 
sub-algebra of dimension greater than 1 of an algebra 𝔄𝔄, ‖. , . ‖ 
be a 2-norm in 𝔄𝔄 and 𝓏𝓏1,𝓏𝓏2 ∈ 𝔄𝔄 be linearly independent, non-
invertible and be such that for all 𝓂𝓂,𝓃𝓃 ∈ 𝔅𝔅, ‖𝓂𝓂𝓃𝓃,𝓏𝓏𝑖𝑖‖ ≤
‖𝓂𝓂,𝓏𝓏𝑖𝑖‖ ‖𝓃𝓃,𝓏𝓏𝑖𝑖‖ , 𝑖𝑖 = 1, 2. Then 𝔅𝔅 is said to be 2-normed 
algebra with respect to 𝓏𝓏1,𝓏𝓏2.  Also if 𝔅𝔅 is a 2-normed algebra 
and {𝓂𝓂𝑘𝑘}𝑘𝑘∊ℕ is considered as the sequence in 𝔅𝔅 satisfying 

lim
𝑘𝑘,𝑤𝑤→∞

‖𝓂𝓂𝑘𝑘 −𝓂𝓂𝑤𝑤,𝓏𝓏𝑖𝑖‖ = 0, 𝑖𝑖 = 1, 2, if there exists an element 

𝓂𝓂 in 𝔅𝔅 for which lim
𝑘𝑘→∞

‖𝓂𝓂𝑘𝑘 –  𝓂𝓂, 𝓏𝓏𝑖𝑖‖ = 0 , 𝑖𝑖 = 1, 2 then 𝔅𝔅 is 
called a 2-Banach algebra with respect to 𝓏𝓏1,𝓏𝓏2. The element 
𝓂𝓂, in the normed algebra 𝔄𝔄 is named a zero topological divisor 
[3] if there is a sequence {𝓂𝓂𝑘𝑘}𝑘𝑘∊ℕ in 𝔄𝔄 such that    ‖𝓂𝓂𝑘𝑘‖ = 1, 
𝑚𝑚𝑚𝑚𝑘𝑘 → 0 or 𝑚𝑚𝑘𝑘𝑚𝑚 → 0 as 𝑘𝑘 → ∞. An orthogonal basis of a 
Banach algebra 𝔄𝔄 is a sequence {𝓂𝓂𝑘𝑘}𝑘𝑘∊ℕ in 𝔄𝔄 such that each 
𝓂𝓂 ∈ 𝔄𝔄 can be represented as 𝓂𝓂 = ∑𝛼𝛼𝑘𝑘𝓂𝓂𝑘𝑘, where 𝛼𝛼𝑘𝑘 ,𝑠𝑠 are 
scalars, and    𝓂𝓂𝑘𝑘𝓂𝓂𝑤𝑤  =  𝛿𝛿𝑘𝑘𝑤𝑤𝑚𝑚𝑘𝑘, 𝛿𝛿𝑘𝑘𝑤𝑤 being the delta of 
Kronecker [2],[4].If {𝓂𝓂𝑘𝑘}𝑘𝑘∊ℕ is an orthogonal basis in 𝔄𝔄, then 
{𝓂𝓂𝑘𝑘}𝑘𝑘∊ℕ a basis of Schauder. Our goal of this paper is to 
generalize Wielandt’s theorem [7], and Bhatt-Dedania’s 
theorem [1] in 2-normed algebra. 
 
Now, we can present the most prominent results. 
 
2. Wielandt theorem in 2-normed algebra 
 
      In this section, we generalize the theorem of Wielandt, and 
as the following: 
Theorem 2.1: Let 𝔄𝔄 be a 2-normed unital algebra with respect 
to 𝓏𝓏1,𝓏𝓏2  with unit 𝑒𝑒. If 𝓂𝓂,𝓃𝓃 ∈  𝔄𝔄, then 𝓂𝓂𝓃𝓃−𝓃𝓃𝓂𝓂 ≠  𝑒𝑒. 
Proof: By contradiction, let 𝓂𝓂,𝓃𝓃 ∈  𝔄𝔄 such that 𝓂𝓂𝓃𝓃−𝓃𝓃𝓂𝓂 =
 𝑒𝑒, so for all 𝑘𝑘 ∈ ℕ we get: 

𝓂𝓂𝑘𝑘𝓃𝓃 −𝓃𝓃 𝓂𝓂𝑘𝑘 =  𝑘𝑘𝓂𝓂𝑘𝑘−1  ≠  0  …… (2.1) 
We will prove (2.1) by induction over 𝑘𝑘 ∈ ℕ. 
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when 𝑘𝑘 = 1, 𝓂𝓂𝓃𝓃 −𝓃𝓃𝓂𝓂 = 1, so (2.1) holds. 
Now, suppose that for 𝑘𝑘 = 𝑤𝑤 (𝑤𝑤 ∈ ℕ), (2.1) is true, then 
𝓂𝓂𝑤𝑤 ≠ 0, and 

     𝓂𝓂𝑤𝑤+1 𝑛𝑛 − 𝑛𝑛 𝓂𝓂𝑤𝑤+1

=  𝓂𝓂𝑤𝑤𝑚𝑚 𝑛𝑛 −  𝓂𝓂𝑤𝑤  𝑛𝑛 𝑚𝑚
+ 𝓂𝓂𝑤𝑤 𝑛𝑛 𝑚𝑚 –  𝑛𝑛𝓂𝓂𝑤𝑤𝑚𝑚

=  𝓂𝓂𝑤𝑤( 𝑚𝑚𝑛𝑛 − 𝑛𝑛𝑚𝑚 ) +  (𝓂𝓂𝑤𝑤 𝑛𝑛 − 𝑛𝑛𝓂𝓂𝑤𝑤)𝑚𝑚 
=  𝓂𝓂𝑤𝑤𝑒𝑒 +  𝑤𝑤𝓂𝓂𝑤𝑤−1𝑚𝑚 

=   𝓂𝓂𝑤𝑤𝑒𝑒 +  𝑤𝑤𝓂𝓂𝑤𝑤 = 𝑒𝑒𝓂𝓂𝑤𝑤  +  𝑤𝑤𝓂𝓂𝑤𝑤 
=  (1 +  𝑤𝑤)𝓂𝓂𝑤𝑤 

it follows that, 

𝑤𝑤‖ 𝓂𝓂𝑤𝑤−1,𝓏𝓏𝑖𝑖‖  = ‖ 𝑤𝑤𝓂𝓂𝑤𝑤−1,𝓏𝓏𝑖𝑖‖  = ‖𝓂𝓂𝑤𝑤𝓃𝓃 − 𝓃𝓃 𝓂𝓂𝑤𝑤,𝓏𝓏𝑖𝑖‖  ≤ 

‖𝓂𝓂𝑤𝑤𝓃𝓃,𝓏𝓏𝑖𝑖‖  +  ‖𝓃𝓃 𝓂𝓂𝑤𝑤,𝓏𝓏𝑖𝑖‖  ≤ 
‖𝓂𝓂𝑤𝑤,𝓏𝓏𝑖𝑖‖ ‖𝓃𝓃,𝓏𝓏𝑖𝑖‖ +  ‖𝓃𝓃,𝓏𝓏𝑖𝑖‖‖𝓂𝓂𝑤𝑤,𝓏𝓏𝑖𝑖‖  = 

2  ‖𝓂𝓂𝑤𝑤,𝓏𝓏𝑖𝑖‖‖𝓃𝓃,𝓏𝓏𝑖𝑖‖ ≤ 
2 ‖𝓂𝓂𝑤𝑤−1,𝓏𝓏𝑖𝑖‖ ‖𝓂𝓂,𝓏𝓏𝑖𝑖‖ ‖𝓃𝓃,𝓏𝓏𝑖𝑖‖ 

It implies, 𝑤𝑤 ≤  2 ‖𝓂𝓂, 𝓏𝓏𝑖𝑖‖‖𝓃𝓃,𝓏𝓏𝑖𝑖‖, 𝑖𝑖 = 1,2 and this is 
impossible. ■ 

Corollary 2.2 [7]: In a 2-Hilbert space ℋ, the identity operator 
cannot be represented by the commutator of two-bounded 
linear operators in ℒ(ℋ). Where ℒ(ℋ) denotes the linear 
operator on ℋ. ∎ 

Example 2.3: The previous corollary can be seen as one-
dimensional form of uncertainty.  
Suppose that ℋ =  ℒ2(ℝ), 𝓆𝓆: ℋ →  ℋ where 𝓆𝓆(𝑔𝑔)(𝓂𝓂) =
 𝓂𝓂𝑔𝑔(𝓂𝓂),  
𝒟𝒟(𝓆𝓆)  =  {𝑔𝑔 ∊  ℒ2(ℝ) ∶  𝓂𝓂 →𝓂𝓂𝑔𝑔(𝓂𝓂) ∈ ℒ2(ℝ)}, the 
operator of the coordinate,  
𝓅𝓅: ℋ →  ℋ where 𝓅𝓅(𝑔𝑔 )(𝓂𝓂)  =  −𝑖𝑖�́�𝑔(𝓂𝓂) the momentum 
operator, and 
𝒟𝒟(𝓅𝓅)  =  {𝑔𝑔 ∈ ℒ2(ℝ):𝑔𝑔 absolutely continuous, �́�𝑔 ∈ ℒ2(ℝ)}. 
 It additionally implies, 𝓅𝓅𝓆𝓆 − 𝓆𝓆𝓅𝓅 =  −𝑖𝑖i𝑑𝑑𝒟𝒟 𝑜𝑜𝑛𝑛 𝒟𝒟 =
 𝒟𝒟(𝓆𝓆)⋂𝒟𝒟(𝓅𝓅) 
In accordance with the corollary, 𝒟𝒟 = ℒ2(ℝ) can never be the 
case. 

3. Bhatt-Dedania theorem in 2-Banach algebra

An element 𝓂𝓂 in a 2-normed algebra 𝔄𝔄 with respect to
𝓏𝓏1,𝓏𝓏2 is called a zero topological divisor, if there exist a 
sequence {𝓂𝓂𝑘𝑘}𝑘𝑘∊ℕ in 𝔄𝔄 such that; 
 ‖𝓂𝓂𝑘𝑘 ,𝓏𝓏𝑖𝑖‖  = 1, 𝑖𝑖 =  1,2 , {𝓂𝓂𝓂𝓂𝑘𝑘}  → 0  or  {𝓂𝓂𝑘𝑘𝓂𝓂}  →
0 𝑎𝑎𝑠𝑠 𝑘𝑘 →  ∞. 
In this section, we generalize the Bhatt-Dedania theorem as 
follows: 

Theorem 3.1: Each one of the elements of a 2-Banach algebra 
𝔄𝔄 with respect to 𝓏𝓏1,𝓏𝓏2 is a zero topological divisor, if 𝔄𝔄 has 
infinite-dimensional and admits an orthogonal basis. 

Proof: Assume that {𝓂𝓂𝑘𝑘} be an orthogonal basis in 𝔄𝔄, and let 
𝓂𝓂 ∈ 𝔄𝔄, such that 𝓂𝓂 =  ∑𝛼𝛼𝑘𝑘𝓂𝓂𝑘𝑘. Since 𝓂𝓂𝑘𝑘𝓂𝓂𝑤𝑤  =  𝛿𝛿𝑘𝑘𝑤𝑤 𝓂𝓂𝑘𝑘 
for all 𝑘𝑘,𝑤𝑤 ∈ ℕ 
it follows that for any 𝑞𝑞 ∈ ℕ, 

‖𝓂𝓂𝑞𝑞,𝓏𝓏𝑖𝑖‖  =  ‖𝓂𝓂2
𝑞𝑞,𝓏𝓏𝑖𝑖‖  =  �𝓂𝓂𝑞𝑞𝓂𝓂𝑞𝑞,𝓏𝓏𝑖𝑖� ≤ 

‖𝓂𝓂𝑞𝑞,𝓏𝓏𝑖𝑖‖ ‖𝓂𝓂𝑞𝑞,𝓏𝓏𝑖𝑖‖  =  ‖𝓂𝓂𝑞𝑞, 𝓏𝓏𝑖𝑖‖², 𝑖𝑖 =  1,2 
Hence  �𝓂𝓂𝑞𝑞 ,𝓏𝓏𝑖𝑖� ≥ 1, and  
𝓂𝓂𝓂𝓂𝑞𝑞  =  ( ∑𝛼𝛼𝑘𝑘𝓂𝓂𝑘𝑘)𝓂𝓂𝑞𝑞  =   ∑𝛼𝛼𝑘𝑘𝓂𝓂𝑘𝑘𝓂𝓂𝑞𝑞  =  𝛼𝛼𝑞𝑞𝓂𝓂𝑘𝑘 is 
convergent to 0 as 𝑘𝑘 →  ∞. Now, let 𝑔𝑔𝑞𝑞 = 𝓂𝓂𝑞𝑞

‖𝓂𝓂𝑞𝑞,𝓏𝓏𝑖𝑖‖
, then  

�𝑔𝑔𝑞𝑞,𝓏𝓏𝑖𝑖� =‖𝓂𝓂𝑞𝑞,𝓏𝓏𝑖𝑖‖
‖𝓂𝓂𝑞𝑞,𝓏𝓏𝑖𝑖‖

= 1 which implies to, �𝓂𝓂𝑔𝑔𝑞𝑞,𝓏𝓏𝑖𝑖� ≤ 

�𝓂𝓂𝓂𝓂𝑞𝑞 ,𝓏𝓏𝑖𝑖� → 0. ■ 
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