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I. Introduction

In 1949, Wielandt proved that the difference between the
commutator of any two elements in the unital normed algebra
is not equal to the identity [7]. In 1995, Bhatt-Dedania have
proven that each element of a complex Banach algebra 2 is a
zero topological divisor if & was an infinite-dimensional and
has admits an orthogonal basis [1]. In this paper, especially in
the second section, we prove that if 2 is a 2-normed algebra,
then the difference of any two commutator elements is not
equal to the identity. In the third section, we prove that each
element of the complex 2-Banach algebra A, is a zero
topological divisor, if 2 is an infinite-dimensional, and has
admits an orthogonal basis. Note that, in this paper, all fields
are considered complex. Now, we recall that, Srivastava,
Bhattacharya, and Lal [5],[6], proposed the definition of 2-
normed algebra and 2-Banach algebra as follows: Let B be a
sub-algebra of dimension greater than 1 of an algebra 2, ||., . ||
be a 2-norm in W and z4, 3, € U be linearly independent, non-
invertible and be such that for all m,n € B, ||mn,z;|| <
|lm, z;|| ||, z;:]| ,i = 1,2. Then B is said to be 2-normed
algebra with respect to 34, 3,. Also if B is a 2-normed algebra
and {m}cy 1s considered as the sequence in B satisfying

klim [l — my, z;]| = 0,i = 1,2, if there exists an element
,W—00
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In this paper, we generalize a norm topology in Wielandt’s theorem for unital normed
algebras and in Bhatt-Dedania’s theorem for Banach algebras, with each element being a zero
topological divisor, by using 2-normed algebra and 2-Banach algebra, respectively.

m in B for which ]lim ||my — m,z;|| =0,i = 1,2 then B is

called a 2-Banach algebra with respect to z;, 3,. The element
m, in the normed algebra U is named a zero topological divisor
[3] if there is a sequence {My}rey in U such that ||| =1,
mm;, = 0 or mym — 0 as k - oo. An orthogonal basis of a
Banach algebra 2 is a sequence {m;}rey in U such that each
m € U can be represented as m = ), a,m,, where a;’s are
scalars, and ~ m,m,, = 6,my, O, being the delta of
Kronecker [2],[4].If {m }ren 18 an orthogonal basis in 2, then
{m}ren a basis of Schauder. Our goal of this paper is to
generalize Wielandt’s theorem [7], and Bhatt-Dedania’s
theorem [1] in 2-normed algebra.

Now, we can present the most prominent results.
2. Wielandt theorem in 2-normed algebra

In this section, we generalize the theorem of Wielandt, and
as the following:
Theorem 2.1: Let U be a 2-normed unital algebra with respect
t0 21,3, withunite. If m,n € U, then mn —nm #* e.
Proof: By contradiction, let m,n € Usuchthatmn —nm =
e, so for all k € N we get:

mhn —nm* = kmk1 = 0

We will prove (2.1) by induction over k € N.
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when k =1, mn —nm = 1, so (2.1) holds.
Now, suppose that for k =w (w € N), (2.1) is true, then
m"” # 0, and

w+1 w+1

m¥* Mt n—nm
= m¥mn— m¥Ynm
+ m¥Ynm-nm¥m
= m*(mn—nm)+ (m¥n—nm")m
= m¥e + wm” Im
m¥e + wm" =em” + wm"
=1+ wym”

it follows that,
wll mY gl = |wm* | = [|lmVn —nm¥, || <

lm*n, zi|| + |lnm",z] <
lm®, zill ln, z:ll + |l z:llllm", 2l =
2 lm*, zlllln, 2l <
2 [lm" =4zl llm, 2l M, 2l
It implies, is
impossible. m

w < 2|lm,zlllln,zl,i =1,2 and this

Corollary 2.2 [7]: In a 2-Hilbert space 3, the identity operator
cannot be represented by the commutator of two-bounded
linear operators in L(H). Where L(H) denotes the linear
operator on H. m

Example 2.3: The previous corollary can be seen as one-
dimensional form of uncertainty.

Suppose that H = LZ(R), g: H — H where g(g9)(m) =
mg(m),

D(q) = {g € L2(R): m - mg(m) € L2(R)},
operator of the coordinate,

p:H - H where p(g)(m) = —ig(m) the momentum
operator, and

D(p) = {g € L?(R):g absolutely continuous, § € L?(R)}.
It additionally implies, pg—qgp = —iidponD =
D(¢)ND(p)

In accordance with the corollary, D = £L2(R) can never be the
case.

the

3. Bhatt-Dedania theorem in 2-Banach algebra

An element m in a 2-normed algebra U with respect to
31,3, is called a zero topological divisor, if there exist a
sequence {m }rey in A such that;
lmg,zill =1, i =12, {mm} -0 or
Oask — oo.

In this section, we generalize the Bhatt-Dedania theorem as
follows:

{mym} -

Theorem 3.1: Each one of the elements of a 2-Banach algebra
A with respect to z;, 3, is a zero topological divisor, if 2 has
infinite-dimensional and admits an orthogonal basis.
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Proof: Assume that {m,} be an orthogonal basis in 2, and let
m € U, such that m = Y aymy. Since mym,, = O, My
forall k, w € N

it follows that for any q € N,

lmg zill = Im?q.z:ll = |[memg, 2| <

lmg, zill lmg, zill = llmg, z:ll% i = 1,2
Hence ||/mq,zi|| >1, and

mmg = (Ragm)mg = Y apmemg = agmy is

convergent to 0 as k — oo. Now, let g, = , then
llmg.zill
_lmgzill

||gq,zi|| = 1 which implies to, ||/mgq,zi|| <

||m/mq,zi|| —0.m

llmq.zill
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