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I. Introduction

Throughout this paper we assume a ring R is a
commutative ring with identity not equal zero and Z,
denoted an integer ring modulo n. the set of all unite (zero
divisor resp.) elements in a ring R denoted by
U(R)((Z(R) resp.). The concept zero divisor graph gave
relationship between two important branches in mathematics
graph and ring theory, it is studied by Beck in 1988 [3],
whenever find the coloring of commutative ring. Later
Anderson and Livingston in 1999 [1] modify this graph and
dented by I'(R) with vertices Z(R)* = Z(R) — {0} and two
elements are adjacent in I'(R) if and only if x.y =0 in
R .Many authors gave different definition (see for example
[2,5,6]). In 2016 Bennis, Mikram and Taraza introduced the
extended zero-divisor graph of R, denoted by I'(R) and two
distinct vertices x and y are adjacent if and only if, there are
positive integers t; and t, such that x'.y%2 =0 and
x',y% # 0 [4]. Recently Mohammad and Shuker introduced
anew graph called idempotent divisor graph with vertices set
in R = R — {0}, and two non- zero distinct vertices a and b
are adjacent if and only if a.b =e, for some non-unit
idempotent element e, this graph denoted by JI(R) [12].
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Clearly T(R) c JI(R) when R non-local ring and T'(R) =
JI(R) when R local ring. In [13] Mohammad and abd-almohy
gave the extended idempotent divisor graphs and denoted
JI(R). In this paper we study the extended idempotent divisor
graph for the set of integers module n. it contains three
sections. In section two we gave the size and the order for
rings as the local and reduced rings and the product of a field
with local ring and the product of local ring into a reduced
ring and we found the size of these graphs and degree of their
vertices. In section three we find the Hosoya and the winer
index for these rings.

In a graph theory “The complete graph K, is a graph in
which every two distinct vertices are adjacent. The
complement of a graph G is a graph G on the same vertices
such that two distinct vertices of G adjacent if and only if
they are not adjacent in the graph G. the diameter of a graph
G is the greatest distance between any two vertices of a graph
G denoted by diam(G). The simple graph G is a graph
without loops neither multiple edge. A connected graph G is
the graph that has a path between every pair of vertices. We
denote m is the size of a graph G it is the number of its edges,
while n denote as the order of a graph G is the number of its
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vertices. The center of a graph is the set of all vertices of
minimum eccentricity. For more dateless see for example”
[7,9].

In a ring theory “a ring R is a local if it has only one
maximal ideal and Z is a fild of order q. A reduced ring is a
ring that has no non-zero nilpotent elements. The idempotent
element is an element such that: a2 = a. For a nilpotent
element x of a ring R, v(x) denotes the order of nilpotency
of x; that is the smallest positive integer t such that x* = 0.
the degree of nilpotency of a ring R defined to be the
supremum of the orders of nilpotency of its nilpotent
elements and it is denoted by v(R). It well known that any
finite non local ring R can be written as a direct product of a
local ring, while every reduced ring can be written as a direct
product of a field. “[8].

II. Extended Idempotent Divisor Graph of
Zy,

In this section we investigated the idempotent divisor
graph of Z,,, also we found an order and size this graph.
First, we investigated when Z,, local ring.

It well now if the rings Z,, local, then n = p%, where p
prime and « positive integer as well as in [12] show if R
local ring, then JI(R) = I'(R).

Theorem 2.1:-let R = Z,«,where p is a prime number and
a a positive integer greater than or equal two, then JI(R) is a
complete graph of order |Z(R*)]|.

Proof:-since R = Zpa,then R local ring ,then by [12] we
have

JI(R) = T(R), and V(JI(R)) = Z(R)". We claim that for any
X,y € Z(R)*, x?®)~1 y?W-1 = 0 Letx = kyp,y =
k,p,where k1, k, positive integers p t kq,ky,and 1 < @i <
a — 1, then x?®)=1, y?WM~1 = (J, p)vI=1 (f,p)?@)-1 =
(L. p*™ ). (L. p* 1) = 0[mod p™], where [; =

K97 1, = k29071 S0, by Theorem 33[4].T(Zpo) is a
complete graph. Consequently JI(Zp«) is a complete graph.
]

Example 2.2:- let R = Z,; ,then JI(R) =T(R) In the
extended idempotent graph, we have
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Fig 2.1 JI(Z;;)
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Fig 2.2 JI(Z;;)

Now, we study when the ring Z, reduced ring. It well
now if Z, reduced, then n = p,p, ... p,,, Where p; distinct
prime numbers for all i = 1,2, ...,m, as well as the rings
= Zp, X Zp, X e Zp,,» When p; distinct prime
numbers. The next theorem we give the general form when
Z, reduced ring.
Theorem2.3:-letR = Z,, ., ., =7, XZ, X
...... Zy..,Where pq, P, ... ppare distinct prime numbers ,then
A(R) = Kizwy| + Kjuwyl
Proof:- let x = (xq, %3, ... ),y = (V1,¥2,-- Ym) , any two
elements in R, then there are three cases:

Casel: if x,y € Z(R)",then there exist two positive integers
11,1, such that
o= {Oi fxi=0; 1, _ {Oi ifyi=0;
t 1l-ifxi¢0i" lllfyliol
Which implies that

_ 0,: ifxi Oryl-=0i
XY= {11' if x;and y; # 0;’

x.y = (t,ty, o, ty) # (11,15, o .. , 1), where t; €
{0;,1;}. Since x,y € Z(R)", then x. y is an idempotent
element not equal one.

Case2:x € Z(R)*,y € U(R), then there exist two positive
integers [y, [, such that

x't.y2 = (54,8, ... p), for every s; € {0;,1;}, then x and
y are adjacent in JI(R)

Case 3:if x,y € U(R), then

xh.y'2 = (14,1,, ... 1,,), which is a contradiction,
therefore xand y are not adjacent in JI(R)

From above cases we conclude JI(R) = Kizry | + 1?|U(R)| .
]

Corollary2.4:-letR = Zp, ), . = Zp X Zp, X

...... Zpm -Where py, py, ... Dy are distinct prime numbers
,then we have

 (veZR):IR -1
deg (V)yenm = {v € URR):1Z(R)"|
of JI(R) is :
n = order(JI(R)) = [, p; — 1, and the size of/I(R) :
- 1
m = size(JI(R)) = E[(lR*l - DUZR))
+1ZR)|IUR)|]

, so we get the order
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Corollary2.5:-let R = Z), .., p =7, X Zp, X
...... Zy,.-where py, p,, ... ppare distinct prime
numbers ,then Cent(JI(R)) = Z(R)*,and
diam(JI(R)) = 2. m

Example 2.6:- R = Z,;, then JI(R)

9 1

Fig. 2.3 J‘I{Zln:]
In the extended idempotent graph, we have

Fig. 2.4 -"I':Zj_n:]
Now, we study mixed cases when Z,, direct product
field and local.

Theorem 2.7:-letR = Z,, ,a
prime numbers and a = 2, then deg (V) ey

= Z,, X Zy, ,where py,p,

( v=(u,0):=|R|-1
v=(0,uy) = |Z, | + |2, ||ZZ5,) | + |25, ||UZE)] + 1
J vzl -1
v=(0,s,) = |Z;,| + |Zp,||2(Z&)"| + |2(Z8,)7| — 1
v=(ug,s;) =R [—-1
v = (uy,up) = |Zp, | +|Z(Zp,)"| + |Zp, ||2(Z3,)"
Where u; € Zy, , s, € Z(Z5,)" , u, € U(Zy,) ,and the
order of (JI(R)):

n =p; X pg — 1, where a > 2 and the size of (JI(R)):
m= 112, [0 EZN12(25)D (1 + |2,,]) +
U@EDI(JUEZ5)| = 1) + 125, [12(Zpg)|(12(Zpg)] +
IR = 3) +12(Z,)|(1 =~ [2(Zpg)]) +
2|Zp1||(U(Zgz))2|]

Proof:- the order of (JI(R)):,n = p; X pg — 1, where

a = 2.Now letv = (r,z) € R* ,be any element in R”;
where r € Z,, ,z € Z,,a.then we can distinguish the vertices
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into disjoint subsets:

A={(;,0):uy €|Zy |}, B={0,ux):u, € U(Zy,)}, C =

{(0,5,):5, € Z(Z&)"}.D = {(uy,82):uy €|Z;, |5, €

Z(Zy,)'}, E={(u, uz):uy € |Zy, |, up € U(Zp,)}, clearly

Al = |z, |.1B] = [U@Zg)|.Icl = [2(Z3,)"].ID| =

Zy, 225" |- 1B = |25, |U (2]

First :if v = (uy, 0) € A,since by Remark 2.2[13],there

exists a positive integer t such that :(uy, 0) = (1,0), then

(uy, 0) adjacent with every other vertices in the graph JI(R),

)

deg (V)vea=IR"| =1

Second :if v = (0,u,) € B, again by Remark 2.2[13],there

exists a positive integer [ such that :(0,u)! = (0,1),then v

adjacent with every element in A,D,E and B ,so

deg (V)vep = |Al + D[ + [E[ + |B] — 1

Lp, |+ Zp, || 2(Zp,)"

+|U@zZg)| -1

Third :if v = (0,s,) € C, since for any s,,s, € Z(Z3,)",

5,v60~1 5, v(2)=1 = 0 element in 4, C and D, so

deg(V)vec = |Al + D[ +[C| - 1

Zo | + 125, 12287 | + |2(Z8 )| — 1

Fourth :if v = (uy, s,) € D,then v adjacent with every other
vertices in the graph J(R) ,so that :

deg (V)yep = IR"| =1

Fifth :if v=(u4,u,),since v not adjacent for any element in

Cand E ,so that :

deg(vV)ver = |Al + [B| + |D|=

Z;;l Z(Zgz)* _

Now, to find the size of the graph JI(R):since

m = {Teadeg (v) + Tyep deg (V) + Tyec deg (v) +

Yvep deg(v) + Xyep deg (V)]

+

*
Zpl

Uz,

*
Zpl

+|Z(z8)"

+

= TART=D(1Z5,0) + (125, + 125, 1225, +
Zy U@l +ug) -
(o@D + (125.] + 25, 12C25,)7 | + 1225,

- 1)(|zz5,)°))

+ (R = D(|2;, ||2(25,)°)

+ (|2, | + |2(z8)

+ |25, 11228 )15, U Z5,)D]

Put |R*|=IRI = 1. |(Z,,)"] = 12,,] = 1. 12(2,6)"| =

|Z (Zpgz)| — 1, and simplify the size we get :

m= 112, [0 @)1 2(2,6)D (1 + |2,,]) +

U@V Z5)] = 1) + |2, 12 (21 (12 (25| +

IRI =3) +|2(2,0)|(1 = |2(Zpg)]) + 212, ||V Z5,))%]]
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D\~ E

Fig. 2.5 T1(Z,, %)

At the beginning of this section, we give a generalized
Theorem 2.7, when R direct product local ring with reduced
ring.

Theorem 2.8:-1etR = Zpa ), 5
Zp,, sWhere p; distinct prime numbers, « an integer number,

Then :

~ 7a
m _Zp1 Xsz X X

deg (V) elicry

p

n-2
v =G = 12(Zg) | +12(25)] (n K 1)
k=1

2z, |2 -1
v=(z,%)=|R"| -1
v=(z,%):=|R"[-1

v=(uy,x) = [R"| = |Z(Z,e) | - 1

v = (uy,x;) = |R*| — |Z(Zp:1x)*| -1

v = (uy,x;) :=|R*| — |Z(sz1z)*| -1

for every z; € Z(szlzz)*,z1 € Z(Zp‘f)’ u, € U(Zpiz), u, €

(Zp)”

The Order of JI(R));n =pf Xp; —1;2<i<m,

The size of (TR)): m=[(|Z(Zpe)| = 1)° (|12, — 1) +
(12(Zpe)| = D(12(Z,0)] = V(2|20 | = 3) +

(R =2)(12p,| = D)(|2(Zp0)| + [U(Zpe)| + 1) +
S22 (GRE=2(12(29)] + U (Zp)]) +
(12(Zp)] = D(12(Zp)| = [U(Zp)]) )

Proof:- The Order of (JI(R)); n = pf X p; — 1,

Now; let v = (11,13, ...Tn) € R*,where 1y € Zpa, 17 € Zy;
2 < i < m, then we can distinguish the vertices into disjoint
subsets :

A={(21,05,03, ..., 0):2, € Z(Zpa) }. B =
{(24,%3,%X3, e, X): 21 € Z(Zptlx),xi € (Zp)52<i<m}
, C={(21,%5, X3, 0., Xn): 21 € Z(pr),xi €Zy,}— (AU
B),2<i<m,D = {(uy,003....,0,):uy € U(Zpa)},

E = {(u1, %2, X3, o, Xpn): Uy € U(Zpa), x; € (Z,)",2 <SP <

mj,

F = {(uy, x5, X3, . X)) 11 Uq € U(Zpgx),xi € U(Zpi)} —
(D UE);2 <i <m. Then by Remark 2.2[13]

l l v(z v(z
utu =1, Z1( 1),22( 2) = 0, where v(z,),v(z,),1;,1, are

positive integers
It is obvious that, [A| = |Z(Z,e) |, IBI = |2(Z,2)||(Z,)"

€1 = 12(Z) | 222 (), 1D = [(Zp)| 1ET =
U(Zpo)|IZp)°| 1F1 = [U(Zp) | 222D,

>

every element in A adjacent with every element in A, B and
C,so

deg (V)yesa = |Z(Zp§‘)* + |Z(Zp{")||(zpi)* +
12(Z,pa)| Z#23(", ") — 1. Also, every element in B adjacent

with every element in R*, so deg(v),e5 = |R*| — 1

. Every element in C adjacent with every element in R*,

sodeg(v),ec = |R*| — 1. While every element in D
adjacent with every element in R* — A. Therefore

deg()yep = IR*] = Al = 1 = |R*| = |2(Z,¢) | - 1.
Every element in E adjacent with every element in R* — A.
Whence deg(v)yer = |R*| — [Al = 1 = |R*| = |2(Z,e) | -
1. Finally, since every element in F adjacent with every
element in R* — A, then we get deg(v),er = |R*| — |4] —
1=|R*|— |Z(Zpgc)*| — 1.To find the size of JI(R). Since
|
m =size(JI(R)) = Ezvem deg (v), then

m = {Teadeg (v) + Tyep deg (V) + Tyec deg (v) +
Svep deg (V) + Tyeg deg (V) + Zyer deg (V)]

m = 21(12(Z) | + |2(Z)l| )| +

12(2,0)| TR = DIZ(Zpg) | + (R —
D(12(Zo)|Zp)"]) + (R = D(12(Zpe) | 223 (") +
(IR 1= 2(2y) | = DI + (IR = |2(2,9) | -
D|U(Z)|Zp) DR = 12(Zpe) | -

D(|U(Zpe)| 2223 ()1
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Put |[R*|=|R| — 1,

| =2z - 1,

pf p) | =
|Zm| — 1, and simplify tllle size we get :
2
m= 1(12(Zy)| = 1) (125, = 1) + (12(2,9)| -
D(12(zp0)| = [U(Zp0)12p,| = 3) + ARI = 2(|2, | -

D(Z(Zp)| + |U(Zp)| +1) + iz () (ARI =
2(12(Z,6)| + 10(2,9)]) + (12(2y8)| - D)(12(255)] -
U(Z,))]

F
Fig~ 2.6 -H(Zp‘f D2 pm)
III. Hosoya Polynomial and Wiener Index of
Extended Idempotent Divisor Graph Of
Recall that:
The Hosoya polynomial[11] of a graph JI(R) is:

HT(R).x)= $02m 4(TI(R)k)x* , such that d(JI(R).k) be

the number of pairs of vertices that are at distance k apart in
a connected graph JI., for k=0,1,2,..., diam(JI(R)).

The Wiener index|[14] of a graph JI(R) is the derivative of
the Hosoya polynomial of the graphJI(R) with respect to x

and putting x=1, that is W(JI)= % HUI(R),x) |X=1

In this section we find Hosoya polynomial and Wiener
index of extended idempotent divisor graph of Z,, for all
cases in section two.

Lemma 3.1[10]:- let G be a connected graph of order n,
then

Tso @ d(G, k) =sn(n+1)

It well now that if a graph G complet , then:

H(G,x) = a0+a1x—n+n(n D
ring we are done. Therefore we begln when Z,, a reduced
ring.

Theorem3.2:- letR = Z

P1-P2--Pm = ZP1 XZPZ x
...... Zm,where py, Dy, ... ppare prime numbers ,then

.x. So when Z,, local

165

H(UI(R),x) = ag + a;x + a,x?, where
ao = [T i — 1, ay =S [(IR*| = DAUZ(R)'|) +
IZ(R)I*IIU(R)I]
az =3 M2, pi® —
1Z(RY [TUR)I)]
Proof:- since R reduced ring ,the diam(JI(R))=2, so
H(JI(R),x) = ag + a;x + a,x?, it will note that
ao = d(JI(R); 0) = order (R) ,s0 by Theorem2.3, ay =
iZipi—1
a; = d(JI(R); 1) = size(R) , again by theorem 2.3,
a; =%[(IR*I —DUZER) D +1ZR) IUR)I]
And by Lemma3.1, we have
a, = d(}I(R) 2) = n(nﬂ) — ay — ag, so that
a, = iz o (12 1pl_1) (Tt — 1D -
;[(IR |—1)(|Z(R) D+ I1ZR)NUMRI] =
— [T pi? = 31T, v+ 2 — (AR = DAUZ(R)T) +

1Z(R)*IIUR)I)

Corollary3.3:-1etR = Z,, . p. = Z, X Zp, X
...... Zp,-where py, py, ...

prare prime numbers ,then the
Wiener index of JI(R) is :

WOIR) =5 [(R*1 = DAZ(RY]) + IZR) VR +
(R*D? = IR*| = (AR = DAZR)' 1) + 1ZR)* U (R)I).
Proof:- W(JI(R)) = :—xH(m; X)|x=1

WOIR)) = 0+ > x[[(IR*| - DUZ(R)']) +

1ZRY U + 225 [T pi® = 3TTiapi +2 -
(AR 1 =DUZR) ) + 1ZR) NUR))] x=1

=[AR*I = DUZR]) +1ZR) U RN + Ty pi? —
3H Lipi+ 2= ((R 1 =DUZR)]) +
1ZR)|U(R)]). m

13 a;

= (UR' = DUZR)) +

Theorem 3.4:- letR = Z, ,,a = 7, X Z7, ,where p;, p;

prime numbers and a = 2, then H(JI(R),x) =ay+a;x +
a,x?, where
ap =p1 Xp; — 1,
1
o =5 [12, 1012 (28)D (1 + 12p,])
+v@g)|(lvezg)| - 1)
+ 12, [12(2,9)1 (12(2,5)] + 181 - 3)
+12(2,0)|(1 - |2(Z,¢)))
) + 2|2, ||UEZ5))% ]
az =5 [(p1 X P§)* = 3(p1 X p7) +2
i es )IIZ(sz)I)(1+ 1Zp,1)
+Up)|(lvzg,)| - 1)
+ IZmIIZ(Zp%)I(IZ(Zpg)I +IR| - 3)
+12(2,)|(1 - |2(Z,6)])

+ 2|2y, ||z,
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Proof :- -the diameter of the JI(R) is: diam(JI(R))=2, so
that

HUI(R),x) = ag + ayx + ax?,

ap = d(m; 0) = order (m), so by Theorem?2.7,
@=p xXpz—1

a; = d(JI(R); l)zsize(ﬂ(R)), again by Theorem2.7, a; =
Uz llu@lz(zy)D (A + |25, ) +

V@IV ZE)] = 1) + 12,112 (Z,g)|(12(Zpg)| +

IRl —3) +|2(Zp)|(1 = |2(Zp)]) + 212, [| (U (25,71,
And by Lemma3.1, we have
a, = d(JI(R); 2) =)

2 a; — ay, so that

1
a =§(p1 Xp)(P1 Xps —1) — (pr Xpy — 1)

S 22D+ 12,])
U (UCAIESY)
+ |Zp1||Z(Zp§‘)|(|Z(Zp§‘)| +IR| - 3)
+12(2,¢)|(1 - |2(Z,5)])
+2|2,,, || (U(Z5,)7]

= [(p1 X P = 3(p1 X p§) + 2 —

(2, [V EZEDNZ(Zpg)D(1 + |2, ) +

[V@DI((U @) = 1) +12,,112(Zp6) [ (12(Z,g)] +

IRI =3) +12(Z,¢)|(1 = |2(Zpg)]) + 2|2, || U (Z5,))7|1]

. m
Corollary 3.5:-letR = Z, o =7, X Zp,
prime numbers and @ > 2, then the Wiener index of JI(R)
is: WUI(R)) = %[|Zp1”U(Zpaz)HZ(Zp%)D(l +12,,]) +
lUE|(JU@5)] = 1) + 2, [12(Z,p6)[(12(Z,) [ +

IRl = 3) +|2(Zpg)|(1 = |2(Zpg)|) + 212y, || (U (25,1
+ [y xp$)? —3(pL X pF) +2 —
[|Zp1”U(Zgz)”Z(ZpS‘)D(l + |Zp1|) +

U@V EE)] = 1) + 12, |2(Zp¢)|(12(Zpg)] +

IRl = 3) + |2(Z,g)|(1 = [2(Zpg)|) + 212y, || (U (Z5,)%
Proof :- W(JI(R)) = %H (JI(R); x)|x=1

WOIR) = 0+ [x5 112, [[UEZ)||2(2,6)D (1 +

|2, ) + [UEZD[(lUEZp)] - 1) +

|2, 12(Zp)1(12(Zpg)| + IRI = 3) + |2(Z,) [ (1 -
|2(Z,6)]) + 212, || (U (28,0021 + 225 [(p1 % pE)? —
3(p1xp3)+2— [|Zp1”U(Zgz)”Z(Zp%)D(l + |Zp1|) +
@U@ = 1) + 12, 1|2(Zpg)|(12(Zpg)] +

IRl =3) +12(Z,g)|(1 = |2(Z,g)]) +

2|1z, ||(UEZE ) 1Ix=1 -

WAIR) = 3112, U EZ)|2(Zp) D (L + 125, ]) +
lU@EN|((UEZg)] - 1) + 12, [12(Z,9) (12 (Zpg)| +
IR| — 3) + |Z(Zp§‘)|(1 - |Z(Zp§‘)|) + 2|Zp1||(U(Z,‘j‘2))2|]
+[(p1 X p$)* =31 X p5) +2—

,where p;,p,
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[|Zp1||U(Zgz)||z(ng)|)(1 + |ZP1|) +

U@V Z5)] = 1) + |2, 12 (21 (12 (25| +

IR =3) +|2(2,0)|(1 = |2(Zyg)]) + 2|2, || 5, )? 1]
|

Theorem 3.6:-1etR = Za ), o =75 X Zp, X ... X

Zy,, »Where p; distinct prime numbers, a an integer number,
Then H(JI(R), x) = ay + a,x + a,x?*, where
ap=n=pixXp;—1,
1 2
4y = 2 1(12(2,9)] - (125 - 1)
+(12(Zpg)| - 1)(12(Zp¢)
- |U(Zpi’)||zpi| -3)
+ (R1 = (125, = 1)(|2(2p¢)]
+[U(Zpg)| +1)

+nf(" ) (aRI=2)(12(2,9)

k=1
+U(Zye)))
+(12(Zy¢)| = 1)(|2(Z,¢)]
e ) I
Proof:-since the diameter of JI(R) is: diam(JI(R))=2, so
that
H(JI(R),x) = ap + a;x + ayx?,
as = d(JI(R); 0) = order (JI(R)), so by Theorem?2.8,
ao =pi Xp;i— 1, _
a, = d(ﬂ(R); 1):size(JI(R)), again by Theorem2.8, a; =
H(2(Zy)| - 1) (1]~ 1) + (12(Z00)] -
D(12(Zy0)| - [0, 120] — 3) + (R = 2)(12,,| -
D)(|2(Zp)] + [U(Zpg)] + 1) + T2 (0RI =
2)(|Z(Zp‘1’)| + |U(Zp‘1’)|) + (|Z(Zp‘1")| - 1)(|Z(Zp?)| -
U(z)))1
a, = d(m; 2) =
we have
a =P xp) @ xpy— 1) — (f xpy— 1) -
L (12(Zy)| - 1) (12— 1) + (12200 -
D(12(20)| - 10(2,9)]12,] - 3) + (R - 2)(12,,| -
D(|12(Zy0)| + [U(2p0)] + 1) + 22221 (URI -
2(12(2,9)] + UZye)]) + (12(29)] - D)(|2(Zye)| -
|U(Z,9)]))]
= [f x p)? = 3pF x pi + 2 = [(12(Z,0)| - 1) (12, -
1)+ (12(2,0)| = 1)(|12(Zpe)| = [U(Zp)||Zp, | - 3) +
(Rl = 2)(|12,,| = 1)(|2(Zpe)| + [U(Zpe)| + 1) +
SRR (ARI=2)(12(2p)| + U ()] +
(12(z,0)| = D)(12(29)] - [ (Z,2) D)1

Corollary 3.5:- letR = Zpya ), 0 =725 X Zp, X X

nn+1) _

5 ag — a,q, so that by Lemma 3.1
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then the Wiener index of JI(R) is :

Proof :- W(JI(R)) = %H(m; X)|x=1

WOIR) = 0+ 5[ (12(Z,0)] = 1) (125, - 1) +
(12(Zpe)| = D)(|2(Zpe)| = [U(Zpe)] |2, - 3) +
(RI = 2)(|Zp, | - 1)(12(Zpe)| + |U(Zpe)| + 1) +

k=

2% (AR = 2)(12(Ze)| + U (Z,0)]) +

(12(z,0)| = D)(12(Zp)] = [0 (Zp5)]) | + 265 [P
p)? = 3pf xpi + 2~ [(|2(Zyg)] = 1) (|2, = 1) +
(12(Zpe)] = (12 (Zpe)| = |U(Zp5)125| = 3) +
(Rl =2)(|Zp,| = 1)(12(Zpg)] +[U(Zpg) [ +1) +

Xk

2% (AR = 2)(12(Zp)| + U (Z,0)]) +

(12(Zp0)] = D12 (Z,6)| = |U(Z,)) )Nl
=202(Z0)l - 1)’ (12, - 1) + (|12(2,0)] -
1)(12(Zpe)| = [U(Zpe)| 2y, = 3) + (IRl = 2)(|Z,,| -
D)(|12(Z0)] + [U(Zpe)| + 1) + 2222 ((RI -
2)(|12(zye)| + |U(Zpe)]) + (12(Ze)| = 1)(|2(Zp0)| -
|U(2,6)]))] + [0 X p)? = 3p§ X pi + 2 -
[(12(2,9)| = 1)° (12, - 1) + (12(Z,¢)] -
1)(12(zpe)| - [ (Zpe)| 2y, = 3) + (IRI = 2)(|Z,,| -
D)(12(Zpe)] + |U(Zp0)] + 1) + 2322 (URI -
(|12(zye)| + |U(Zpe)]) + (12(Zpe)| = D)(|2(Zpe)| -
U(Zye)])). m
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