Hameed

Iraqi Journal of Science, 2022, Vol. 63, No. 4, pp: 1765-1769 DOI: 10.24996/ijs.2022.63.4.34

ISSN: 0067-2904

Fuzzy α- Topological Vector Space

Suhad K. Hameed

Department of Mathematics, College of Science, Diyala University, Diyala, Iraq

Received: 19/7/2021 Accepted: 9/10/2021 Published: 30/4/2022

Abstract

In this study, the concept of fuzzy α -topological vector space is introduced by using the concept fuzzy α -open set, some properties of fuzzy α -topological vector spaces are proved. We also show that the space is T_2 -space iff every singleton set is fuzzy α - closed. Finally, the convex property and its relation with the interior points are discussed.

Keywords: Topological Vector Space, Fuzzy α -Topological Vector Space, Fuzzy T_2 -space and Extremely points.

الفضائات التبولوجية المتجهة الضبابية نوع الفا

سهاد كريم حميد

قسم الرياضيات، كلية العلوم، جامعة ديالي، ديالي، العراق

الخلاصه

تناولت هذه الدراسة تعريف الفضاءات التبولوجيه المتجهه الضبابية نوع الفا و دراسة خصائصها , كما تم اثبات ان الفضاء يكون منفصلا ضبابيا اذا كانت كل مجموعة منفردة مغلقة ضبابيا , وتم مناقشة الخاصية الجبرية (التحدب) وعلاقتها بالنقاط الداخلية للمجموعات الموجودة في الفضاء المدروس.

Introduction and Preliminaries:

The aim of the study is to define the notation of fuzzy α - topological vector space in the term of fuzzy set. The fuzzy concept has used in many branches of mathematics since 1965. The introduction of fuzzy sets is done by Zadeh [1]. The theories of fuzzy topological vector spaces are introduced and developed by A.K.Katsaras [2],[3], and are generalized by many authors as in [4],[5]. We consider it in terms of fuzzy α -open set by the sense of Bin Shahna, [6]. A subset A of a topological space X is called fuzzy α -open(f α -open) if $A \subset (Int (Cl(Int (A)))$ [7], while a complement for f α -open set is called fuzzy α -closed(f α -closed). The fuzzy α -closure of A that subset of X is represented by $Cl_{\alpha}(A)$ which is intersection for all f α -closed subsets on X containing A. Recall that the subset $U \subset X$ is called f α -open neighborhood for x if there is a f α -open set A with $x \in A \subset U$. The point x for a subset A is said to be f α -interior point on A which is denoted by $Int_{\alpha}(A)$, if there is f α -open subset U, $x \in U$, and $U \subseteq A$, . A function $f: X \rightarrow Y$ is called f α - irresolute continuous if an inverse image for each f α -open subset in Y is f α -open on X where X and Y is a fuzzy topological spaces[8]. Also, a mapping $f: X \rightarrow Y$ is called f α -irresolute continuous at point x on X if for all f α -open

^{*}Email: suhadkhamid@gmail.com

subset *V* on *Y* contained f(x), there is a f α -open subset *U* with $x \in U$ satisfy f(U) is subset of *V* [8]. A function *f* from a fuzzy topological space X to Y is called f α -open function if the image for each f α -open subset of *X* is f α -open set in *Y*. Moreover, the notion of f α -homeomorphism[8] that defines a mapping *f* from X to Y is called f α -homeomorphism if it's bijective , both *f* and f^{-1} are f α -irresolute. The separation axiom and the compactness property are discussed.

suhadkareem@uodiyala.edu.iq

1. Fuzzy α- Topological Vector Space (FαTVS).

Definition 1.1: A fuzzy α - topological vector space is a vector space V over a field F with a fuzzy topology τ such that the two functions :

(a) The vector addition map $S:X \times X \rightarrow X$

(b) The multiplication by scalar map $M: F \times X \rightarrow X$

Are fuzzy α - irresolute continuous. For each $x \in X$ the mapping $T_x : X \to X$ which is defined by $T_x(y) = y + x$, and the mapping $M_{\lambda} : X \to X$ that is defined by $M_{\lambda}(x) = \lambda x$ are called the translation, and multiplication, respectively.

We refer to the collection of f α -neighborhoods for $x \in X$, by N_x , and we denotes the set of f α -neighborhoods of zero vector space 0 of X by N_0 . A subset A of a topological spaces (X,τ) is called sp-open if A \subset cl (int (cl(A)))[8].

Lemma 1.2[9]: Let A be a sp-open(α -open, f α -open) subset of a topological space X, and B be any open subset of X, then the set $A \cap B$ is sp-open (α -open, f α -open, respectively)set.

Lemma 1.3[9]: Let $.f:X \rightarrow Y$ be sp-irresolute mapping where X and Y are topological spaces, so that for sp-neighborhood V for f(x), there sp-neighborhood U of x satisfies $f(U) \subseteq V$.

Theorem 1.4 : Let. *X* be $F\alpha TVS$, the following statements hold.

a. If $U \in N_x$, and V is a neighborhood for x in X, then $U \cap V \in N_x$.

b. If $U \in N_0$, then $\lambda U \in N_0$ for a non-zero element $\lambda \in R$.

c. If $U \in N_0$, then $x + U \in N_x$

Proof: a) Suppose that *U* is f α -neighborhood of *x*, and *V* is a neighborhood for *x*, then there exists a f α -open subset *A* and an open set *B* s.t $x \in A \subset U$ and $x \in B \subset V$.

Then $x \in A \cap B \subseteq U \cap V$ and by Lemma 1.2, $A \cap B$ is fa-open. So that $A \cap B$ is a faneighborhood for x. To prove (b) and(c), let U is fa-neighborhood for zero since S:(x, y) is fa -irresolute, we define the function $T_x: X \to X$ by $T_x(y) = y + x$. Therefore $T_x(y) = S_x(x, y)$, $T_x(y)$ is fa -irresolute also $T^1_x(y) = S_x(x, -y)$ is also fa -irresolute(from the definition of addition), thus T_x is fa-homeomorphism, by lemma 1.3 for a fa -neighborhood U for zero, there fa -neighborhood U + x for a point x.

Definition 1.5[10]: The subset A on the vector spaces X is called balanced if $\lambda A \subseteq A$ for $|\lambda| \le 1$ and absorbing if every x belongs to X, there is $\varepsilon > 0$ such that $\lambda x \in A$ for $|\lambda| \le \varepsilon$. It is called absolutely convex if the subset both balanced and convex.

Theorem 1.6: Let. X be an $F\alpha TVS$, then

(a) Every fa -neighborhood U of θ is absorbing.

(b) For a fa -neighborhood U of 0 there exists a balanced $V \in N_0$ satisfy that $V \subseteq U$.

Proof: (a) Suppose U be a f α -neighborhood for 0, then there exists a f α -open subset $U_1 \in N_0(X)$ such that $U_1 \subseteq U$, since the scalar multiplication map M_λ is f α -irresolute, so that there exists f α -neighborhood of 0 (V_1 , V_2) satisfies that M_λ ($V_1 \times V_2$) $\subseteq U_1$. Let a set V_1 contains an open interval (- ε , ε), therefore $tx \in U_1 \forall t \in (-\varepsilon, \varepsilon)$ and for all $x \in V_2$. This leads to U_1 which is absorbing.

(b). The map of multiplication $M_{\lambda}: R \times X \rightarrow X$ is fa-irresolute then for every

fa -neighborhood U of 0 in X there exists fa-neighborhood of 0, $M_{\lambda}(V) \subseteq U$, then there exists $\varepsilon > 0$, $V = V_1 \times V_2$, $(-\varepsilon, \varepsilon) \subseteq V_1$, V_1 is a fa-neighborhood for 0 on R,

 V_2 is fa-neighborhood of 0 in X. Let $W = U_{|t| < \varepsilon} t V_2$, tV_2 be fa-neighborhood of 0 from theorem 1.4, for $t \neq 0$ and $tV_2 \subseteq U$ for $t < \varepsilon$. Now we need to prove that W is balanced. If r < 1, so $rW = U_{|t| < \varepsilon} (rt) V_2$ and $|rt| < \varepsilon |r| < \varepsilon$, it implies that $rW = U_{|s| < \varepsilon} sV_2 \subseteq W$, where s = rt, thus W is balanced.

Theorem 1.7: Let. X be a F α TVS. If $A \subseteq X$, so $Cl_{f\alpha}(A) = \cap (A+U)$. In particular $Cl_{f\alpha}(A) \subseteq A+U$, $\forall U$ belongs to N_0 .

Proof: Let. $x \in Cl_{f\alpha}(A)$, U be a f α -neighborhood of 0 then by theorem 1.6(b) V is the balanced neighborhood for zero s.t $(V \subseteq U)$, so x + V f α -neighborhood for x and $x \in Cl_{f\alpha}(A)$, then $(x + V) \cap A \neq 0$, that implies $x \in A - V$. Since V is balanced, A - V equal to A + V, then $x \in A + V$ subset of A + U, hence $Cl_{f\alpha}(A) \subseteq \cap (A + U)$. Conversely if $x \notin Cl_{f\alpha}(A)$, so that there balanced neighborhood U for zero satisfy that $(x+U) \cap A = 0$, so that $x \notin A - U = A + U$.

Theorem1.8: Let. *X* be a F α TVS. Then ,

(a) Every $U \in N_0$, $\exists V \in N_0$ satisfy $V + V \subseteq U$.

(b) For every $U \in N_0$, there is a fa-closed balanced $V \in N_0$ satisfy that $V \subseteq U$.

Proof: (a) Assume that $U \in N_0(X)$, since the map $S:X \times X \to X$ is fa-irresolute, then there are fa-neighborhoods for 0 say V_1 and V_2 satisfy $S(V_1, V_2) \subseteq U$, that means $V_1 + V_2 \subseteq U$, set $V = V_1 \cap V_2$ which implies $V + V \subseteq V_1 + V_2 \subseteq U$.

(b) Assume that U is fa-neighborhood of 0 on X, by part (a) there is fa-neighborhood V for zero with $V+V \subseteq U$. Now from Part (b) of Theorem 1.6, there exists a neighborhood W for 0 which is balanced s.t $W \subseteq V$. Now from theorem 1.7 the $Cl_{fa}(W) \subseteq W+V$ and $Cl_{fa}(W) \subseteq W+V \subseteq V+V \subseteq U$. This shows that U contains the fa-closed neighborhood.

Definition 1.9: A topological space (X, τ) is called f α - Hausdorff, if for each two distinct points x and y in X, there exist disjoint f α -open sets U, V such that $x \in U$, and $y \in V$.

In the following theorem we give some properties of $f\alpha$ -Hausdorff space.

Theorem 1.10 :Let . *X* be a F α TVS, then X is f α -Hausdorff if and only if for each $x \in X$ there exists U_0 satisfies $x \notin U_0$.

Proof: (a) (b) Let $x \in X$ be a non-zero vector. Then, there are disjoint

fa-neighborhoods U of 0, and V of x, where U belong to the collection of neighborhoods of 0, V belong to the collection of neighborhoods of x and $x \notin U$.

(b) \longrightarrow (a) let $x, y \in X$ such that $x \neq y, U_0$ is a fa-neighborhood for 0 with $x-y \notin U_0$. By part (a) of Theorem 1.8, there exists fa-neighborhood W of 0 such that $W+W\subseteq U_0$ W is balanced (from part (b) of Theorem 1.6). Now suppose that the sets $V_1 = x + W$ and the set $V_2 = y + W$. Therefore, V_1, V_2 is a fa-neighborhood of x, y, respectively. We need to show that $V_1 \cap V_2 = \emptyset$, assume the point $s \in V_1 \cap V_2$ then

 $(s - x) \in W$, note that *W* is balanced and $s - y \in W$, and this leads to

 $x - y = (s - y) + (-(s - x)) \in W + W \subseteq U_0$ which is a contradiction. So that we have $V_1 \cap V_2 = \phi$. Thus, the space X is $f\alpha$ - Hausdorff.

Corollary 1.11: Let X be a F α TVS, then the following statements are equivalent

(a) Let. *X* be a f α - Hausdorff.

(b) The intersection of all neighborhoods of 0 is $\{0\}$.

(c) The intersection of all neighborhoods of x is $\{x\}$.

Theorem 1.12:Let X be FaTVS, *then* X is fa-Hausdorff iff one-point subset of X be faclosed in X.

Proof: Let $x \in X$, $y \in X/\{x\}$, and $x \neq y$ that means $x \cdot y \neq 0$, therefore there exists a faneighborhood U for zero satisfies $y - x \notin U$. Then there exists fa-closed balanced neighborhood W of 0 with $W \subseteq U$ (by theorem 1.8,b). Which implies that $y - x \notin W$ then

 $y - x \in X - W$. Therefore $y \in (X - W) + \{x\}$, also, $(X-W) + \{x\}$ is fa-open, W is faclosed, $(X - W) + \{x\}$ contained on $(X - \{x\})$. Which shows $X/\{x\}$ is fa-open, thus $\{x\}$ is fa-closed. Conversely, let $x \in X$, and assume the singleton $\{x\}$ is fa-closed. From Theorem 1.7 the set $\{x\}=Cl_{fa}\{x\}=\cap\{U+\{x\}: U \text{ is } fa\text{-neighborhood for zero}\}=\{W: W \text{ is } fa\text{-neighborhood of } x\}$ where $W = U + \{x\}$. Thus by Corollary 1.11, X is fa-Hausdorff.

Definition 1.13: A topological space (X, τ) is called f α -compact if for any cover for X by f α -open subsets have a finites subcover.

Theorem 1.14:Let *C*, *K* be subsets in a F α TVS *X*, and $C \cap K = \emptyset$ such that *C* is a f α -closed, and *K* f α -compact. Then there exists a f α -neighborhood *U* for 0 such that $(K+U) \cap (C+U) = \phi$.

Proof: If $K = \phi$, then the proof is trivial. Otherwise, let $x \in K$, and x = 0. Then, X - C is an f α -open set of 0. Since the addition mapping is f α -irresolute and f α -continuous. Therefore , f α - neighborhood U for zero satisfies $3U = U + U + U \subset X - C$. Define $\tilde{U} = U \cap (-U)$ which is f α -open, symmetric and $3\tilde{U} = \tilde{U} + \tilde{U} + \tilde{U} \subset X - C$. That leads to $\emptyset = \{x + x + x, x \in \tilde{U}\}$ $\cap C = \{x + x, x \in \tilde{U}\}$ intersected $\{y - x, x \in \tilde{U}, y \in C\}$ and $\tilde{U} \cap \{C + \tilde{U}\} \subset \{2x, x \in \tilde{U}\} \cap \{y - x, x \in \tilde{U}, y \in C\}$. This is for one point. Now we have K is f α -compact, then by the above argument for every $x \in K$, we have a symmetric f α -neighborhood V_x s.t. $(x + 2V_x) \cap (C + V_x) = \phi$. The sets $\{V_x : x \in K\}$ are a f α -open that covers K, and since K is f α -compact subset therefore for finitely number for points $x_i \in K, i = 1, ..., n$, we have

 $K \subset \bigcup_{i=1}^{n} (x_i + V_{x_i})$. Define the fa-neighborhood V of 0 by $V = \bigcap_{i=1}^{n} V x_i$ Therefore (K+V)

intersected $(C+V) \subset \bigcup_{i=1} n (x_i + Vx_i + V) \cap (C+V) \subset \bigcup_{i=1} n (x_i + 2 Vx_i) \cap (C+Vx_i) = 0$, and the proof is finished

Lemma 1.15: Let U be fa-open subset of a FaTVS X, and A be any subset such that $U \cap A = \phi$, then $U \cap Cl_{fa}(A) = 0$.

Proof: Let. $x \in (U \cap Cl_{f\alpha}(A))$. Thus $x \in Cl_{f\alpha}(A)$, U is fa-neighborhood for x, since U is faopen subset, then X - U is fa-closed subset contain A, so that $Cl_{f\alpha}(A) \subseteq X - U$, and $x \notin Cl_{f\alpha}(A)$ which implies a contradiction, therefore $U \cap Cl_{f\alpha}(A) = \emptyset$.

Corollary 1.16: Suppose that *C*, and *K* are disjoint sets in a F α TVS *X* with *C* f α -closed, *K* f α -compact. Therefore, there f α -neighborhood *U* for zero satisfies $Cl_{f\alpha}(K+U)\cap(C+U)=0$.

Proof: In theorem 1.14 we have for any disjoint f α -closed *C* set and f α -compact set *K*, so that there is a f α -neighborhood *U* for 0 such that $(K+U) \cap (C+U) = 0$. The set $C+U = \{y+U: y \in C\}$ is a f α -open set, then by lemma 1.15 $\operatorname{Cl}_{f\alpha}(K+U) \cap (C+U) = 0$.

Definition 1.17: Let X be a vector space with field K, an algebra dual for X is the collection of linear functional which is defined in X and represented by X^* .

Theorem 1.18: Let X be a F α TVS and $0 \neq f \in X^*$, then f(F) is f α -open in K whenever F is f α -open in X.

Proof: Let. *F* be a non-empty subset of *X*, and $0 \neq x_0 \in X$ with $f(x_0) = 1$. Then, for any point $a \in F$, we have to prove that $f(a) \in \operatorname{Int}_{f\alpha}(f(F))$. *F* is fa-open neighborhood for *a* then, by Theorem 1.4 we have *F* - *a* is fa-neighborhood of 0. By Theorem 1.6 *F* - *a* is absorbing, then there exists $\epsilon > 0$ such that $\lambda x_0 \in F$ - *a* for $\lambda \in R$ with $|\lambda| \leq \epsilon$. Thus, for any $\beta \in R$ with $|\beta - f(a)| \leq \epsilon$ we have the $(\beta - f(a))x_0 \in F$ -*a*, thus $f((\beta - f(a)x_0) \in f(F-a), (\beta - f(a)) f(x_0) \in f(F-a) = f(F)-f(a)$ which lead to $\beta \in f(F)$, $f(a) \in [\beta - \epsilon, \beta + \epsilon], f(a)$ is interior point so that $f(a) \in \operatorname{Int}(f(F)) \subseteq \operatorname{Int}_{f\alpha}(f(F))$, which shows that $f(F) = \operatorname{Int}_{f\alpha}(f(F))$.

Note that an extremely point of a convex set in a vector space X is a point which is not an interior point of a segment.

Lemma 1.19: [10] Let X be a vector space ,and $0 \neq A \subseteq X$. For $x \in A$ the following statements are equivalents.

1) x is extremely point on A

2) if $a, b \in A$ such that, $x = \frac{1}{2}(a+b)$, then, x equal to a equal to b.

3) let $a,b \in A$, with $a \neq b$, let $\lambda \in (0,1)$, $x = \lambda a + (1-\lambda)b$. Then we have either $\lambda = 0$, or $\lambda = 1$

Theorem 1.20: Let *X* be FaTVS, and *F*⊂*X* be convex. Therefore, [fa-interior (*F*]∩(δF)=0 **Proof:** If $Int_{f\alpha}(F)=\emptyset$, the proof is trivial. Suppose that the $Int_{f\alpha}(F)\neq\emptyset$ and let $x \in Int_{f\alpha}(F)$. Therefore, there is a fa-neighborhood *U* for 0 s.t, $x+U \subset F$. Define the mapping $\varphi : \Re \to X$ where $\varphi(\mu) = \mu x$ continuous at $\mu = 1$, for this the fa-neighborhood x+U, there is an s>0 s.t, $\mu x \in x+U$ whenever $|\mu-1| \leq s$. In particular, we have $(1+s)x \in x+U \subset F$ and $(1-s)x \in x+U \subset F$. Now consider $x=\lambda(1+s)x+(1-\lambda)(1-s)x$ and take $\lambda = \frac{1}{2}$. So that $x=\frac{1}{2}(1+s)x+(1-\frac{1}{2})(1-s)x$, which leads to the point *x* which is not extremely on *F*.

Conclusion: Throughout this research we have been proved some results, namely the fuzzy- α topological vector spaces satisfies ,the property of any neighbourhood for 0 containing a neighborhood for 0 which is balanced ,F α TVS satisfies the separation axiom (fuzzy- α hausdorff) and in a fuzzy- α topological vector space the fuzzy- α -interior of a convex set didn't intersect with the boundary of the set .

Reference

- [1] L. A. Zadeh, "Fuzzy sets", Information and Computation, vol. 8, pp. 338–353, 1965.
- [2] A.K.Katsaras and D.B.Liu, "Fuzzy vector spaces and fuzzy topological vector spaces", *J.Math. Anal.Appl.* vol. 58, pp. 135-146, 1977.
- [3] A.K.Katsaras, "Fuzzy vector spaces and fuzzy topological space II", *Fuzzy Sets and Systems*, vol. 12, no. 2, pp. 143-154, 1984.
- [4] Jin-Xuan Fang, Cong-Hua Yan, "Induced I(L)-fuzzy topological vector spaces", *Fuzzy Sets and Systems*, vol. 121, pp. 293-299, 2001.
- [5] M.Alimohammady, M Roohi, "Fuzzy minimal structure and fuzzy minimal vector spaces", *Chaos, Solitons & Fractals*, vol. 27, no. 3, pp. 599-605, 2006.
- [6] Bin Shahna , A.S. "On fuzzy strong semicontinuity and fuzzy pre-continuity". *Fuzzy Sets and Systems*, vol. 44, pp. 303-308, 1991.
- [7] S.S. Thakur and R.K. Saraf, "α-compact fuzzy topological space", *Mathematica Bohemica*, vol. 120, no. 3, pp. 299-303, 1995.
- [8] V.Seenivasan, R.Renuka, "intuitionistic fuzzy α-irresolute function", *Italian journal of pure and applied mathematics*, n.33, pp. 71-80, 2014.
- [9] D. Andrijevie, "Semi-pre Open Sets", Math Vesnik, vol. 38, pp. 24-32, 1986.
- [10] Horvath, J. "Topological Vector Spaces and Distributions", Addison and Wesley publishing comp., London, 1966.