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Abstract:

Strain-controlled tests are conventional in soil mechanics laboratories. It is
intended in this paper to smulate both triaxial and simple shear tests
theoretically by using the finite element method. The solution of the non-
linear equations is obtained by several iterations. The Newton-Raphson with
tangent stiffness method in which the stiffness matrices are tangents is
adopted. The model used in this paper is the ALTERNAT model which
forms the major component of a double hardening model for the mechanical
behaviour of sand under alternating loading.

The finite element method is used in simulating the behaviour of round
uniform quartz sand under monotonic drained loading with constant mean
stress and cyclic constant volume loading (undrained). The monotonic test
was conducted with constant mean stress, where the specimen was
compressed in one direction and extended in other directions while the mean
stress (the average of the principal stresses) is kept constant and equal to 137
kPa. It is noticed that the peak stress is occurring at very small strain
(0.122). The stress-strain behaviour may be attributed to the particle
roundness and grain size uniformity.

In the cyclic tests, the specimen is sheared by cycling the shear strain while
the volume was kept constant. By doing this, an undrained strain-controlled
cyclic test similar to that typically done in many laboratories is numerically
simulated.

It was found that the mean stress during shearing is higher than the initial
consolidation pressure. This implies that only negative pore pressures occur
in the first two cycles. A careful study shows that there exists an effective
stress ratio line or zero-dilatancy line in both compression and extension
regions, beyond which the specimen dilates.
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Introduction:
Strain-controlled  tests are
conventional in soil mechanics
laboratories, for  example
triaxial test and direct shear
test. In the following sections,
this type of control is modelled
through the finite element
method.

The model described in this
paper forms the major
component of a double
hardening model for the
mechanical behaviour of sand
under alternating loading. The
model was developed by
Molenkamp (1987) a Delft
Geotechnics. In Fig. (1), the
yield surfaces of both plastic
models, namely the

“compressive’” model and the
“deviatoric’ model are shown
in the stress space of the
isotropic stress, s, and the
deviatoric stress, t.

The Yidd Surface for the
Deviatoric M odd:

For the continuum model of a
uniform stack of rigid discs, a
kind of kinematic yield surfaces
was found, (Fig. 2) in which the
relevant measure of stress
appeared to be a shear stress
level (Molenkamp, 1980). For
the present kinematic model, a
similar measure of a relevant
stress is introduced, namely the
shear stress level which is
defined by:
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in which:

tjj = deviatoric stress,

ojj = sresstensor,

l1=sj dij = s;; = first stress
invariant,

dij = Kronecker’s delta.

This relevant measure of stress
in Eq. (1) isdimensionless.

For the tensor of anisotropy,
also a dimensionless deviatoric
tensor, X, is introduced, thus
Xi Xij = 0. The relevant
measure of the pseudo shear
stress level becomes:

X t

- X, 2

oL

3 3
in which: Xj; = deviatoric
pseudo stress tensor.

The expression chosen for
the yield surface F* should
reduce to a generally accepted
expression for  monotonic
loading when x; = 0. The
expression as introduced by
Lade and Duncan (1975) is
used:

3

|
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in which:
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the shear stress level, constant
at akinematic vyield surface for
a definite value of the
hardening parameter, ¢ , as
shown in Fig. (2).
|3 isthe third stress invariant.

fd = measure of

The Plastic Potential for the
Deviatoric M ode:

In a plastic material model, the
plastic potential describes the
ratio of the Eulerian strain rates.
For simplicity, it is assumed
that the ratios of the plastic
Eulerian strain rates can be
described in the following way:

N @ |
a0 =it lax +JGTH_ i 16
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(4)
inwhich:
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= deviatoric tensor (5)
and
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a is the angle of noncoaxiality
which is the angle between the
principal directions of stress
and the Eulerian strain rates.
Like the yield surface, the
deviatoric component of the
plastic potential G™ is based on
the failure surface of Lade and
Duncan (1975), namely:
3
L e i

3

F’ =0

(7)

in which: 1y, I3 are the first
and third invariants of the
pseudo stress T'jj.  The pseudo
stress Tj;  has the same
isotropic component as the
pseudo stress Tj; = sjj — 11 /3 as
used for the yield surface but a
smaller deviatoric part.

Details of the functions and the
ALTERNAT model are given
by Molenkamp (1987) and
Fattah (1999).

Stress Dilatancy:

Molenkamp (1980) elaborated
the stress dilatancy theory for
triaxial compression and triaxial
extension tests. For loading
towards failure in triaxial
compression, it was found that:

205

- N2 (1- K)- (2+ K);

Vo_

g (1+2K)++2(1- K);
(8)

in which:

f
K = tan2(45+7°)

V = volumetric strain,

g= deviatoric strain, and

f o = the interparticle friction
angle.

It is assumed
(Molenkamp, 1980):

that,

&-s 0
fo=fy- (s -Tn)ex T
(9)

in which:
f. = interparticle friction

angle a very low isotropic
stress, s,

fow = Interparticle friction
angle a very high isotropic
stress,

Sy = parameter describing
the rate by which f, changes
from f , to fo with increasing
isotropic stress level (§Pa), (see
Fig. 3),

S = isotropic stress, and

Pa = atmospheric pressure.
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For loading towards failure
in triaxial extension, it was
found that:

t
v V2@ K)- (1+2K)

g (2+K)- 2(1- K);
(10)

Extension of the

ALTERNAT Modd:

In the numerical simulation of
the behaviour of frictional
materials under alternating
loading, the small errors in the
calculation of each individual
increment may accumulate
partly in subsequent
increments. This property of
numerical models is known as
"numerical drift".

Molenkamp (1990)
described an algorithm to
minimize eventual numerical
drift due to cyclic loading. One
aspect involves the automatic
control of the magnitude of the
applied subincrements of stress
and strain. The other aspect
concerns a corrective procedure
to keep the relevant stresses on
the corresponding yield
surfaces. Consequently,
eventual errors in the plastic
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deformation will not
accumulate.

A combination of the
parameters of the previous

version of the ALTERNAT
model (1987) and the present
one will be used in this paper.

The range of validity of the
ALTERNAT model had been
extended by Molenkamp (1990)
from small strain to large strain
deformation. To this end, also
the concept of the critical state
had been applied. Details of the
application are given by Fattah
(1999).

Determination of the
ALTERNAT Moded
Parameters:

For the determination of the
parameters of the ALTERNAT
model described in the previous
sections, special  types  of
triaxial tests are required, e.g.,
drained triaxial tests with
monotonically increasing or
decreasing axial strain and
constant isotropic stress. These
teds ae not easy to be
conducted in soil mechanics
laboratories. It is intended here
to choose a simple theoretical
model to get the required stress
- drain relationships for the
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determination of ALTERNAT
model parameters.

Of many theoretical models
available to predict the overall
reponse of sands, the
“endochronic  model”  was
chosen for this task. This model
treats the sand as a non-linear
elasticplastic material.
Furthermore, the theory
assumes inelastic changes to be
caused only by the
rearrangement of grains.

In this paper, the original
version of the endochronic
theory adopted by Bazant and
Krizek (1976) is used because
of its numerical simplicity. This
version was limited to drained
conditions and will be extended
to include undrained conditions.
Fattah (1999) gave detailed
investigation about using the

endochronic model in
determining ALTERNAT
model parameters. For the

description of the ALTERNAT
model parameters, See
Molenkamp (1987 and 1990).

Applications:

Ng and Dobry (1994) made
experimental and theoretical
investigation on  granular
specimens composed of
uniform spheres.
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The discrete element method
(DEM) was used in simulating
round uniform quartz sand
under  monotonic  drained
loading with constant mean
stress and cyclic constant
volume loading (undrained).

In the DEM, the interaction
between particles is considered
as a transient problem with
states of equilibrium developing

when the internal forces
balance.  The  equilibrium
contact forces and

displacements are found in a
stressed assembly of particles
through a series of calculations
tracing the movements of each
individual grain, (Cundal and
Strack, 1979).

A typical 2-dimensional
specimen used by Ng and
Dobry (1994) is shown in Fig.
(4). The porosity was calculated
as the ratio between the pore
area of the plane where the
spheres' centers lie and the box
dimensions. In genera 3-
dimensional specimens, the
porosity was defined asn = (1 -
a volume of spheres) / volume
of box.

Two simulated granular
specimens composed of spheres
were used in this study
(specimens B and C). All
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particles were assigned the
properties of quartz: shear
modulus, G 28.957 MPa,
Poisson's ratio, u = 0.15, and
the friction coefficient m = tan
fo = 05 where f, is the
interparticle friction angle.

The specimens are described
in Table (1) in which the third
and fourth columns show the
total number of spherical
particles N wused in each
specimen, as well as the ratios
Ri/R:/R; of three different
particle sizes with N1/No/Ns
which are the numbers of
particles having these sizes.

In all cases, N = N;+N>+N3 and

al the specimens were
isotropically consolidated to
S¢ = 137 kPa prior to

monotonic and cyclic loading.

Strain-Controlled Loading
for the Kinematic Hardening
M oddl:

It is intended in this paper to

simulate both triaxial and
simple shear tests. Therefore,
the principle of the

computations for the strain-
controlled loading is discussed
in this section. The calculations
for the strain-controlled loading
had been collected in the
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program STRINS (Molenkamp,
1987).

First a choice is met; it
concerns the question whether
in the previous increment,
viscous flow (no cracking) has
occurred. If so, the stress due to
viscous flow is calculated by:

e - 0
- ewd, +

s, =Mie-d, KT (11)

: ;
in which u is the viscosity. In
the program, the arbitrary
parameter VISC is used, which
isrelated to the viscosity by:
n =VISC*Pa (12

in which Pa is the atmospheric
pressure.

If previously no viscous
flow (or cracking) has occurred,
then the following actions are
performed. First the effect of
cohesion c is taken into account
by adapting the normal stresses:

c
tanf ,

Also the apparent isotropic
stress at  liquefaction  or
cracking Piq is calculated,
namely:

(13)
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_c
tanf

cv

lig — tens

in which Pyns = strength in
isotropic tension in case of
cohesion.

In case of liquefaction without
cohesion, for Pes a small
pressure is used, namely:

P Pa*10°

tens

(14)
Later in the sequence of
actions, the liquefaction or
cracking is assumed to begin if:

+S +S

S cll c22

3

c33
< I:)qu

(15)

The stress increment in case
of elastic behaviour needed for
the later evaluation of the type
of loading is derived in the co-
rotational frame of reference.
The incremental rotation for the
eventual back transform of the
computed stress is determined.
The strain  increment  is
provided in the fixed frame of
reference. It is converted to the
co-rotational frame of
reference. The determination of
the type of behaviour is based
on a number of criteria.

First of all, the previous
behaviour is continued if it was
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viscous flow. The dress
increments and new stresses are
then determined assuming
purely elastic behaviour. The
elagtic strain increment is used

to determine the type of
loading. For this purpose,
several criteria  for  stress

reversals are available.
For more explanations see
Fattah (1999).

Implementation of the
Kinematic Hardening Model

in Finite Element
Discretization:
In this section, a physical

problem with its finite element
approximation will be treated.
The attention will be focused on
the static problem.

Equilibrium Problem and its
Finite Element For mulation:

The dress tensor, sj, is
required to satisfy the
equilibrium equation:

s;; +F; =0 (16)
intheregionv.

The finite element

approximation can be written
as

@Bngv+f =0
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where s is a function of the

displacement; e, the
displacements at the nodes of
the elements.

The practical situation is
usually starting from an

equilibrium state stress s °, and

tractions f°, thus some

changes are enforced such that
either the displacement or the
surface traction are adapted.
Schematically one may write:

B's dv+f°=0 (17)

s =s"+Ds (18)

f=f°+Df (19)

then: (‘)BT Ds+Df =0
V -~ -~

(20)

For a linear elastic model, the
stressis given by:

Ds = DDs (21)
and
De = BDU (22
where: D = the stress-strain
matrix.

B = the sran-noda

displacement matrix.
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The substitution of equations
(21) and (22) results in:

OB’ DBdv+DU+Df =0

(23)
For a more general material
model, the function

Ds (BDU)is non-linear. In the

next section, it will be seen that
the ALTERNAT model is not
differentiable in the usual sense
that can be approximated by a
linear relationship.

Numerical Solution of Non-
Linear Finite Element
Approximation:

For non-linear problems, the
solution is obtained by several
iterations. It is assumed that the
approximation after iteration i
is DU not yet satisfying
Equation (20), i.e.:

BT Ds (BDUY+Df t 0
V -~ -~ -~

(24)

The next iteration isin all cases
derived as;
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Ki(DL}Hl- DL}I) —
- 9B'Ds(BDU')dv + Df
(25)

The choice of the matrix K'
determines the type of iteration
process. This can be best
illustrated in the following non-
linear equation:

9x)=0 (26)
From x' with g(x) * 0, the next
approximation is obtained by:

K'(x"™ - x")=-g(x") (27)

This is shown graphically in
Fig. (5).

The Newton-Raphson solution
proceeds according to:

K =@(xi) (29)
dx

which means that the slope of
the curve for g is followed:

The modified Newton-
Raphson solution uses:
K'= ﬂ(x°) (29)
dx

i.e., the K' are fixed after the
first one, this may be more
efficient if the computation
and/or the inversion of the
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derivative is expensive. It is
also possible to use some other
K' =K. If the K is close enough
to the dlope of g, then
convergence is obtained. If the
slope K is steeper than the slope
of g, the convergence is
assured, though it may be a
very slow convergence.

For the case of non-linear
Equations (25), the K' matrices

may be defined as:

1 - T[

fbu
OB" Ds (BDU)dvDU = DU’
(30)

or:

i — X ﬂDS
K - @T ﬂDe D(EZD(::‘i
(31)

This is the Newton-Raphson or
tangent tiffness method in
which the matrices K' are the
tangent stiffness matrices.

The modified Newton-
Raphson method is defined by:
i — N ﬂDS
K'=K= OBT iDe De=De'
(32)
Finally, the so-called initial
stress method uses

(Zienkiewicz, 1977):
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K'=K=¢B"'DBdv (33)

where D is the linearization of
the elastic part of the material
behaviour only.
Structure of the Finite
Element Program:

The finite element program
(ALTER 87) is modified from
that written by Molenkamp

(1987). It is based on the
modified Newton-Raphson
scheme. The subroutine

package of Molenkamp (1987)
was used together with the
subroutine package of Smith
and Griffiths (1988).

Description of the Problem:
Ng and Dobry (1994) made
experimental tests on granular
gpecimens of uniform spheres.
The tests consist of monotonic
loading on triaxial specimen
and cyclic loading on simple
shear specimen. The tests will
be simulated using the program
(ALTER 87).

M onotonic Drained Tests:
The tests were conducted on
specimen B (see Table 1). The
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two specimens B and C have
the same size and grain size
distribution and were
consolidated to the same s =
137 kPa. However, specimen B
(n 0.349) is denser than
specimen C (n = 0.382). The
ALTERNATmModel parameters
for both specimens are given in
Table (2). These parameters are
described in the previous
figures and can be seen in
details in Molenkamp (1987)
and Fattah (1999). The triaxial
specimen was given the
standard dimensions (76 mm
height and 38 mm diameter)
and was modelled by eight
axisymmetric eight-noded
isoparametric elements. The
finite element mesh for the
axisymmetric problem is shown
in Fig. (6).

The test was conducted with
constant mean stress, where the
specimen was compressed in
one direction and extended in
other directions while the mean
stress s, (the average of the
principal stresses) is  kept
constant and equal to 137 kPa.

The results are presented in
Fig.. (7). The kinematic yield
surfaces in pi-plane for the
initial state are shown in Fig.

(8).
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It is noticed in Fig. (7) that
the peak stress is occurring at a
very small strain (0.122). This

stress-strain~ behaviour  is
atributed to the particle
roundness and gran size

uniformity. In Fig. (8), the outer
surface is the vyield surface
while the interior is the plastic
potential.  These  surfaces
changes with advancement of
loading.
Constant  Volume
Shear Tests:

In these tests, the specimen is
sheared by cycling the shear
strain gy while the volume is
kept constant. By doing this, an

Cyclic

undrained strain-controlled
cyclic test similar to that
typically done in  many
laboratories is  numerically
simulated.

Two specimens B and C
were used to veify the

influence of specimen density
(porosity) on the undrained

cyclic  behaviour of the
material.
A constant cyclic shear

strain amplitude g, = 0.8% was
applied to the \vertical-
horizontal planes of specimen B
with no volume change.
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The assemblage of particles
was simulated in the standard
Cambridge simple shear device.
The change in pore water
pressure Du is given by the
relation between the apparent
bulk modulus of the pore water

KA and the change in
volumetric strain Deyo, namely:
DU = KA* De,, (34
K
KA=—+ (35
n

where: K, = the bulk modulus
of water.

Modelling the Simple Shear
Device:

The dimensions of the assumed
sample are 60 mm in length and
20 mm height. The finite
element mesh and the boundary
conditions are shown in Fig.
(9). The analysis was performrd
in  plane strain  with the
following boundary conditions
(Dounias and Potts, 1993):

1) The bottom boundary was
assumed rough and fully
restrained.

The top boundary was
assumed rigid and rough
and was displaced
horizontally by d. This was
achieved by tying together
the nodes aong the top

2)
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boundary (BC) in the x and

y-directions. It was
therefore free to move
vertically, but it had to

remain horizontal.

3) The vertical boundaries AB
and DC were smooth and
rotated in a rigid manner
about their base, so that B
and C were displaced
horizontally by d.

The results are presented for

node 213 as shown in Figure

(9).

Results of Cyclic Shear
Simulation:
In Fig. (10a), a banana-shaped
stress-strain loop is developed.
The curve of the shear stress
versus the mean stress is shown
in Fig. (10b) which shows that
the mean stress during shearing
is higher than the initial
consolidation pressure. This
implies that only negative pore
pressures occur in the first two
cycles. A careful study of Fig.
(10b) shows that there exits an
effective stress ratio line or
zero-dilatancy line (shown in
the figure) in both compression
and extension regions, beyond
which the specimen dilates.

A similar cyclic shear test
was conducted on the looser
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specimen C with smaller cyclic
shear strain amplitude, g
0.08%, and the results are
shown in Fig.(11).

The calculated hysteresis
loops are shown in Fig.(11a)
which shows a decrease of
shear stress as the number of
cycles increases. The shear
stress decreases faster in the
first cycle.

The graph of shear stress
versus mean stress for this
simulation, shown in Figure
(11b), moves progressively
towards the origin. An effective
stress failure envelope can be
identified both in compression
and extension regions in Fig.
(11b). It can be noticed that the
slope of the failure envelope in
compression is greater than that
in extension. This means that
the angle of friction in
compression is greater than that
in extension.

Fig. (11c) illustrates the pore
pressure build-up of this
simulated cyclic shear test. The
plot of the calculated
normalized pore pressure ratio
in Fig. (11c), (ry = u/s¢), with
number of cycles is similar to
that observed in cyclic strain-
controlled laboratory tests on
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sands, (Finn et al., 1971 and
Cho et a., 1976).

The rate of pore pressure
build-up in the first cycle is the
highest and decreases with
number of cycles. As in the
laboratory experiments, at the
end of each cycle, the
calculated pore pressure in Fig.
(11c) increases over its value at
the beginning of the cycle, and
the pore pressure build-up
eventually  approaches the
consolidation pressure where u
=S¢ or ry =1, and thus initial
liquefaction occurs.

It is noticed in Fig. (11c)
that the pore pressure predicted
by the finite element method
adopting the ALTERNAT
model is less than that by the
discrete element. This may be
attributed to the boundary
conditions adopted depending
on the work of Dounias and
Potts (1993) for simple shear
tests. The boundary conditions
make the sample more
restrained and lead to smaller
strains. This in turn reduces the
pore pressure build-up in the
sample.

Conclusions:
The finite element method is
used in simulating round
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uniform quartz sand under
monotonic drained loading with
constant mean stress and cyclic
constant  volume  loading
(undrained). The following
conclusions can be drawn:

1. The peak dsress is
occurring a a very small
strain (0.122). This stress-
strain behaviour is due to
the particle roundness and
grain size uniformity.

t was found that the mean
stress during shearing is
higher than the initial
consolidation  pressure.
This implies that only
negative  pore  water
pressures occur in the first
two cycles. A careful
study shows that there
exists an effective stress
ratio line or zero-dilatancy
line in both compression
and extension regions,
beyond which the
specimen dilates.

For cyclic simple shear
tes simulated in this
paper, it was found that
the rate of pore water
pressure build-up in the
first cycle is the highest
and  decreases  with
number of cycles. As in
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the laboratory
experiments, at the end of
each cycle, the calculated
pore pressure increases
over its value a the
beginning of the cycle,
and the pore pressure

build-up eventually
approaches the
consolidation pressure
whereu=occor r, =1, and
thus initial liquefaction
occurs.

It is noticed that the pore
pressure predicted by the
finite element method
adopting the ALTERNAT
model is less than that by
the discrete element. This
may be attributed to the
boundary conditions
adopted for modelling the
simple shear test. The
boundary conditions make
the sample more
restrained and lead to
smaller strains. This in
turn reduces the pore
pressure build-up in the
sample.
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Table (1) — Characteristics of specimens used in simulation (from
Ng and Dobry, 1994).

Number and Sizes of Specimen after
Spheres in Specimens Consolidation
Specimen m Total (N1/N2/N3) Sc Porosity | Relative
Number of and (kPa) (n) Density
Particles (R1/R2/R5) Dr (%)
0.5 398 291/79/28 137 0.249 68.8
(/1.5/2)
0.5 398 291/79/28 137 0.382 52.0
(1/1.5/2)

Table (2) — ALTERNAT model parameters for the specimens tested
by Ng and Dobry (1994) as determined by the procedure proposed

by Fattah (1999).
Parameter Value
Specimen B Specimen C
Non-linear Elastic
Model:
\Y 0.12 0.12
A 0.00113 0.00112
AP 0.327 0.348
Deviatoric Plastic
Model:
Hardening or Triaxial
E 419 417
EP 0.4648 0.4633
Ct 0.116 0.122
(t/s)cv 0.655 0.643
T 0 0
b 0 0
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Cm 0.049 (Molenkamp, 0.049 (Molenkamp,
1987) 1987)

Nm 5.15 (Molenkamp, 5.15 (Molenkamp,
1987) 1987)

LB 0.3 (published data) | 0.3 (published data)

Cohesion (c) 0 0

Hardening for Triaxial

Extension:

EE 1.71 1.69

EEP 0.2365 0.2314

Hardening by

Densification:.

Porosity (n) 0.349 0.382

Porosity at densest

state (Ng) 0.27 0.27

k 1 1

Plastic Potential in pi-

plane:

RT 0.3 (published data) | 0.3 (published data)

Dilatancy:

fm 26.5° 26.5°

fo 26.5° 26.5°

Sy 1 1

Cov 1 1

Tensile Strength:

St 0. 0.

Viscosity in

Liquefaction:

Ve 0.01 sec. 0.01 sec.

Initial State:

Ci 0.05 0.05

Coefficient of latera

stress at rest (Ko) 0.55 0.55
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Failure Surface

Modelling The Behaviour Of Sand

Kinematic Deviatoric
Yield Surface

sirace

t

S

Compressive Yield Surface

Fig. (1)- Theyield surfaces of the ALTERNAT model.

Note: ty, t, and t; arethe principal stresses.
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s/Pa
Fig. (3) — Definition of the parameters for stress dilatancy.
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Fig. (4) — Geometry of 2-dimensional specimen used by Ng and
Dobry (1994).
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9(X)

X

Fig. (5) — Iteration process in the non-linear problem.
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Fig.(6) — The finite element mesh for monotonic loading problem
(axisymmetric).
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Fig. (7) — Results of drained monotonic triaxial compression test on
specimen B, constant mean stress = 137 kPa
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Fig. (8) — Kinematic yield surfaces in pi-plane for specimen B

(initial state).
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Fig. (9) — The finite e ement mesh and boundary conditions for simple shear analysis (plane strain).
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Fig. (10) — Results of undrained cyclic shear test on specimen B.
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Fig. (11) — Results of undrained cyclic shear test on specimen C.

227



