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Abstract: 
  Strain-controlled tests are conventional in soil mechanics laboratories. It is 
intended in this paper to simulate both triaxial and simple shear tests 
theoretically by using the finite element method. The solution of the non-
linear equations is obtained by several iterations. The Newton-Raphson with 
tangent stiffness method in which the stiffness matrices are tangents is  
adopted. The model used in this paper is the ALTERNAT model which 
forms the major component of a double hardening model for the mechanical 
behaviour of sand under alternating loading. 
  The finite element method is used in simulating the behaviour of round 
uniform quartz sand under monotonic drained loading with constant mean 
stress and cyclic constant volume loading (undrained). The monotonic test 
was conducted with constant mean stress, where the specimen was 
compressed in one direction and extended in other directions while the mean 
stress (the average of the principal stresses) is kept constant and equal to 137 
kPa. It is noticed that the peak stress is occurring at very small strain 
(0.122). The stress-strain behaviour may be attributed to the particle 
roundness and grain size uniformity. 
  In the cyclic tests, the specimen is sheared by cycling the shear strain while 
the volume was kept constant. By doing this, an undrained strain-controlled 
cyclic test similar to that typically done in many laboratories is numerically 
simulated. 
   It was found that the mean stress during shearing is higher than the initial 
consolidation pressure. This implies that only negative pore pressures occur 
in the first two cycles. A careful study shows that there exists an effective 
stress ratio line or zero-dilatancy line in both compression and extension 
regions, beyond which the specimen dilates. 
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  :الخلاصة
يهدف هذا البحث إلى . تعتبر فحوص الانفعال المسيطر عليه شائعة في مختبرات ميكانيك التربة

تمثيل كل من فحص الانضغاط ثلاثي المحاور و فحص القص البسيط نظريا بطريقة العناصر 
خطية بعدة محاولات حيث تعتمد طريقة مصفوفة الصلادة المماسة يتم حل المعادلات اللا. المحددة

 ALTERNATنموذج لإن النموذج المستعمل في هذا البحث هو . رافسون-أو مصفوفة نيوتن
نموذج ثنائي التصلب يستعمل لتمثيل السلوك الميكانيكي للرمل لاالذي يشكل المركبة الرئيسية 

 العناصر المحددة في تمثيل سلوك رمل مستدير أستعملت طريقة. تحت تأثير أحمال متغيرة
الحبيبات منتظم من الكوارتز معرض إلى حمل مبزول أحادي تحت تأثير معدل إجهاد ثابت و 

  .حمل دوري غير مبزول تحت تأثير حجم ثابت
أجري الفحص الأحادي بتثبيت معدل الإجهاد حيث يتم ضغط النموذج من اتجاه معين و 

 ١٣٧ن الآخرين بينما يبقى معدل الإجهادات الرئيسية ثابتا و  مساويا إلى استطالته من الاتجاهي
و يمكن أن ، )٠,١٢٢( و قد لوحظ أن إجهاد القمة يحدث عند انفعال صغير جدا .كيلوباسكال

أما في الفحوص  .الانفعال هذه إلى استدارة الحبيبات و انتظام أحجامها- تعزى علاقة الإجهاد
و بهذه العملية يتم تمثيل . ذج بتكرار انفعال القص مع إبقاء الحجم ثابتاالدورية فيتم قص النمو

و قد . فحص دوري غير مبزول فيه الانفعال مسيطر عليه بحالة مماثلة لما يحدث في المختبر
وجد أن معدل الإجهاد خلال القص يكون أعلى من ضغط الانضمام الأولي، و هذا يعني أنه 

و عند ملاحظة النتائج بدقة يتبين وجود خط يمثل . تين الأوليتينيحدث ضغط ماء سالب في الدور
في كل من ) Zero Dilatancy Line( الصفري   نسبة إجهاد مؤثر أو ما يسمى بخط التمدد

 .منطقتي الضغط و الشد، و يبدأ النموذج بالتمدد خارج هذين الخطين
 

Introduction: 
Strain-controlled tests are 
conventional in soil mechanics 
laboratories, for example 
triaxial test and direct shear 
test. In the following sections, 
this type of control is modelled 
through the finite element 
method. 
     The model described in this 
paper forms the major 
component of a double 
hardening model for the 
mechanical behaviour of sand 
under alternating loading. The 
model was developed by 
Molenkamp (1987) at Delft 
Geotechnics. In Fig. (1), the 
yield surfaces of both plastic 
models, namely the 

“compressive” model and the 
“deviatoric” model are shown 
in the stress space of the 
isotropic stress, s, and the 
deviatoric stress, t. 
 
The Yield Surface for the 
Deviatoric Model: 
For the continuum model of a 
uniform stack of rigid discs, a 
kind of kinematic yield surfaces 
was found, (Fig. 2) in which the 
relevant measure of stress 
appeared to be a shear stress 
level (Molenkamp, 1980). For 
the present kinematic model, a 
similar measure of a relevant 
stress is introduced, namely the 
shear stress level which is 
defined by: 
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in which: 
     tij = deviatoric stress, 
     σij = stress tensor, 
     I1 = σij δ ij = σii = first stress 
invariant, 
     δij = Kronecker’s delta. 
 
This relevant measure of stress 
in Eq. (1) is dimensionless. 
     For the tensor of anisotropy, 
also a dimensionless deviatoric 
tensor, ξ, is introduced, thus         
ξ ij  ξ ij = 0.  The relevant 
measure of the pseudo shear 
stress level becomes: 
 

i
ijij

I
t

I
X

ξ−=

33
11

                     (2) 

 
in which: Xij = deviatoric 
pseudo stress tensor. 
     The expression chosen for 
the yield surface Fd should 
reduce to a generally accepted 
expression for monotonic 
loading when ξij = 0.  The 
expression as introduced by 
Lade and Duncan (1975) is 
used: 

0)(27
3

3
1 =−−= xf

I
I

F dd  

                                             (3) 
in which: 

f I
I

d = −1
3

3

27   measure of 

the shear stress level, constant 
at a kinematic  yield surface for 
a definite value of the 
hardening parameter, χ , as 
shown in Fig. (2). 
I3 is the third stress invariant. 

 
The Plastic Potential for the 
Deviatoric Model: 
In a plastic material model, the 
plastic potential describes the 
ratio of the Eulerian strain rates. 
For simplicity, it is assumed 
that the ratios of the plastic 
Eulerian strain rates can be 
described in the following way: 
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in which: 
∂
∂ σ

ξ
G dd

ij
ij = 0

 
= deviatoric tensor               (5) 
and 
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kl

dd

kl

dd GG
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                (6) 
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α is the angle of noncoaxiality 
which is the angle between the 
principal directions of stress 
and the Eulerian strain rates. 
     Like the yield surface, the 
deviatoric component of the 
plastic potential Gdd  is based on 
the failure surface of Lade and 
Duncan (1975), namely: 

F I
I

f d*
*

*

*
= − − =1

3

3

27 0  

         (7) 
 

in which:  I*
1 , I*

3 are the first 
and third invariants of the 
pseudo stress T*

ij.  The pseudo 
stress T*

ij  has the same 
isotropic component as the 
pseudo stress Tij = σij – I1 /3 as 
used for the yield surface but a 
smaller deviatoric part. 
Details of the functions and the 
ALTERNAT model are given 
by Molenkamp (1987) and 
Fattah (1999). 
 
 
Stress Dilatancy: 
Molenkamp (1980) elaborated 
the stress dilatancy theory for 
triaxial compression and triaxial 
extension tests. For loading 
towards failure in triaxial 
compression, it was found that: 

 

s
tKK

s
tKKV

)1(2)21(

)2()1(2
.

.

−++

+−−−
=

γ

            (8) 
in which: 

     )
2

45(tan2 oK
φ

+=  

     V = volumetric strain, 
     γ =  deviatoric strain, and 
     φo = the interparticle friction 
angle. 
     It is assumed that, 
(Molenkamp, 1980): 








 −
−−=

cv
cvcvo SPa

s
.

exp)( µφφφφ

                                             (9) 
in which: 
     φμ = interparticle friction 
angle at very low isotropic 
stress, s, 
     φcv   = interparticle friction 
angle at very high isotropic 
stress, 
     Scv = parameter describing 
the rate by which φo changes 
from φμ to φcv with   increasing 
isotropic stress level (s/Pa), (see 
Fig. 3), 
     s = isotropic stress, and 
     Pa = atmospheric pressure. 
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     For loading towards failure 
in triaxial extension, it was 
found that: 
 

s
tKK

s
tKKV

)1(2)2(

)21()1(2
.

.

−−+

+−−
=

γ
 

       (10) 
 
Extension of the  
ALTERNAT Model: 
In the numerical simulation of 
the behaviour of frictional 
materials under alternating 
loading, the small errors in the 
calculation of each individual 
increment may accumulate 
partly in subsequent 
increments. This property of 
numerical models is known as 
"numerical drift". 
     Molenkamp (1990) 
described an algorithm to 
minimize eventual numerical 
drift due to cyclic loading. One 
aspect involves the automatic 
control of the magnitude of the 
applied subincrements of stress 
and strain. The other aspect 
concerns a corrective procedure 
to keep the relevant stresses on 
the corresponding yield 
surfaces. Consequently, 
eventual errors in the plastic 

deformation will not 
accumulate. 
     A combination of the 
parameters of the previous 
version of the ALTERNAT 
model (1987) and the present 
one will be used in this paper. 
     The range of validity of the 
ALTERNAT model had been 
extended by Molenkamp (1990) 
from small strain to large strain 
deformation. To this end, also 
the concept of the critical state 
had been applied. Details of the 
application are given by Fattah 
(1999). 
 
Determination of the 
ALTERNAT Model 
Parameters: 
For the determination of the 
parameters of the ALTERNAT 
model described in the previous 
sections, special types of 
triaxial tests are required, e.g., 
drained triaxial tests with 
monotonically increasing or 
decreasing axial strain and 
constant isotropic stress. These 
tests are not easy to be 
conducted in soil mechanics 
laboratories. It is intended here 
to choose a simple theoretical 
model to get the required stress 
- strain relationships for the 
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determination of ALTERNAT 
model parameters. 
     Of many theoretical models 
available to predict the overall 
response of sands, the 
“endochronic model” was 
chosen for this task. This model 
treats the sand as a non-linear 
elasticplastic material. 
Furthermore, the theory 
assumes inelastic changes to be 
caused only by the 
rearrangement of grains. 
     In this paper, the original 
version of the endochronic 
theory adopted by Bazant and 
Krizek (1976) is used because 
of its numerical simplicity. This 
version was limited to drained 
conditions and will be extended 
to include undrained conditions. 
Fattah (1999) gave detailed 
investigation about using the 
endochronic model in 
determining ALTERNAT 
model parameters. For the 
description of the ALTERNAT 
model parameters, see 
Molenkamp (1987 and 1990). 
 
Applications: 
Ng and Dobry (1994) made 
experimental and theoretical 
investigation on granular 
specimens composed of 
uniform spheres. 

The discrete element method 
(DEM) was used in simulating 
round uniform quartz sand 
under monotonic drained 
loading with constant mean 
stress and cyclic constant 
volume loading (undrained). 
     In the DEM, the interaction 
between particles is considered 
as a transient problem with 
states of equilibrium developing 
when the internal forces 
balance. The equilibrium 
contact forces and 
displacements are found in a 
stressed assembly of particles 
through a series of calculations 
tracing the movements of each 
individual grain, (Cundal and 
Strack, 1979). 
     A typical 2-dimensional 
specimen used by Ng and 
Dobry (1994) is shown in Fig. 
(4). The porosity was calculated 
as the ratio between the pore 
area of the plane where the 
spheres' centers lie and the box 
dimensions. In general 3-
dimensional specimens, the 
porosity was defined as n = (1 - 
∑ volume of spheres) / volume 
of box. 
     Two simulated granular 
specimens composed of spheres 
were used in this study 
(specimens B and C). All 
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particles were assigned the 
properties of quartz: shear 
modulus, G = 28.957 MPa, 
Poisson's ratio, υ = 0.15, and 
the friction coefficient µs = tan 
φo = 0.5 where φo is the 
interparticle friction angle. 
     The specimens are described 
in Table (1) in which the third 
and fourth columns show the 
total number of spherical 
particles N used in each 
specimen, as well as the ratios 
R1/R2/R3 of three different 
particle sizes with N1/N2/N3 
which are the numbers of 
particles having these sizes. 

 
In all cases, N = N1+N2+N3 and 
all the specimens were 
isotropically consolidated to                
σc = 137 kPa prior to 
monotonic and cyclic loading. 
 
Strain-Controlled Loading 
for the Kinematic Hardening 
Model: 
It is intended in this paper to 
simulate both triaxial and 
simple shear tests. Therefore, 
the principle of the 
computations for the strain-
controlled loading is discussed 
in this section. The calculations 
for the strain-controlled loading 
had been collected in the 

program STRINS (Molenkamp, 
1987). 
First a choice is met; it 
concerns the question whether 
in the previous increment, 
viscous flow (no cracking) has 
occurred. If so, the stress due to 
viscous flow is calculated by: 














−=

3
2

.
.

klkl
ijij

δε
δενσ   (11) 

in which υ is the viscosity. In 
the program, the arbitrary 
parameter VISC is used, which 
is related to the viscosity by: 
 

PaVISC*=ν                     (12) 
 
in which Pa is the atmospheric 
pressure. 
 
     If previously no viscous 
flow (or cracking) has occurred, 
then the following actions are 
performed. First the effect of 
cohesion c is taken into account 
by adapting the normal stresses: 

 

cv
iicii

c
φ

σσ
tan

+=         (13) 

Also the apparent isotropic 
stress at liquefaction or 
cracking Pliq is calculated, 
namely: 



Eng.&Tech.,Vol.26,No.2,2008                                       Modelling The Behaviour Of Sand 
Under Strain-Controlled Loading BY The Finite Element Method 

                

 
 

209

tens
cv

liq PcP −=
φtan

 

 
in which Ptens = strength in 
isotropic tension in case of 
cohesion. 
In case of liquefaction without 
cohesion, for Ptens a small 
pressure is used, namely: 

510* −−= PaPtens              (14) 
 
Later in the sequence of 
actions, the liquefaction or 
cracking is assumed to begin if: 

 

liq
ccc P<

++
3

332211 σσσ
   (15) 

 
     The stress increment in case 
of elastic behaviour needed for 
the later evaluation of the type 
of loading is derived in the co-
rotational frame of reference. 
The incremental rotation for the 
eventual back transform of the 
computed stress is determined. 
The strain increment is 
provided in the fixed frame of 
reference. It is converted to the 
co-rotational frame of 
reference. The determination of 
the type of behaviour is based 
on a number of criteria. 
     First of all, the previous 
behaviour is continued if it was 

viscous flow. The stress 
increments and new stresses are 
then determined assuming 
purely elastic behaviour. The 
elastic strain increment is used 
to determine the type of 
loading. For this purpose, 
several criteria for stress 
reversals are available. 
For more explanations see 
Fattah (1999). 
 
Implementation of the 
Kinematic Hardening Model 
in Finite Element 
Discretization: 
In this section, a physical 
problem with its finite element 
approximation will be treated. 
The attention will be focused on 
the static problem. 
 
Equilibrium Problem and its 
Finite Element Formulation: 
The stress tensor, σij, is 
required to satisfy the 
equilibrium equation: 

0, =+ jiij Fσ                     (16) 
 
in the region v. 
The finite element 
approximation can be written 
as: 

0
~~

=+∫ fdvBT σ  
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where 
~

σ  is a function of the 

displacement; i.e., the 
displacements at the nodes of 
the elements. 
     The practical situation is 
usually starting from an 
equilibrium state stress 0

~
σ , and 

tractions 0

~
f , thus some 

changes are enforced such that 
either the displacement or the 
surface traction are adapted. 
Schematically one may write: 
 

∫ =+ 00

~

0

~
fdvBT σ         (17) 

~

0

~~
σσσ ∆+=                      (18) 

 

~

0

~~
fff ∆+=                     (19) 

then: ∫ =∆+∆
v

T fB 0
~~

σ                

          (20) 
For a linear elastic model, the 
stress is given by: 
 

σσ ∆=∆ D                        (21) 
and 

UB∆=∆ε                         (22) 
 
where: D = the stress-strain 
matrix. 
     B = the strain-nodal 
displacement matrix. 

The substitution of equations 
(21) and (22) results in: 
 

∫ =∆+∆+
v

T fUDBdvB 0
~~

 

                     (23) 
     For a more general material 
model, the function 

)(
~~
UB∆∆σ is non-linear. In the 

next section, it will be seen that 
the ALTERNAT model is not 
differentiable in the usual sense 
that can be approximated by a 
linear relationship. 
 
Numerical Solution of Non-
Linear Finite Element 
Approximation: 
For non-linear problems, the 
solution is obtained by several 
iterations. It is assumed that the 
approximation after iteration i 
is  ∆ui not yet satisfying 
Equation (20), i.e.: 
 

∫ ≠∆+∆∆
v

iT fUBB 0)(
~~~

σ                      

                     (24) 
 
The next iteration is in all cases 
derived as: 
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∫ ∆+∆σ∆−

=∆−∆ +

v
~

i

~~

T

i

~

1i

~

i

fdv)UB(B

)UU(K
                              

                                (25) 
 
The choice of the matrix Ki 
determines the type of iteration 
process. This can be best 
illustrated in the following non-
linear equation: 

0)( =xg                             (26) 
From xi with g(xi) ≠ 0, the next 
approximation is obtained by: 
 

)()( 1 iiii xgxxK −=−+    (27) 
 
This is shown graphically in 
Fig. (5). 
The Newton-Raphson solution 
proceeds according to: 
 

)( ii x
dx
dgK =                   (28) 

which means that the slope of 
the curve for g is followed: 
     The modified Newton-
Raphson solution uses: 

)( oi x
dx
dgK =              (29) 

 
i.e., the Ki are fixed after the 
first one, this may be more 
efficient if the computation 
and/or the inversion of the 

derivative is expensive. It is 
also possible to use some other 
Ki = K. If the K is close enough 
to the slope of g, then 
convergence is obtained. If the 
slope K is steeper than the slope 
of g, the convergence is 
assured, though it may be a 
very slow convergence. 
     For the case of non-linear 
Equations (25), the Ki matrices 
may be defined as: 

~
U

K i

∆∂
∂

=  

∫ ∆=∆∆∆
v

iT UUdvUBB
~~~~

)(σ  

       (30) 
 

or:   

∫ ∆=∆∆∂
∆∂

=
v

Ti
iBK

~~
εεε

σ     

(31) 
This is the Newton-Raphson or 
tangent stiffness method in 
which the matrices Ki are the 
tangent stiffness matrices. 
     The modified Newton-
Raphson method is defined by: 

∫ ∆=∆∆∂
∆∂

==
v

Ti
iBKK

εεε
σ

               (32) 
Finally, the so-called initial 
stress method uses 
(Zienkiewicz, 1977): 
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∫==
v

Ti dvDBBKK      (33) 

 
where D is the linearization of 
the elastic part of the material 
behaviour only. 

 
Structure of the Finite 
Element Program: 
The finite element program 
(ALTER 87) is modified from 
that written by Molenkamp 
(1987). It is based on the 
modified Newton-Raphson 
scheme. The subroutine 
package of Molenkamp (1987) 
was used together with the 
subroutine package of Smith 
and Griffiths (1988). 
 
Description of the Problem: 
Ng and Dobry (1994) made 
experimental tests on granular 
specimens of uniform spheres. 
The tests consist of monotonic 
loading on triaxial specimen 
and cyclic loading on simple 
shear specimen. The tests will 
be simulated using the program 
(ALTER 87). 
 
 
 
Monotonic Drained Tests: 
The tests were conducted on 
specimen B (see Table 1). The 

two specimens B and C have 
the same size and grain size 
distribution and were 
consolidated to the same σc = 
137 kPa. However, specimen B 
(n = 0.349) is denser than 
specimen C (n = 0.382). The 
ALTERNATmodel parameters 
for both specimens are given in 
Table (2). These parameters are 
described in the previous 
figures and can be seen in 
details in Molenkamp (1987) 
and Fattah (1999). The triaxial 
specimen was given the 
standard dimensions (76 mm 
height and 38 mm diameter) 
and was modelled by eight 
axisymmetric eight-noded 
isoparametric elements. The 
finite element mesh for the 
axisymmetric problem is shown 
in Fig. (6). 
     The test was conducted with 
constant mean stress, where the 
specimen was compressed in 
one direction and extended in 
other directions while the mean 
stress σm (the average of the 
principal stresses) is kept 
constant and equal to 137 kPa. 
     The results are presented in 
Fig.. (7). The kinematic yield 
surfaces in pi-plane for the 
initial state are shown in Fig. 
(8). 
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     It is noticed in Fig. (7) that 
the peak stress is occurring at a 
very small strain (0.122). This 
stress-strain behaviour is 
atributed to the particle 
roundness and grain size 
uniformity. In Fig. (8), the outer 
surface is the yield surface 
while the interior is the plastic 
potential. These surfaces 
changes with advancement of 
loading. 
 
Constant Volume Cyclic 
Shear Tests: 
In these tests, the specimen is 
sheared by cycling the shear 
strain γxy while the volume is 
kept constant. By doing this, an 
undrained strain-controlled 
cyclic test similar to that 
typically done in many 
laboratories is numerically 
simulated. 
     Two specimens B and C 
were used to verify the 
influence of specimen density 
(porosity) on the undrained 
cyclic behaviour of the 
material. 
     A constant cyclic shear 
strain amplitude γo = 0.8% was 
applied to the vertical-
horizontal planes of specimen B 
with no volume change. 

     The assemblage of particles 
was simulated in the standard 
Cambridge simple shear device. 
The change in pore water 
pressure ∆u is given by the 
relation between the apparent 
bulk modulus of the pore water 
KA and the change in 
volumetric strain ∆εvol, namely: 

vol*KAU ε∆=∆                (34) 
 

n
K

KA w=                          (35) 

where:  Kw = the bulk modulus 
of water. 
 
Modelling the Simple Shear 
Device: 
The dimensions of the assumed 
sample are 60 mm in length and 
20 mm height. The finite 
element mesh and the boundary 
conditions are shown in Fig. 
(9). The analysis was performrd 
in plane strain with the 
following boundary conditions 
(Dounias and Potts, 1993): 
1) The bottom boundary was  

assumed rough and fully 
restrained. 

2) The top boundary was 
assumed rigid and rough 
and was displaced 
horizontally by δ. This was 
achieved by tying together 
the nodes along the top 
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boundary (BC) in the x and 
y-directions. It was 
therefore free to move 
vertically, but it had to 
remain horizontal. 

3) The vertical boundaries AB 
and DC were smooth and 
rotated in a rigid manner 
about their base, so that B 
and C were displaced 
horizontally by δ. 

The results are presented for 
node 213 as shown in Figure 
(9). 

 
Results of Cyclic Shear 
Simulation: 
In Fig. (10a), a banana-shaped 
stress-strain loop is developed. 
The curve of the shear stress 
versus the mean stress is shown 
in Fig. (10b) which shows that 
the mean stress during shearing 
is higher than the initial 
consolidation pressure. This 
implies that only negative pore 
pressures occur in the first two 
cycles. A careful study of Fig. 
(10b) shows that there exits an 
effective stress ratio line or 
zero-dilatancy line (shown in 
the figure) in both compression 
and extension regions, beyond 
which the specimen dilates. 
     A similar cyclic shear test 
was conducted on the looser 

specimen C with smaller cyclic 
shear strain amplitude, γo = 
0.08%, and the results are 
shown in Fig.(11). 
     The calculated hysteresis 
loops are shown in Fig.(11a) 
which shows a decrease of 
shear stress as the number of 
cycles increases. The shear 
stress decreases faster in the 
first cycle. 
     The graph of shear stress 
versus mean stress for this 
simulation, shown in Figure 
(11b), moves progressively 
towards the origin. An effective 
stress failure envelope can be 
identified both in compression 
and extension regions in Fig. 
(11b). It can be noticed that the 
slope of the failure envelope in 
compression is greater than that 
in extension. This means that 
the angle of friction in 
compression is greater than that 
in extension. 
     Fig. (11c) illustrates the pore 
pressure build-up of this 
simulated cyclic shear test. The 
plot of the calculated 
normalized pore pressure ratio 
in Fig. (11c), (ru = u/σc), with 
number of cycles is similar to 
that observed in cyclic strain-
controlled laboratory tests on 
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sands, (Finn et al., 1971 and 
Cho et al., 1976). 
     The rate of pore pressure 
build-up in the first cycle is the 
highest and decreases with 
number of cycles. As in the 
laboratory experiments, at the 
end of each cycle, the 
calculated pore pressure in Fig. 
(11c) increases over its value at 
the beginning of the cycle, and 
the pore pressure build-up 
eventually approaches the 
consolidation pressure where u 
= σc or ru = 1, and thus initial 
liquefaction occurs. 
     It is noticed in Fig. (11c) 
that the pore pressure predicted 
by the finite element method 
adopting the ALTERNAT 
model is less than that by the 
discrete element. This may be 
attributed to the boundary 
conditions adopted depending 
on the work of Dounias and 
Potts (1993) for simple shear 
tests. The boundary conditions 
make the sample more 
restrained and lead to smaller 
strains. This in turn reduces the 
pore pressure build-up in the 
sample. 

 
Conclusions: 
The finite element method is 
used in simulating round 

uniform quartz sand under 
monotonic drained loading with 
constant mean stress and cyclic 
constant volume loading 
(undrained). The following 
conclusions can be drawn: 

1. The peak stress is 
occurring at a very small 
strain (0.122). This stress-
strain behaviour is due to 
the particle roundness and 
grain size uniformity. 

2. I
t was found that the mean 
stress during shearing is 
higher than the initial 
consolidation pressure. 
This implies that only 
negative pore water 
pressures occur in the first 
two cycles. A careful 
study shows that there 
exists an effective stress 
ratio line or zero-dilatancy 
line in both compression 
and extension regions, 
beyond which the 
specimen dilates. 

3. For cyclic simple shear 
test simulated in this 
paper, it was found that 
the rate of pore water 
pressure build-up in the 
first cycle is the highest 
and decreases with 
number of cycles. As in 
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the laboratory 
experiments, at the end of 
each cycle, the calculated 
pore pressure increases 
over its value at the 
beginning of the cycle, 
and the pore pressure 
build-up eventually 
approaches the 
consolidation pressure 
where u = σc or ru = 1, and 
thus initial liquefaction 
occurs. 

4. It is noticed that the pore 
pressure predicted by the 
finite element method 
adopting the ALTERNAT 
model is less than that by 
the discrete element. This 
may be attributed to the 
boundary conditions 
adopted for modelling the 
simple shear test. The 
boundary conditions make 
the sample more 
restrained and lead to 
smaller strains. This in 
turn reduces the pore 
pressure build-up in the 
sample. 
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Table (1) – Characteristics of specimens used in simulation (from 
Ng and Dobry, 1994). 

 Number and Sizes of 
Spheres in Specimens 

Specimen after 
Consolidation 

Specimen µs Total 
Number of 
Particles 

(N1/N2/N3) 
and 

(R1/R2/R3) 

σc 
(kPa) 

Porosity 
(n) 

Relative 
Density 
Dr (%) 

B 
 

C 

0.5 
 

0.5 

398 
 

398 

291/79/28 
(1/1.5/2) 

291/79/28 
(1/1.5/2) 

137 
 

137 

0.249 
 

0.382 

68.8 
 

52.0 

 
 
 
 

Table (2) – ALTERNAT model parameters for the specimens tested 
by Ng and Dobry (1994) as determined by the procedure proposed 

by Fattah (1999). 
Value Parameter 

Specimen B Specimen C 
Non-linear Elastic 
Model: 
V 
A 
AP 
 

 
 

0.12 
0.00113 
0.327 

 
 

0.12 
0.00112 
0.348 

Deviatoric Plastic 
Model: 
Hardening or Triaxial 
Compression: 

 
 
 
 

 

E 
 

4.19 
 

4.17 
 EP 

 
0.4648 0.4633 

χt 
 

0.116 
 

0.122 
 (t/s)cv 

 
0.655 

 
0.643 

 T 0 
 

0 
 β 

 
0 
 

0 
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χm 0.049 (Molenkamp, 
1987) 

0.049 (Molenkamp, 
1987) 

nm 
 

5.15 (Molenkamp, 
1987) 

5.15 (Molenkamp, 
1987) 

LB 
 

0.3 (published data) 0.3 (published data) 
Cohesion  (c) 0 0 
Hardening for Triaxial 
Extension: 
EE 
EEP 

 
 

1.71 
0.2365 

 
 

1.69 
0.2314 

Hardening by 
Densification:. 
Porosity (n) 
Porosity at densest 
state (ndi) 
κ 

 
 

0.349 
 

0.27 
1 

 
 

0.382 
 

0.27 
1 

Plastic Potential in pi-
plane: 
RT 

 
 

0.3 (published data) 

 
 

0.3 (published data) 
Dilatancy: 
φµ 
φcv 
Scv 
χcv 

 
26.5o 
26.5o 

1. 
1. 

 
26.5o 
26.5o 

1. 
1. 

Tensile Strength: 
σt 
Viscosity in 
Liquefaction: 
Vc 

 
0. 
 
 

0.01 sec. 

 
0. 
 
 

0.01 sec. 

Initial State: 
χi 
Coefficient of lateral 
stress at rest (Ko) 

 
0.05 

 
0.55 

 
0.05 

 
0.55 
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s

t
Failure Surface

Kinematic Deviatoric
   Yield Surface

Compressive Yield Surface

 
 

Fig. (1)- The yield surfaces of the ALTERNAT model. 

σ
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G
dd

σ
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t3

t2

 
 

Note: t1, t2 and t3 are the principal stresses. 
Fig. (2)- The yield surface and the plastic potential. 
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Fig. (3) – Definition of the parameters for stress dilatancy. 

 
 
 

Fig. (4) – Geometry of  2-dimensional specimen used by Ng and 
Dobry (1994). 
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Fig. (5) – Iteration process in the non-linear problem. 
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Fig.(6) – The finite element mesh for monotonic loading problem 
(axisymmetric). 

 
 
 

 

C.L. of the 
sample 
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Fig. (7) – Results of drained monotonic triaxial compression test on 

specimen B, constant mean stress = 137 kPa. 

 
Fig. (8) – Kinematic yield surfaces in pi-plane for specimen B 

(initial state). 
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Fig. (9) – The finite element mesh and boundary conditions for simple shear analysis (plane strain). 
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Fig. (10) – Results of undrained cyclic shear test on specimen B. 
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Fig. (11) – Results of undrained cyclic shear test on specimen C. 
   

 


