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Abstract

In this work the dynamic behavior of blade disc - turbo rotor - bearing system is
investigated analystically using the transfer matrix method, also the analysis
applies the finite element method ( Ansys Package ) choosing the brick type
element, for comparison of the results. The major aim of this paper are to study the
effects of varying the temperature, fluid flow impact on the blades surface; losing a
faction of the blade mass to have imbalama in system; blade root flexibility and
centrifugal force along the blade length; gyroscopic moments, damping and
stiffness values of bearings on the dynamic behavior of the blade disc — Turbo
rotor — Bearing system.

Keyword: Turbo rotor,Bearing system, Brick Element.

(Brick Element) (Ansys Package)

vibrations play a great role in the
1. Introduction nature of the system response

Nowada
ys the ever — increasing demands for
high quality industrial products along
with paramount consideration for
lowering cost and weight induce
many attempts in the design
development works of the elastic
systems. In  such systems the
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towards any arbitrary disturbing
agency.

A continuing
improvement in analytical modeling for
the natural frequencies and mode shapes
prediction of the turbine blades
vibrations has been taken up and applied
by the aid of different methods of
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analysis. In this view the period 1973 —
1986 seems to be an active one reflecting
an increased awareness of the complexity
and importance of this topic. The
difficulties associated in this subject are
the complex geometry of the practical
blade which is demanded for the
aerodynamic performance, these
difficulties are considerable because of
the uncertainties in regard to prescribing
the blade boundary conditions.

Rieger and Zhou [1] have put
forward a complex mathematical analysis
of the three — level multi span rotor
system. It depends on the masses and
springs distribution of the system, in
using eight assistant bearings, and each
bearing fixed on elastic foundation, and
on pedestal (damped flexible cover). But
the foundation is represented as a fixture
consisting of a group of masses and
springs  distributed on  separating
supports, and that different properties in
rigidity and damping in the vertical and
horizontal directions.

Rieger and Zhou [1],have formulated
a complex mathematical analysis of the
rotor — bearing — pedestal — foundation
system. It depends on the transformation
matrix of (Prohl — Myklest) using eight —
supported bearings for obtaining an
elliptical orbits to the rotating shaft
motion, and these bearings fixed on the
flexible, heavy bands which it are fixed
on the damped fixture uniformly. Also
they [2] analyzed mathematically the
three — level — multi — span rotor systems
where the instability conditions were
found by obtaining eight values of the
system determinate which was found by
transfer matrix method. Also, the
stability determinate was solved to the
minimum rotating speed where the
system damping equals zero, and this
study adapted stiff rotating shaft
supporting on two flexible and damped
bearings with flexible supports, also they
discussed rotating shaft with four flexible
and dumped bearings. The research
concludes that the transfer matrix method
is efficient and it can obtained double —
precision using complex eight — values.

(Nassir, 2000) [3], has studied the
effect of temperature on the critical
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speeds and eigen modes along the
rotating shaft, in addition to different
cases of supporting the rotating shaft and
its effect on the eigen modes where the
study hads been implemented on the
rotating shaft which lies on heavy weight
categories which supported on the two
bearings close to the ends. It takes into
consideration and effects of shear force,
gyroscopic moments, damping and
imbalance force resulting from the
difference in the masses of the rotating
shaft where it depends on the transfer
matrix method in the analysis of the
rotating shaft sections and taking into
consideration existence of compressed
axial force and temperature effects.

Vibration analysis is found as an
important tool in the investigations of the
dynamical behavior of many industrial
applications like the compressor blades,
turbine blades, gear teeth, springs of
electromechanical devices, electrical
contact switches, helicopter blades and
others [4].

The current paper includes a study of
the dynamic effect of the rotating blades
with temperature effect and the effect of
losing a fraction of the blade, changing of
the design angles of the blade and fluid
flow on the dynamic behavior of the
system using transfer matrix method
which takes into consideration effects of
shear forces, gyroscopic moments, root
flexibility, centrifugal and unbalance
forces and elastic, damping coefficients
of the bearings.

2. Theoretical Analysis

2.1 Forocs and Moments on the
Rotating Shaft Stations
Inertia forces which have effects on
the rotating shaft lumped masses as
follows:
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where Q is the angular frequency.

Moments which have effects on the
rotary and polar moment of inertia at
the rotating shaft stations is:

(MZR_MZL )i :_Qz I Z¢Z_Maz

(MS_M: )i :_QZ I x¢x_jQ2A| ¢y_MaX
(MJ=M), =—Q* | g, — Al g, —M,,
where Al (1,-1,)

unbalanced forces (U) at the rotating
shaft station and their components

(U,).U,) are:

U, =U, -juU,

these forces cause whirling of the
rotating shaft and its magnitude in the
two vertical directions on the rotating
shaft is follows:

Q°U, =Q°U, Cos(w,)-Q*U; Sin(w,)

Q’U, =Q?*U; Cos(w,)-Q*U, Sin(a,

and it can be expressed in complex
functions as follows:

Q?U, =Q%U, + jQ*U;

02U, =0?U; +jQ%U; ~43)
X X Y

also the forces and displacements
resulting from the supported fixtures are
as follows [6]:
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(2

)

}...(4) tan a, =

mY + K, (Y =Y,)+D,, (Y =Y,) + K (X = X))+ D, (X = X))
-0, -V, =(V] -V))
M X + K, (X = X,)+ Dy (X = X,)+ K (Y =Y,)+ D, (Y -Y,)
—Q%U, -V, =(V, -Vy)

where X, and Y, represent pedestal
displacements and Y,Y  are pedestal

velocities.

2.2 Forcocs and Moments on the Blade
Surface
The rotating blade is subjected to
compressed force resulted from fluid
flow force in the direction of rotation
which its a vector through the shown
velocity diagram.

The tangential force which causes
rotation of the system.
F,=m, (C,sina,+C;sina,)

And the axial force resulting from
pressure drops on the side of the blade is:
F.=m,(C,, +C,;) =m, (C,cosa, +V,cos f)..(8)

These forces have been calculated
depending on the element position along
the blade at the mean radius (ry), and
also can be calculated as follows:

tan o, =

r
tan g, :(r—mj tan «,, —(L] g o
r 2 r-m a2

The model used consists of a rotating
shaft (18790.887kg) mass and (18m)
length and three equivalent stages (High
— pressure, intermediate — pressure and
low — pressure), and two isotropic journal
bearings supporting the system from the
free ends.

2.3 Mathematical Model
The model of steam turbine had been
built in three dimensions using transfer
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matrix method which splits the system
into uniform masses they have moment
of inertia properties of the solid section
cylinders linked with weightless columns
and uniform cross — sections, its it
behavior was built according to Euller
formulation of bending and Timoshenko
shear force.

Each of system sections is expressed
through the field matrix [F] which has
relation with the state vectors at the end
of each section of the system, also each
station has point matrix [P] which has
relation with the state vectors on the left
and right of each station (i) as shown in
the fig. (2).

2.3.1 State Vector

The state vector of the specific point
(i) is a vector, consist of the displacement
of the point (i) and the internal forces at
the point, and of each station there are

two vectors, first one the right [Z || and

the second one is the left [Z]& where the
three dimensional state vector is [5].

2.3.2 Point Matrix
It's the matrix which connects between
the state vectors of the specific point.
There are three cases of this matrix in
this investigation as follows[6], [7].
a. Lumped mass at point (i).
b. Point matrix of the bearing.
c. Point matrix of the
(Blades).

branch

Fig. (3) represents diagram of the point
mass and all the effects of forces and
moments on the right and left of the
station (i) in addition to existence of the
gyroscopic moment on that station.

From the Fig. (3) it is found the
equilibrium equations of the mass (m;) in
(XZ) plane, then the point matrix
formulation is as follows [6]:

Zi=Pliztr 2

The point matrix of the bearing on the
station (i) can be found from fig. (4),
where it is assumed a fixture supports the
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bearing, also this case includes effects of
gyroscopic moment, point load and
unbalanced force.

From the shown figure the difference of
shear forces on the right and left of the
station (i)could be formulatated as
follows [7]:

\TyR \TyL _ (Kyv+jQDyy)
v vl o)
Q*U, +V, +Q*mY
_{QZUX+VaX+QZm|X:|
In the branch position ( Blades ), a
similarity fixture has been assumed on
the rotating disc where it is distributed
uniformly depending on mass elements
and is regarded as a branch of the main
system. This matrix also takes into
consideration all the mentioned effects
besides the effects of the load along the
blades surfaces resulting from the fluid
flow force The branch matrix which
elements has been reduced to singular
matrix takes into account the effects of
gyroscopic moments, internal shear
forces and moment on the point matrix in
the main system. Equation (2) can be
written in the following formula:

[M1==Q*[1,][#1-[M,],
The moment of inertia matrix has been
translated between the system axes o a
free body in the direction of the main
system coordinate as shown in fig. (5)
and followins:

[11=[RI[I,1[R]
The transformation matrix [R] is the
matrix which transform the blade
coordinates from any position to the
main system coordinates [9], where o [
and y represent the main system angles,
when

B=90,y=0 and a=(a+ wt) can be

found [R] as follows [8]:

0 sin(a+wt) cos(x+wt)
[R]=| 0 cos(ax+wt) —sin(a+ wt)
-1 0 0

(K +JQD,) ||V
(Ko + 19D ) [ X7

....... (14)

..(16)
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The  branch  matrix (  Final
multiplication matrix ) for one blade is as
follows:

Q va va Uv Q
R| =|U ov U op U 0 Rl ...
| 0 0 1 I

where:

Q={Z. XY 4,0y .4 }
R:{Vz vi ’VY’MZ1MX ’MY}

Uwn , Uy , Uy and Uy, are (6x6 )
matrices which represent the transfer
matrix elements of the branch.

This matrix can be found by
continuous multiplication to the point
and field matrices of the branch. It
represents the relation between the free
end and the branch and the fixed end
with rotating disc, U, and U, represents
elements of column (13) of the transfer
matrix and its vector is (6 x 1).

After substituting R=0 ( shear forces
and bending moments values equals to
zero in the free end of the blade ) the
vector can be found R* for one blade,
arranging equation (17), then R* can be
found as follows:

Rk =U PV vale -U PV valuv +U p
Then, summation of the vectors R¥ of
each blade leads to calculate R after
transferring to main system axes.

2.3.3 Field Matrix

Field matrix is the matrix which
connects between the right state vector
and left state vector of the mass (m; ), as
follows [5]:

{z}iL =[F]i{z}§1

Temperature effect is one of the
important effects on the field matrix,
where it increases the expansion of the
weightless beams. Therefore it should be
taken into consideration with its effects
on the field matrix. This is illustrated by
following figure in which the thermal
effects have been added.

Fig. (8) The forces and displacements
which effect in the end of the section in

the (yz) plane.

o, =a.L; .AT,

where:

a : Coefficient of linear expansion for
each temperature.

L : Initial length of beam (m)

AT : Temperature difference (C°)

The final form of matrix is as follows:
The final form of the field matrix

where:

- X,.L
1 +

6EJ, GA

-L* X,.L
1= +

6EJ, GA

element of intermediate state vectors,
where can be found the state vector in the
station (n) in terms of the state vector
{Z}" in the following formula [9]:

(233 =L F LA Pl Flal Pl [FLIPLIFLEN

{Z}7 =[B], {Z}: -.(21)
where:
[B]n is the matrix ( 25 x 25 ) of the
system.

The boundary conditions of the system to
calculate its response a its the shear
forces and bending moments values in
Z,X and Y directions in the free end
equal zero. Therefore, applying this

--bdﬁﬁaary condition the free ends of the

state vectors, then results in the following
matrix [5].

000E o 0 0 0 o
Ed
L!
ret | ) (8 G L|lE £ D6 e
21 | 18 J &
X P
Gk B8 & 7 i 1
Y . %),
4, o 0 o|E o o
g | GJ,
?
6| o B iy £ 9
A9 28 B
: L * L
v bl | BB
28] EJ
l"r L
M
= 0] [0o] [£] [0]
M,
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@7 [1B] B] B] [B] {o}][Q}]
© | |B] B] B] B {5}
Q1] = [B] B, [B] [B.] {g}| Q3

O | |[Bal [Bul [Bs]l [Bil {g:}| |10}
1 0o 0 0 0 1|1

L -n - - L .

or {F} = [AM]* {C}
..(23)

This matrix represents calculating the
unknown eigen modes of the state vector
in the free end of the system. The
displacements and the internal forces
havebeen calculated along the system by
the product continuous operations of the
point and field matrices.

2.3.4 Blade Root Flexibility Effect
Blade root flexibility is an important
effect on the blade natural frequencies
and the stiffness. It is studied through the
rotational and translation coefficients (
B,1 and By, ) respectively, its effects on
the first, second and third modes were
obtained by finite element method (
ANSYS program). Macbain [10] used
the following equation to calculate the
rotational coefficient:
= 9

-1
)]
In iy
el \1+v)
T
B, = +8

12 = 12z

where (0) referrs to the root position.
Beglinger et.al [11] derived the lower
bound values as follows:

.o SRR
T2+ (25)
B,=14RR
And the upper bound as:
.. SRR
T2+ b (26)
B,,=1.35RR
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where these equations are derived
based on the plane stress and plane strain
theories. Also practical range of By; and

....22B1, is given by the following:

0.001 < B3; £0.005

0.01< B;,<0.14
Thus, the blade stiffness matrix will be as
following:

[K]=Z[Ki] +[Ky] +[K12]} ...(28)

where [K;;] and [K,,]are the square

symmetric matrices of order (48 x 48)
according to the element flexibility
coefficients which are defined by:

= SAG
11— Kll,[
= EI
12 — Kl2 J‘
where ( f) is the finite element length.
The actual flexibility coefficients By; and

By, will be mathematically expressed in
terms of blade length L as:

Bom = By /N
where (N) is the total number of blade
elements:

2.3.5 Centrifugal (Dynamic) Effect:

Centrifugal (dynamic) effect has
been investigated as one of the important
dynamic effects on the blade stiffness
and natural frequencies, because it affects
the middle of the blade surface as shown
in figure (9). Thus, the centrifugal force —
equation can be written as [12]:

ttip

Poy=[PAQ? rdr .. (3D)
where:
Pw: Axial component of centrifugal
force (N)

A: Cross — sectional area of the blade at
any radius r(m?).

P: Mass density of the blade (kg/m®).

The composite stiffness matrix of the
blade is as follows:
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[K] :Z[Ki]+ [Ku ]+ K, ]+ K]

where [K ] is the centrifugal stiffness
matrix of order (48 x 48).

2.3.6 Thermal Gradient Effect

In the presence of a temperature
difference, the elastic coefficients of
homogenous materials become functions
of space variable and must be brought
into vibration analysis as a variable
parameter.

It is assumed that the blade is subjected
to a study state temperature distribution
in one - dimension, which is the
longitudinal blade axis Z. The effect of
temperature gradient on the modulus of
elasticity of blade structure is given by
[13].

Z
E=E, {14g (1—Iﬂ (33)

where tg is the temperature gradient, Ey
is the blade modulus of elasticity at the
tip position and Z is the distance of the
point ( or cross — section ) under
consideration along the blade axis from
the root. For convenient representation,
equation (33) can be given in terms of
root position as a reference and as
follows:

z
E=E, (1+ e fj ..... (34)

where E, is the modulus of elasticity of
the blade at the root position and:

Itis elear that ey > 0 for 0 <ty < 1 and
as a given by [14]:

This effect can be represented in the
equation of motion in (ANSYS program)
as a thermal Ioad vector {ft} as follows:

{f}= EeAe—aAT 25T fe

where E® |, A®, I are modulus of elasticity
of the element, element area of cross —
section and the element length of side i-j
respectively.
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3. Results and Discussion
3.1 Thermal Gradient Effect

Effect of external forces on the blade
includes applyina jet of steam at a certain
pressure and temperature to the blade
surface. This effect has been investigated
on the second stage blades of the
working system, choosing the 9-blades
configuration system, at temperatures
(100 C°, 200 C° and 300 C° )
respectively with pressure ( 180 bar).

Table (1) shows the cases which have
been investigated, it can be observed that
the first critical speed changes from (
4701 rp.m) to (4722 r.p.m) when
subjecting the fluid flow on the blade
surface, becomes the fluid flow works as
a damper which decreases the vibrational
amplitude values, consequently
increasing the first force and bending
moment values of the blade stations.

This effect is transitted to the station of
intersection of the main system with the
branch, where the eigen modes
(deflection, slope, shear force and
bending moment) decreases due to that
effect.

Table (1): shows the critical speeds and
maximum amplitudes without and with
effect of fluid flow, and temperature
effect at three different temperatures (
100° C, 200° C, 300°C) .

Also, from the shown table it can be
observed the critical speeds to shift lower
speeds when considering temperature
effect. Fig. (10) shows the decreas in the
deflection along the rotating shaft when
the fluid flow is on the blades surface
without temperature effect, also Fig.(11)
shows the deflection when subjected to
fluid flow with temperature effect ( 100
C°, 200 C° and 300 C° ) at first critical
speed of each temperature where
different orders of the first critical speed
increasing temperature can be observed.
As mentioned before the fluid flow effect
also decreases the shear force values and
the bending moment for the same
mentioned reason, but the temperature
increase will lead to the increase in those
values especially at ( 300 C° . This can
be observed in Fig. (11) and (13)
respectively.
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3.3 Effect of Blade Root Flexibility

The effect of blade root flexibility
and temperature changes has been
investigated by calculating the translation
and rotational root flexibility coefficients
B;y and B, respectively, because the
blade is modeled as a thick, pre-twisted,
non-uniform aerofoil  cross-sectional,
rotating beam. Equations (24), (25) and
(26) have been used to calculate root
flexibility coefficients through finite
element method (ANSYS program),
where rotary inertia (RR) and shear
deformation (S) parameters has been
used in the calculations.
Fig. (17) shows the normalized first
natural frequency, which is defined as the
square root of natural frequency
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Normlized First Natural Frequency

parameter to  Bernoulli-Euller  first

frequency parameter i.e \/ZAME for

non-uniform, cantilevered beam with the
beam aspect ratio L/D, for clamped root
and flexible root, represents a
comparison between the present finite
element model with and without root

flexibility and the theoretical results
obtained by Macbhin et.al [10] of the
rotational flexibility coefficient ( Bip)
which was calculated according to the
midway solution of plane stress and
strain theories (Equation 24).

Tables (3)-(5) show the convergence
of the frequency ratios of the first, second
and third modes of beam. Both theories
are used for calculations of By; and By,
according to the derivations used by
Beglinger et.al [11].

Legend Keys
—EJ—  With Reot Flaxibility (finlte ¢lemant Analysis by ANSYS prog.)
———  Without Root Flexibility (finlte slement Analysis by ANSYS prog.}
~—dh— Macbain [30] (finite element Analysis by NASTRAN prog.)
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Table (5): Convergence of the [requency ratio of the third mode of thick, non uniform, cantilevered beams with root flexibility effect.

1.04125 m .E= 215 GPa

P 7

Shear deformation parameter (8) =085, U =03 , 0 = 7940 kg/m’

Application Studies for Reducing the Harmful Vibrations on
Blades of High and Low Pressure Stages of Steam Turbines

3.4 Effect of Dynamic (Centrifugal)
Forces along the Blade Length
Effect of centrifugal forces has been
investigated on the turbomachinery
blades, The study has been implemented
on the second stage blades of the system
turbine, without effects of forces and
moments. Fig. (18) shows the centrifugal
stress distribution when the rotating
speed reaches (14000 r.p.m). At this
speed the peak value of the stress was
more than the peak value at any lower
speeds. Among the leading edge, trailing
edge, and any element between them, the
peak stress of each occurs at a different
distance from root. Theoretically,
centrifugal forces act through the center —
line in the axial direction of the blades.
Because of this, the major effect of the
centrifugal forces is on the axial
frequencies and mode shapes and very
small or on effect on the circumferential
frequencies and mode shapes.
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3.5 Effect of Thermal Gradient on the
Turbomachinery Blades

Investigation of thermal gradient effect
on the natural frequencies of the
turbomachinery blade was carried out by
the present element model (Solid brick
element). Tables (6)~(8) show the
present results from finite element
method (ANSYS package) of the
frequency parameter of the first, second
and third modes respectively. From these
table one can observean increase in the
frequency parameter ( A ) when the
temperature gradient values increase
from (0.2 to 0.6). also, according these
tables it can be shown that all mode
frequencies are increasing with the
increase in thermal gradient ( t; ).
Finally, these results show that (t; )
parameter has a remarkable effect on
blade frequencies.

Table (6): Convergence of frequency
parameter for the turbine blade at
different values of thermal gradient for
the first mode of a cantilevered blade.

Application Studies for Reducing the Harmful Vibrations on
Blades of High and Low Pressure Stages of Steam Turbines

L=1.04125m, v =0.3, B=0.127,
p=7940 kg/m® , E = 211GPa

Table (8): Convergence of frequency
parameter for the turbine blade at
different thermal gradient values for the
third mode of a cantilevered beam.

No. of | Total Frequency Parameter (1)
element | dof | t=0 | t=0.2 | t=04 | t,=0.6
20 960 95.4411 124.7130 138.7448 145.5400
30 1440 94.1171 124.1508 137.9285 1442713
40 1920 92.9913 123.9704 1367870 143.7385
50 2400 91.9546 123.7189 136.3616 141.2151
60 2880 85.4533 123.6455 133.4741 138.3023

No. of | Total Frequency Parameter (1)
element | d.of | t,=0 t;=0.2 | t;=0.4 | t,=0.6
20 960 14.3375 15.83005 17.5753 34.1698
30 1440 13.9913 14.68190 17.3830 31.7182
40 1920 13.6493 13.97630 17.0428 31.0126
50 2400 13.2896 13.67630 16.6162 26.8873
60 2880 13.0573 13.50410 16.4365 25.8806

L=1.04125m,v =0.3,B=0.127,
p=7940 kg/m® , E = 211GPa

Table (7): Convergence of frequency
parameter for the turbine blade at
different thermal gradient values for the
second mode of a cantilevered beam.

No. of | Total Frequency Parameter (1)
element | dof | t=0 | t=0.2 | t,=0.4 | t,=0.6
20 960 29.7864 42.8592 46.0525 49.2172
30 1440 25.9518 42.5586 44.2251 47.9210
40 1920 05.0366 42.1421 06.3720 46.3965
50 2400 25.3673 39.9891 44.0524 45.1328
60 2880 23.7422 34.4651 38.8453 43.3108

L=1.04125m, v =0.3, B=0.127,
p=7940 kg/m® , E = 211GPa

Fig. (19) and (20) show the distribution
of temperature along the blade of both
concave and convex surface respectively,
where one can observe a maximum
temperature occurs along the trailing
edge, leading edge and tip of the blade
due to overheat as a result of the contact
with superheated steam path. It may
times some lead to loss parts of the
blades due to high thermal stresses in
those position.

Fig. (21) and (22) show the deflection
in (y) and (x) directions respectively
along the rotating shaft at (6000 r.p.m),
where the deflections along the blades
and the rotating shaft can be observed.

4. Conclusions

The major conclusions from this study

may be listed as follows:

a. Increasing the operating
temperature due to increases in
the fluid flow temperature which
affects the vibrational amplitude
of the blades, leading to shift the
critical speeds, in addition to

increases in the vibrational
amplitudes frequencies of the
blades.

b. Increasing the temperature leads
to increase the distribution of the
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eigen modes of vibration
specially at 300 C°.

Critical speeds orders are shift to
lower speeds when losing parts of
the blade mass due to increase in
the unbalance forces.

Root flexibility effect increases
natural frequencies of the blades.
The effect of dynamic
(centrifugal) forces on the blade
could be thought in terms of
vibration of a string. As the
tension on the string increases the
natural ~ frequencies  increase
whereas the corresponding mode
shape amplitude reduce.
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