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Abstract 

A two-mirror Cassegrian telescope design is presented. The primary mirror is paraboloid with an 

aperture of 1m in diameter. The secondary mirror is hyperboloid with an aperture that makes a light 

obstruction of merely 0.25%. The telescope resolving power is twofold the one a spherical primary 

mirror produces with the same aperture. Aberration elimination is obtained by modifying the radius 

of curvature of the secondary mirror and also its asphericity factor. Achieving this work demanded 

constructing a programming code for tracing light rays. This code not only used to tracing the 

general type of light rays (skew ray) through all Cartesian surfaces but it is also used to exhibit the 

telescope performance when varying the secondary mirror radius of curvature and its asphericity 

factor. 
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1. Introduction 

The powers of a telescope, the telescopes 

resolving power, the magnification power and 

the telescope light-gathering power /ability are 

the real goals for building telescopes. The 

telescopes resolving power for a spherical 

mirror is measured by the angular resolving 

power ( O ) and expressed as [1]: 

D
o


 22.1   ............................................. (1.1) 

where λ is the wavelength and D is the 

aperture diameter of the primary mirror. If the 

resolving power (angular separation) of a two 

stars is o  then the centers of the two 

diffraction patterns are separated by a distance 

fo , where f is focal length. Hence, the linear 

separation between the centers of the two 

diffraction patterns is [1]:  

D

f
separationlinear


22.1   .................. (1.2) 

Indeed, the latter equation is not very 

accurate, for it depends on the ratio of the 

focal length to the aperture diameter. For most 

telescopes, the radius of the primary mirror is 

small in comparison to the focal length, which 

means that the primary mirror is relatively flat 

and that’s why it is just an approximation [2]. 

The latter reference introduced another 

expression derived for exact linear separation 

as [2]: 
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where n is the surface refractive and  

index and u is the extremely marginal ray 

convergence angle. Reference [2] predicts that 

in the case of paraboloid, primary mirror the 

focal length is nearly equal to the mirror 

diameter, a very small Airy disc which can be 

attained, of course, means exceptional 

resolution. In fact, it attains a resolution better 

than any conventional telescope. And, since 

the resolution is determined by the angle u and 

not by the ratio of focal length to the diameter, 

as is implied by the approximation equation 

(1.3), this configuration (deep-dish mirrors) 

can be used for mirrors of any size, even very 

small sizes, while still remaining exceptional 

resolution [3].  

The paper is organized as follows. 

Section(2) illustrate the ray tracing procedure. 

Section (3) shows computing the transverse 

aberrations of rays, which are considered as 

the measure of performance of the secondary 

mirror. Section (4) justifies the telescope 

configuration we use. Section (5) explains the 

root-finding optimization method. The results, 

telescope features, and conclusions are 

represented sections 6,7 and 8 respectively. 

 

2. Skew Ray Tracing  

Skew ray tracing equations are divided into 

two sets of equations, equations set of ray 

transfer between surfaces, and equations set of 

reflection or refraction. 
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Transfer between Surfaces  
It can be expressed by [3]: 
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L, M, and N are the direction cosines of the 

ray along x-axis, y-axis, and z-axis 

respectively; xo, and yo are the coordinates of 

ray intersection with the tangent x-y plane; x-1 

and y-1 are the coordinates of coming ray. The 

ray intersects the surface (mirror) in the 

coordinates are given by [4]:  
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where Δ represents the length segment from 

the tangent plane to the surface, c is the 

curvature of the mirror or the lens, and ε is the 

asphericity factor. The parameter  determines 

the asphericity as follows [4]: 

   0            , hyperboloid 

  = 0            , paraboloid 

 0    1      , prolate ellipsoid  

  = 1            , sphere  

   1            , oblate ellipsoid 

 

Reflection (or Refraction) Equations Set 

To obtain the cosine of the incident angle 

(cosI), the components of the unit normal  

(, , ) should be determined at the point of 

incidence. The direction cosines of the unit 

normal are given by [4]:  
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Then, the cosine of the angle of incidence 

cos I is obtained by [5]: 
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The cosine angle of reflection or refraction 

can be expressed by [4]:  
 

)cos1()(cos 222 InnIn    ................... (2.8) 
 

where the non-primed parameters are those 

of the previous surface. 

The direction cosines of the ray, after 

reflection or refraction, are given by [4]: 
 

 




















knNNn

knMMn

knLLn

 ........................................  (2.9) 

 

where  

InInk coscos    ............................ (2.10) 

 

After each reflection (or refraction) process 

the direction cosines should be checked to 

assert the tracing validity. This can be done by 

[4]:  

1)()()( 222  NML   ............................ (2.11) 

 

3. Computing Transverse Aberrations (TA)  

This section exhibits the expressions used to 

compute the results of TA. These values are 

computed by using one of the skew rays 

tracing equations equation (1.3) specifically 

 11   zfl
N

M
yTA  ............................ (3.1) 

where y-1 is the incident ray height at the 

secondary mirror (M2), fl is the distance from 

M2 to the image focal plane, and z-1 is the 

length segment from the (x-y) plane tangent to 

the M2 surface.  

 

4. The Telescope Configuration  

The primary mirror is paraboloid, with 

radius of curvature R1= -5m and aperture to 

meet the needs of two goals; first, eliminating 

spherical aberrations, and second improving 

the resolving power ensured by equation (1.3).  

For the light gathering power importance, 

minimum light obstruction should be taken 

into account. The distance of separation (d) 

between the two mirrors is the key for this 

point. So, for 0.25% light obstruction, the 

secondary aperture diameter shouldn’t exceed 

5cm, i.e. )%25.0%100)]1[/]5[( 22 mcm . 
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This means that the height of the semi-

aperture ray (marginal ray) at the secondary 

mirror is ≤ 2.5cm. To obtain such a light 

obstruction, the distance separating the two 

mirrors (d1=238cm) is determined by using 

the skew ray tracing code. Thus, the 

considered separating distance between the 

two mirrors is. 

To obtain the shortest (most compact) 

design, the focus, the secondary mirror (M2) 

creates, must be very near to the focal length 

of the primary which is 2.5m. The key for this 

point is the selection of radius of curvature of 

the secondary mirror (R2). The proper 

determination of R2 is restricted by the value 

of aberration (TA) yielded at the focal plane. 

 

 

 

 

 

 

 

 

 

 

 

Fig.(1): Telescope configuration. 

 

5 The Root–Finding Optimization Method 

The Root-Finding Method is the one that be 

used to solve optimization problems. It 

consists of finding values of the variable x that 

satisfy the condition f(x)=0 for given function. 

The solution of such problem is called the root 

of f(x) [5]. Practically and numerically, the 

root which is being searched is not necessarily 

yields f(x) =0, but the one which gives 

acceptable function value. It is known that at 

the proposed root, the function values witness 

change in its values either from positive values 

to negative or vice versa. 

This method is used to examine the 

telescope performance via the transverse 

aberration (TA) of light rays. For this purpose, 

two different rays' heights are used; the 

paraxial ray of height 2.5cm and the marginal 

of 50cm height. 

 

 

 

 

The procedure steps are 

1) Initially, the secondary mirror surface has 

considered as spherical one (ε2=1). The 

search of the proper R2 is based upon 

observing the TA values of R2 and 

resuming in the direction that shows 

aberration reduction at the image focal 

plane. 

2) The search goes on until the TA witnesses 

a change in its values. The root is the 

optimum radius of the second mirror (R2) 

when it gives TA values < λ. 

3) This procedure is resumed for the 

optimum R2 but for a conic or Cartesian 

surface, i.e. (ε2≠1). The search of the 

proper ε2 is based upon observing the TA 

values of ε2 and resuming in the direction 

that shows aberration reduction at the image 

focal plane. The root is the optimum ε2 

when it gives TA values < λ. 

 

6. Results  

Fig.(2) shows the TA values as functions of 

the R2. It also shows that zero TA-values are 

near R2= -25cm. Fig.(3) shows the TA values 

for the paraxial ray is zero for R2= -25.21cm 

while Fig.(4) shows that the TA value of the 

marginal ray is still appreciable when  

R2=-25.21cm. Fig.(5) shows that varying the 

asphericity factor ε2 of the second mirror leads 

to get zero TA for the marginal ray when 

ε2= -0.21. 

 

 
Fig.(2): TA of the Paraxial and the marginal 

rays Vs. R2 for the initial suitable R2 

determination. 
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Fig.(3): TA of the paraxial rays Vs. R2 for 

accurate  R2 determination. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.(4): TA of the marginal  Vs. R2 for 

accurate R2 determination. 

 

 

 

 

 

 

 

 

 

 

 

Fig.(5): TA of the marginal  Vs. ε2 for  

accurate ε2 determination. 

 

7. Conclusions 

A two-mirror Cassegrian telescope is 

presented. The paraboloid mirror shows 

improvement in resolution over that of 

spherical surfaces, The design improved the 

light gathering power of 1m aperture telescope 

for light obstruction = 0.25% (less than 1% of 

the surface area of the primary mirror). The 

resolving power is also enhanced to 3.388µm. 

This is because the linear separation for the 

paraboloid mirror, by using equation (1.3), is: 
 

 m
n

nm
388.3

5.710623)2sin(

550
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
  

 

while the linear separation for a spherical 

mirror with the same aperture, by using 

equation (1.2), can be determined as: 
 

mm
m

nm
677.15.2

1

550
22.1   

 

The transverse ray aberration of the yielded 

design is also investigated for aberration 

elimination via the variation of both the radius 

of curvature of the secondary mirror R2 and its 

aspherisity factor ε2. 

The root-finding optimization method 

proved its utility in spherical aberration 

reduction with varying the radius of curvature 

and the asphericity factor of the secondary 

mirror. The procedure used in aberration 

elimination showed excellent result in 

aberrations reduction and it may be, also, able 

to eliminate the aberration completely, if the 

distance d1, separating the two mirrors, would 

be involved in the optimization procedure. 
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 الخلاصة
إنّ التلسكوب المنجز تصميمه في هذا العمل هو منظومة 

ولها  ئالمرآتين نوع كاسجرين. المرآة الأولية ذات قطع مكاف
أمّا المرآة الثانوية فهي ذات قطع زائد وبقطر  ،متر 1قطر 

لمقدار الضوء  %0.25يحقق نسبة حجب لا تزيد عن 
. كمـا أنّ التصميم قد نجح في المنعكس من المرآة الأولية

الى ين تحسين قدرة التلسكوب في الفصل بين نقطتين متجاورت
الضعف. إنّ إزالة الزيوغ قد تم من خلال تغيير نصف قطر 

إنّ إنجاز . للمرآة الثانوية و عامل اللاتكور المرآة الثانوية تكور
هذا العمل قد تطلّب بناء شفرة برمجية لأقتفاء أثر الأشعة 

وعبر البصرية قادرة على إقتفاء أثر كل انواع الاشعة البصرية 
)الكارتيزية(. كمـا وأستخدمت  روطيةكل انواع السطوح المخ

هذه الشفرة البرمجية لأظهار ادآء التلسكوب عند تغيير قيم 
 عامل اللاتكورالمرآة الثانوية و  كل من نصف قطر تكور

 من خلال زيغ الاشعة البصرية. للمرآة الثانوية
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


