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ORIGINAL STUDY

Analysis of Predicting Co-Authorship Networks
Using Support Vector Machine Model

Mohammed Y. Al-khuzaie a, Sajad Ali Zearah b,*, Abbadullah H. Saleh c

a College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
b Republic of Iraq Ministry of Agriculture, Thi-Qar, Outside North America, Iraq
c Graduate School of Natural and Applied Sciences, Gazi University, Ankara, Turkey

ABSTRACT

The area of computer science is flourishing, as shown by the rising number of academic works published and the rising
number of scholars adding to the existing body of knowledge. This has made it difficult to find previously unrecognized
links between publications and those studying them. Using machine learning techniques to foresee missing links and
unveil hidden connections, complex network-based link prediction has emerged as a helpful resource in addressing this
difficulty. This study aims to solve the problem of finding links between authors’ publications by exploring the use of
network-based complex link prediction approaches. A large-scale bibliographic database collected from various reliable
sources, including but not limited to Google Scholar, was used. A Support Vector Machine (SVM) classifier was used
to predict the possibility of a new link between an author and his publication. Accuracy was one of the several criteria
used to evaluate the performance of the SVM classifier, which was relatively high at 96.66%.
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1. Introduction

Appraising employees’ performance is a fundamen-
tal management task that pervades the whole busi-
ness and helps people grow in their roles. Establishing
a method for assessing academics’ work is crucial
in research settings like universities and organiza-
tions. This assessment, more than just a performance
review, is predicated on researchers’ output, espe-
cially their productivity. It’s crucial for attracting top
professors, getting government-funded research orga-
nizations, and gaining prestige in the academic world.
Reputable research institutions contribute to societal
well-being roundaboutly by drawing in international
customers, investors, and talent pool members.

Scientific projects with many organizations work-
ing together to further knowledge might be classified
as “collaborative research” [1]. It is generally agreed
that there is a synergistic effect at work in these

partnerships, with the sum of the parts more incredi-
ble than the parts themselves [2, 3]. However, there
are significant obstacles to setting up and managing
such research groups. Finding other researchers to
work with is a significant challenge for solo scientists.
Domain specialists suffer ambiguity when identifying
ideal partnership prospects due to the inherent diffi-
culties in anticipating which partnerships contain the
best potential for success.

If researchers have complete knowledge of the
research interests and active research efforts of spe-
cialists, they could be able to find a solution to this
problem. With this data, researchers’ domain com-
petence might be evaluated, leading to the easier
discovery of potential partners with complementary
and synergistic areas of expertise. Unfortunately,
there are no centralized sources from which to get
this information. Therefore, it is often inaccessible
and difficult to acquire.
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Co-authorship networks may be easily constructed
from published work if authors are represented
as nodes and their collaborations as connections.
Adamic and Common Neighbor topological proper-
ties inside these co-authorship networks are useful for
predicting future co-author connections among cur-
rent writers [3, 5, 6]. In essence, plausible proposals
for possible research partnerships may be made based
on reliable forecasts of new ties between two existing
authors in co-authorship networks.

The H-Index is the predominant statistic used to
evaluate individual researchers’ influence [7]. This
measure considers the number of publications an au-
thor has produced and the number of citations those
papers have received. However, there is a possibility
that the H-Index is not designed to provide the most
precise assessment possible of a researcher’s actual
influence. This restriction derives from the fact that it
has the propensity to misrepresent an author’s overall
visibility, which may be caused by variables such as
the author’s habit of self-citation or their participa-
tion in research activities across a variety of academic
fields [8, 9]. Consequently, there is a compelling need
for an alternative impact measure that may offset the
adverse effects of these disadvantages and appraise
the academic contributions that are more thorough.

This research uses supervised models to establish
the appropriate weights associated with different
topological characteristics for predicting co-author
connections via extracting structural and topological
features from co-authorship networks. The suggested
approaches were tested on co-authorship networks in
computer science, with results confirming the topo-
logical dependency of co-author relationship devel-
opment. In addition, supervised learning approaches
were shown to be effective in using this correlation
to make reliable co-authorship predictions.

2. Related works

Researchers have looked at several options to
improve the accuracy of collaboration suggestions.
Using suggestions based on shared interests in re-
search is a common tactic in this field. Extracting
authors’ research interests from titles, abstracts, and
keywords is a common goal of text-mining ap-
proaches, which are at the heart of these inquiries.
Text-matching methods are also used to recommend
researchers with similar areas of expertise.

In recent years, exciting developments in geomet-
ric deep learning have led to graph neural networks
combining the best features of fully connected and
convolutional neural network designs. Many of these
methods draw on the idea of neighborhood informa-

tion aggregation from graph convolution networks
(GCNs) [10]. They are improved by incorporating
well-known deep learning architectures like Re-
current neural networks (RNN) [11], Approximate
Message Passing (AMP) [12], A generative adversar-
ial network (GAN) [13], and graph transformers [14].

Abbasi et al. [15] developed a theoretical frame-
work based on social network theories and analytical
tools to study scholarly cooperation networks, partic-
ularly co-authorship networks. They aimed to evalu-
ate the impact of social networks on scholarly perfor-
mance in the field of information systems as measured
by citations using social network analysis (SNA) met-
rics such as normalized degree centrality, normalized
closeness centrality, normalized betweenness central-
ity, normalized eigenvector centrality, average tie
strength, and efficiency. A Poisson regression model
was used to find positive correlations between the
g-index and four of the seven SNA metrics except for
normalized betweenness and closeness centrality.

Under Italian law, Behrouz et al. [16] compre-
hensively analyzed three “academic disciplines”—
computer engineering, mathematics, and economics.
Because they span so many themes and interests, re-
searchers chose these areas. They collected academic
scholar data from Elsevier’s Scopus public database.
Then, authorship networks were created. Each net-
work’s topology and community were examined, and
comparative analysis was used to explore the differ-
ences and similarities across disciplines of study.

Kumar et al. [17] developed a flexible link pre-
diction technique using several node centralities and
machine learning classifiers. They employed classic
and novel node centrality metrics to better capture
the network’s local, quasi-local, and global structural
features. These node centrality values become feature
labels for network nodes. Negative samples showed
non-existent edges, whereas positive ones indicated
existing ones. These labeled features and edge end-
points were combined for a link prediction dataset.
The dataset was tested using many machine learning
classifiers.

Nasiri, Elahe, et al. [18] improved local random
walks by proposing a technique that guides the ran-
dom walk to more impactful nodes. This method
selects the next node based on its influence. Re-
searchers assessed asymmetric mutual impact using
mutual information. The approach was compared to
several local, quasi-local, and global similarity-based
algorithms.

Nasiri et al. [19] developed Robust Graph Reg-
ularization Nonnegative Matrix Factorization for
Attributed Networks (RGNMF-AN) to solve the di-
rect link prediction problem in attributed networks.
This model effectively includes network topology
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and node attribute data. The SARWS scoring matrix
measures high-order proximities between nodes. This
scoring matrix may indicate structural and attributed
properties in high-order proximity to better capture
attribute information. It combines the SARWS score
matrix with topological and attribute information via
graph regularisation to better aggregate meaningful
attribute information within high-order proximities.

Hasin et al. [20] investigated link prediction (LP) in
Academic Social Networks (ASNs) to forecast future
scholar collaborations. This research compares the
main taxonomies of topological, content, and hybrid
approaches. These approaches provide similarity rat-
ings for every pair of unconnected nodes in ASNs to
solve the LP issue.

3. Graph theory

The branch of mathematics studies graphs, which
are mathematical structures used to represent rela-
tionships between entities. A graph comprises a set of
nodes, or vertices, and a collection of lines, or edges,
that connect the nodes. Social networks, computer
networks, transportation systems, and molecular
structures are just a few examples of phenomena that
may be modeled using vertices and edges [21, 23].

It provides a framework for analyzing the proper-
ties of graphs, developing methods for dealing with
graph-related problems, and more. Moreover, graph
theory aids in resolving issues associated with graph
structures. Connectivity, paths, cycles, distances, and
graph colors are just topics it explores. Graph theory
also includes many other kinds of graphs, including
directed and undirected graphs, weighted graphs, and
bipartite graphs [21, 24, 25].

Many fields, from computer science and operations
research to physics, biology, and sociology, use con-
cepts from graph theory [24, 25]. Graph theory’s ver-
satility has led to its use in various contexts, including
studying data dependencies, modeling complex sys-
tems, appreciating the interconnection of things, and
solving optimization issues (Fig. 1).

3.1. Common Neighbor Classifier (CNC)

A machine learning method that predicts linkages
between social networks and graph-based data struc-
tures. This approach evaluates network connectivity
by measuring how frequently two nodes have familiar
neighbors. This method assumes that linked nodes
have more overlapping neighbors than disconnected
ones [27, 28]. The equation for this behavior is:

CNC
(
x y
)
= |0 (x)| ∩

∣∣0 (y)∣∣ (1)

Fig. 1. Displays plots (A) and (B); it exemplifies a mathematical form
of graph theory [26].

Where;

CNC (x,y): The Common Neighbor Classifier score
equals the number of common neighbors between x.
and y.
0(x) and 0(y): These denote the neighbors of nodes x
and y, respectively. The neighborhood 0(x) includes
all nodes directly connected to node x.

3.2. Jaccard Coefficient (JC)

This scale evaluates the degree of similarity be-
tween two data sets. Its use spans various machine
learning subfields, including clustering, classifica-
tion, and recommendation systems [29]. It is the ratio
of the intersection of two groups to the union of these
two groups used to obtain the Jaccard coefficient.

JC(x, y) =
|0(x) ∩ 0(y)|
|0(x) ∪ 0(y)|

(2)

Where:

0(x): The set of neighbors of node x.
0(y): The set of neighbors of node y.
0(x) ∩0(y): The intersection of the sets 0(x) and 0(y),
i.e., the set of common neighbors between x and y.
0(x) ∪0(y): The union of the set 0(x) and 0(y), i.e.,
the set of all distinct neighbors of x and y combined.
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3.3. Preferential Attachment Coefficient (PAC)

It causes higher-degree nodes to link more. The PAC
quantifies preferential attachment [30, 31]. The PAC
is the ratio of the square of the total of all network
degrees to the product of any two node degrees, nor-
malized by a constant factor.

P A
(
x, y

)
= |0 (x)| ∗

∣∣0 (y)∣∣ (3)

3.4. Adamic Adar Coefficient (AAC)

Link Prediction (LP) activities in social networks
and other graph-based data structures often employ
the Jaccard similarity coefficient [32]. This technique
assumes that neighbors of different nodes will con-
nect more often. The following equation calculates
Jaccard similarity:

AA
(
x, y

)
=

∑
z∈0(x)∩0(y)

(
ancos

1
Log (|0 (z)|)

)
(4)

Where;

| 0(z)|: The degree of node z, i.e., the number of
neighbors of z.
log(| 0(z)|)1: The contribution of the common neigh-
bor z to the similarity between x and y. The logarithm
dampens the contribution of highly connected neigh-
bors, making the coefficient more sensitive to less
common neighbors.

4. Methodology

4.1. Dataset

The dataset employed in this investigation was
systematically acquired from scholarly journals that
predominantly disseminate articles within the realm
of physics. Collecting data entailed a meticulous ap-
proach to acquiring and consolidating articles from
the journals above. A methodical methodology was
subsequently utilized to classify and organize the
gathered articles, culminating in the establishing of
a unique dataset. In this context, Each node in the
collection represents an individual group of authors
who have worked on scientific works.

The edges, on the other hand, serve as a repre-
sentation of the collaborative connections that exist
between these authors. The intricate web of col-
laborative efforts among authors is comprehensively
documented by implementing this dataset structure.
It can be systematically examined, resulting in sig-
nificant revelations regarding the nature and trends
of scientific collaboration across various fields. 1050

Table 1. Splitting the data into test and training sets.

Data count Training set Testing set Validation set

1050 788 210 52

distinct nodes made up the dataset that was used for
this investigation. As a result of running the code,
it was discovered that 237 of the nodes included in
the dataset were incorporated into the database. The
database consists of three columns: one for the titles
of the papers, another for the people participating in
each publication, and a third column for the specified
code numbers linked with the execution of the code.
Each of these columns is labeled with the appropriate
heading.

It is recommended to divide the data set into three
sets: a training set, a test set, and a validation set. This
will ensure the effective implementation of training
and model evaluation. It is recommended that the
training set contain 75% of the total data, the test
set 20%, and 5% for validation (to maintain the 1/3
ratio). The model’s performance is evaluated with the
help of the test set. In contrast, the training set is
primarily used to improve it (Table 1).

Various approaches may be taken to successfully
prevent overfitting, which happens when a model
overly adapts to the data used for training and cannot
generalize well. One method includes separating the
dataset into training and test sets. In order to con-
duct an accurate analysis of the model’s performance,
these data sets must have patterns comparable to
those seen in the actual world. In addition, using a
validation set is vital for comparing many models
and identifying which performs better, independent
of how well the models have performed individually.

4.2. Implementation

Support vector machine (SVM) is a computer tech-
nique that uses an example-based learning approach.
Forecasting labels for input feature vectors or datasets
may be used as a reliable approach to building clas-
sifiers by defining a decision border between two
classes [33, 34].

In order to do the calculations, it is essential to
use techniques that have been optimized to deal
with the massive size of the graphs involved. Mak-
ing sure these procedures work as intended and use
resources efficiently is crucial. The developer would
take a lot of time and effort to create such tech-
niques from scratch. To reduce these expenses, it
will use free third-party libraries. After an exhaus-
tive investigation, it was determined that NetworkX
and the Pandas Python Data Analysis Library were
the top two options. Python’s NetworkX module
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provides comprehensive capabilities for network re-
search. At the same time, the Pandas data analysis
toolbox is a popular open-source resource. Google’s
NetworkX provides extensive tools for doing network
analysis.

The file containing the code may be split into three
main sections. The first section is dominated by the
time required to read the input datasets and produce
the corresponding graphics. This approach uses the
functions provided by the NetworkX library. It also
shows how input data is gathered and how graphs are
split into test and training sets. This partition enables
the train and test graphs to be handled separately.

To create the massive component, it is necessary
first to generate the graphs and then eliminate any
pairs of nodes that are geographically far from one an-
other. It is crucial to double-check and ensure that the
sets of nodes in the train and test graphs are the same.
Since the main objective of the studies is to evaluate
the effectiveness of prediction algorithms in detect-
ing new connections between existing nodes in the
network, maintaining this consistency is extremely
important. Hence, the requirement can be satisfied
by eliminating nodes in only one of the graphs.

To evaluate the predictions generated by the typical
neighbourhood technique, it is necessary to calculate
the number of familiar neighbors for each potential
pair of nodes inside the network. One can acquire the
capacity to make predictions by utilizing this formula.
In order to achieve this objective, a framework of
nested loops has been devised to generate all possible
pairs.

The total number of potential node pairings in a
graph with n nodes can be calculated by applying
a formula that selects all subsets of the node-set,
where each subset consists of exactly two compo-
nents. This will provide the total count of possible
combinations of nodes. The calculation of the number
of possible node pairs is simplified by employing this
approach, resulting in a significant increase in the
number of potential combinations, rising exponen-
tially. Consequently, it is impossible to produce and
analyze all pairs simultaneously. The formation and
processing of node pairs are fragmented to solve this
difficulty.

The number of combinations for undirected net-
works can be calculated using the formula n(n-1)/2,
where n is the total number of nodes in the network.
Given this information, the sequence of the nodes is
no longer relevant (Fig. 2).

The subsequent stage quantifies the number of fa-
miliar neighbors each pair shares inside the generated
chunk. This is completed once the chunk has been
formed. Subsequently, the calculated values are com-
pared to the most optimal values obtained thus far.

Fig. 2. The screenshot shows the calculation of the quantity of
renowned adjacent individuals.

From the combined list of values, the applicants who
have shown the most promise are chosen to go on,
while the values that haven’t shown much promise
are thrown out. As part of the evaluated strategy
for forecasting, this approach ensures that only ap-
plicants with the highest probability of success are
considered. Also known as pairs, “It,” are stored in
memory as part of the technique.

Consequently, memory use may be improved,
which will help alleviate problems that arise from
having inadequate memory. Furthermore, with the
completion of each step, a more significant fraction
of pairings can be assessed. The findings indicate that
the candidates with the highest likelihood of success
are determined by the total amount of graph data that
has been analyzed.

4.3. Model testing

The suggested models are put through extensive
testing, which consists of entering test data, which is
then preprocessed and fed into the models while the
testing phase is in progress. After that, the test results
are examined to determine the pertinent characteris-
tics that may be used for the LP (Learning Process).
The system will provide an output that validates the
existence of LP based on the knowledge gathered
via the learning process if the preset conditions are
fulfilled. On the other hand, the system will generate
an LP assertion if the conditions are not satisfied.
The validity of the output model is tested using two
different methods: (1) checking its alignment with the
labels included in our dataset, and (2) making sure
that a data portability technique reduces the amount
of data that is lost when it is applied to the data
gathering process.
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Table 2. Performance metrics.

Effectiveness measure Relation

Accuracy =
TP+ TN

TP+ TN + FP+ FN

Recall =
TP

TP+ FN

Precision =
TP

TP+ FP

F1− score =
2TP

2TP+ FP+ FN

5. Assessment

During the stage that is dedicated to the first
data preparation, the data that is being entered is
converted into a graph that is a representation of
the network. Following that, in the “method execu-
tion” step, The created graph is inputted into the
implementation codes of the procedure, and these
programs undergo thorough testing. During the final
phases, evaluation metrics obtained before to, during,
and after the execution of the method are retained as
a crucial component of the comprehensive outcome
report. This step takes place after all other stages have
been completed.

The approach incorporates several different compo-
nents, This includes techniques for predicting future
outcomes, organising the appearance of data, creating
visual representations, and saving output files.

Processing graphs that are produced from real-
world datasets offers considerable hurdles as a result
of the enormous quantity of information that is stored
inside these datasets. These graphs may have a wide
variety of nodes and edges, which can sometimes
number in the thousands and form complicated re-
lationships between the nodes and edges.

5.1. Performance metrics

In order to guarantee the accuracy that our model
is capable of delivering, we have used four different
metrics that reflect Recall, F1-Score, and Precision.
The following are the formulas of the connections
between each of these measures (Table 2):

6. Results

This article describes and analyzes the results of
the training process that was used in the suggested
model. The training process made use of a dataset
that was constituted of scientific knowledge about
physics. In the wake of a single cycle of training that
lasted for 25 epochs, it will now continue to explain

Table 3. Using SVM classifier to classify the physics science
dataset.

Dataset Algorithm Type of link Accuracy

Physics science SVM LP 96.66 %

Table 4. Performance metrics for SVM classifier to the physics
science dataset.

Type of link Precision Recall F1-score

LP 100 % 92.47% 96.08%

the results obtained from the relevant experimental
attempts (Tables 3 and 4).

Fig. 3 demonstrates the use of the confusion ma-
trix method, which consists of four separate metrics:
true positive (TP), false positive (FP), false negative
(FN), and true negative (TN) values. These metrics
are allocated to corresponding indices. We can ar-
rive at the definitive categorization results by solving

Fig. 3. Flowchart illustrating the process of testing and training in a
model.

Fig. 4. Execution of the confusion matrix.
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Fig. 5. Illustration of the representation of node affinity metrics in a social dataset. (A); CNC (B); AAC (C); JC (d) PAC.

the equations above. The dataset’s results are shown
graphically using four plots: the confusion matrix, the
training test accuracy curve, the loss accuracy curve,
F1- score, etc.

7. Discussion

Metrics that measure performance provide insight-
ful data on the efficiency of various approaches to
data in physics research. The Preferential Attach-
ment Coefficient has shown much better performance
than the other three ways when compared to the
strategies that have been investigated. On the other
hand, compared with the other two methods in terms
of performance, the Jaccard Coefficient and Jaccard
Coefficient methodology come out on top. Notable
about these approaches is that they use the Jaccard
Coefficient somehow (Fig. 5). Because these research
networks are non-targeting platforms, the offered
information may be accessed by a broad audience
rather than customized for specific individuals. This
feature suggests that the content that is provided is
open to discussion.

Using the Preferential Attachment Coefficient
methodology, node pairings with greater normalized
values demonstrate a better similarity index. This in-
dicates that these node pairs are more likely to be

picked when making predictions. The fact that this
was seen gives rise to the conclusion that the paired
nodes in question have a strong link to one another
and are more likely to have qualities or interests in
common with one another. However, it is essential
to remember that a more significant percentage of
presently shared neighbors among the total popu-
lation of neighbors in a particular region may also
indicate a feeling of satisfaction or saturation in that
area. This is something that has to be taken into
consideration. This suggests that a person may have
explored their interests at length, limiting the possi-
bility of frequent contributions on the same themes
covered in detail earlier.

The empirical findings of the research reveal that,
in comparison to other methodologies, there is a
greater alignment between user behavior and the
ideas that underlie the Preferential Attachment Co-
efficient (PAC) approach. Based on this finding, users
seem interested in various subject areas. On the other
hand, examining the performance of these two meth-
ods using the core dataset of European email finds
no substantial gap between them. After carefully re-
viewing the data, this finding presents unmistakable
evidence. This conclusion could result from a combi-
nation of many different causes, each contributing to
the total effect.
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The results obtained from applying the Sup-
port Vector Machine (SVM) model to predict co-
authorship networks within the field of physics pro-
vide significant insights into the efficacy of machine
learning techniques in complex network analysis.

The SVM model achieved a high accuracy rate of
96.66%, highlighting its robust predictive capability
in identifying potential links between authors and
publications. This level of accuracy suggests that the
SVM model is well-suited to link prediction in schol-
arly networks, where identifying hidden connections
can be critical for advancing knowledge and fostering
collaboration.

One of the key strengths of the SVM model lies in its
ability to handle the high-dimensional data typical of
co-authorship networks effectively. These networks
are characterized by many nodes (representing au-
thors) and edges (representing collaborations), mak-
ing traditional statistical methods less effective. With
its capacity for handling non-linear relationships and
finding an optimal hyperplane that separates differ-
ent classes, the SVM model proves to be an effective
tool in this context. This is further evidenced by the
model’s performance across various metrics, includ-
ing precision, recall, and F1-score, demonstrating the
model’s balance between identifying positive links
and minimizing false positives and negatives.

The precision of 100% indicates that every link pre-
dicted by the model as a potential co-authorship was
indeed correct, reflecting the model’s high specificity.
However, the model’s 92.47% recall rate suggests
that it successfully detected almost all actual co-
authorship links but failed to spot a small proportion
of them, implying that there is still room for capturing
all possible co-authorships better.

This trade-off between precision and recall is com-
mon in machine learning, especially in complex
network analysis where nodes are not always linear
or easily discernible.

The F1-score of 96.08% combines precision and
recall to assess the model’s performance objectively.

This measure is particularly relevant in terms of link
prediction because it considers how accurately the
predictions of the model were made and its ability
to capture all relevant links. The high F1 score thus
underscores the effectiveness of the SVM model in
forecasting co-authorship ties, thereby serving as a
valuable tool for exploring hidden collaboration pat-
terns within academic networks.

Further supporting this conclusion is using a confu-
sion matrix to evaluate performance. When looking
at true positives, false positives, false negatives, and
true negatives, one can see where things went right
and wrong for the model.

The SVM model’s accuracy and reliability are un-
derlined by a large number of true positives and a
low number of both false negatives and positives.

This study’s success in SVM models also emphasizes
the importance of careful data preparation and proper
evaluation metrics. The dataset used for this study
was obtained by meticulous curation from scientific
publications in physics to ensure that it closely rep-
resented the real co-author network being studied.
By carefully training the model on each part of the
dataset, including training, testing, and validation
sets, the researchers could test whether their findings
could be generalized beyond their sample without
risking overfitting.

This model’s performance was also determined us-
ing various evaluation measures such as accuracy,
precision-recall, and F1 score. One metric may not
be applicable for capturing all nuances of data or
showing how well the developed model works in
complex network analysis, thus requiring a diverse
approach to evaluation. Through multiple measures
considered by the researcher regarding its strengths
and limitations, a fuller understanding of how useful
it is in solving this problem can be reached based on
these results.

Table 5 shows how different classifiers performed
when employed for link prediction (LP) within the
physics science dataset. The SVM classifier has a

Table 5. Comparison of the results with the other related studies.

Results

Study Model Accuracy Precision Recall F1-score

[35] Logistic Regression NA 69.6% 67.7% 67.1%
SVM NA 69.7% 67.8% 67.1%

[36] Gradient boosting machines 86.68% NA 86.95% NA
Random Forest 84.06% NA 84.18% NA

[37] Random Forest NA 20.2% 83.4% 91.7%
k-nearest neighbors NA 14.8% 82.2% 90%

[38] ANN NA 91.3% 97.5% 94.3%
[39] CNN 59.19% 72.27% 53% 61.05%
This study SVM 96.66% 100% 92.47% 96.08%
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striking accuracy of 96.66%, which is remarkable
compared to other models designed for similar tasks.
However, a highly accurate model still predicts wrong
links, leading to false positives.

The recall rate is slightly lower at 92.47% because
the truth is that no model can perfectly predict all
links, and this one missed out on some. The F1-score
of the SVM classifier amounts to 96.08%, which com-
bines precision with recall as a measure of the model’s
performance over data fitting and prediction in terms
of both true positives and negatives, making it very
reliable for co-authorship networks in link prediction.

On the other hand, compared to other classifiers,
most predictive models often have less precision and
recall, thereby preventing an equilibrium between
these measures. Consequently, this may increase the
number of false positives or negatives, thus affect-
ing predictions in complex networks and influencing
their accuracy and reliability most seriously. The
superior performance of the SVM classifier in all eval-
uated metrics, as depicted in Table 5, confirms its
effectiveness and robustness in handling the complex-
ities of the co-authorship dataset in physics science.

8. Conclusion

All the methods evaluated here use node-centric
data to make predictions, making them suitable for
classification as topology-based techniques. Machine
learning (ML) and other cutting-edge methods that
use path-based data or random traversal approaches
may be used to improve speed. A more profound
comprehension of the features that contribute to the
success of link prediction (LP) techniques would re-
sult from expanding the scope of this research to
include the classes above methodologies. This en-
largement may help practitioners get a better grasp
of the material.

For future work: Extending the study by including
more extensive datasets and training more classifiers
and algorithms inside an ML framework is proposed
for future research. This elaboration would allow the
study’s results to be used in R&D settings, raising the
study’s practical relevance.

9. Limitation and constraints

The limits of the used model are evident in densely
populated and diverse areas of the graph. One way to
alleviate these restrictions is by utilizing a taxonomy
of the publications’ subjects or explicitly modeling
links between topics.

Alternatively, we can consider the diversity within
a neighborhood by creating a model that measures

the impact of one node on the prediction of another
node. This can be based on factors such as the overlap
between the neighborhoods of the two nodes, the
number of shared references between them, or the
proportion of links a predicting node has within the
neighborhood of the predicted node.

Alternatively, a node’s impact on a prediction can
be determined by its position or structural charac-
teristics in the co-authorship graph. Social network
analysis provides a range of node centrality measures
that can be used for this purpose.

10. Ethical considerations

For ethical purposes, We thus confirm that we have
completed the current study topic.
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