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Abstract 

In this paper, a mathematical model consisting of the prey- predator model involving disease in 

both the population with harvesting of prey is proposed and analyzed. The existence, uniqueness 

and boundedness of the solution are discussed. The existences and the stability analysis of all 

possible equilibrium points are studied. Finally the effects both of the disease and harvest on the 

dynamical behavior the model are discussed numerically. 
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Introduction  

The effect of disease in ecological system is 

now becoming an important issue of research 

as infectious disease becomes an important 

factor to regulate human and animal 

populationsize. Anderson and May [1]; 

Chattopadhyay and Arino [2]; Hadeler and 

Freedman [3]; Venturino [4]; have been 

devoted to observe the dynamics of such 

system when prey population is infected with 

some transmissible diseases. Mathematics is 

one way to explain many of the ideas and 

concepts in the sciences. In the field of 

ecology, a lot of theoretical studies were 

carried out since the beginning of last century 

to explain the interaction between the 

ecological communities. One particular study 

describes the interaction between one 

population (prey) and the other (predator) 

living in a closed environment with the two 

populations ving for surviva [5].  

Exploitation of biological resources as 

practiced in fishery, and forestry has strong 

impact on dynamic evolution of biological 

population. The over exploitation of resources 

may lead to extinction of species which 

adversely affects the ecosystem. However, 

reasonable and controlled harvesting is 

beneficial from economical and ecological 

point of view. The research on harvesting in 

predator-prey systems has been of interest to 

economists, ecologists and natural resource 

management for some time now. Very few has 

explicitly put a harvested parameter in a 

predator–prey parasite model and studied its 

effect on the system. 

Here we study the role of harvesting in an 

eco-epidemiological system where the 

susceptible and infected prey are subjected to 

combined harvesting [6]. 

On contrast to all the above studies, in this 

paper a consideration is given to prey- 

predator model involving infectious disease in 

both the prey and the predator species, in 

addition, harvest in prey species is proposed 

and analyzed. 

In this paper a prey-predator model where 

the prey population infected by some 

infectious disease and these disease passed 

from a prey to predator through attacking or 

predation process. While the disease 

transmitted within the prey species by contact, 

between susceptible individuals and infected 

individuals, in additional to the external 

sources from the environment. It is assumed 

that prey-predator model involving SIS 

infection disease in both the prey and predator 

species. Further, in this model, non linear type 

of functional response, represented by 

Holloing type II as well as linear incidence 

rate for describing the transition of disease are 

used. 

Mathematical Model 
In this section, an eco-epidemiological 

model is proposed for study. The model 

consists of a prey, whose total population 

density at time T  is denoted by )(TN , 

interacting with predator whose total 

population density at time T  is denoted by 

)(TP . It is assumed that both the prey and the 

predator populations are infected by different 

infectious diseases. Further, the following 
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assumptions are made in formulating the basic 

eco-epidemiological model: 

1. There is an SIS epidemic disease in prey 

population divides the prey population into 

two classes namely )(TX  that represents 

the density of   susceptible prey species at 

time T  and )(TY  which represents the 

density of infected prey species at timeT . 

Therefore at anyT , we have 

)()()( TYTXTN  . 

2.The disease is transmitted from a prey to 

predator during attacking of predator to 

prey, which divides the predator population 

into two classes namely )(TZ  that 

represents the density of susceptible 

predator species at time T  and )(TW  which 

represents the density of infected predator 

species at time T . Therefore at any T  we 

have )()()( TWTZTP   

3. The susceptible prey is capable of 

reproducing in logistic fashion with 

carrying capacity 0k , intrinsic growth

0r . 

4. The disease transmitted within the same 

species (prey) by contact with an infected 

individual at infection rates 01  for the 

prey. In addition, there is an external source 

of disease causes incidence with the disease 

within the specific population at an external 

infection rates 02   for the prey 

5. The disease disappears and infected 

individuals become susceptible again at the 

recover rates 0  and 0  for prey and 

predator species, respectively 

6. In the absence of the prey the susceptible 

and infected predator decay exponentially 

with natural death rates 02 d  and 03 d  

respectively. 

7. The disease in prey may causes mortality 

with a constant mortality rate represented 

by 01 d . 

8. The susceptible and infected predator 

consume the prey according to Holling 

type-II of functional response with 

maximum attack rate 0and0 21     

(from susceptible prey) and 

0and0 21    (from infected prey) 

respectively. However the constant 0m  

represent the half saturation for the   

predator. 

Considering the above basic assumptions 

the prey-predator model can be represented in 

the following system of differential equations: 
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with 0)0(;0)0(;0)0(;0)0(  WZYX and 

10  ie ; 2,1i  represent the conversion rate 

constants and ( 00 21  qandq ) represents the 

harvesting rate of susceptible and infected prey 

respectively. The flow of disease in system 

(2.1) can be described in the following block 

diagram. 

 
Fig.(1): Block diagram of the prey-

predator model given by system (1). 
 

Cleary, system (1) included (18) parameters 

which make the analysis difficult. So, in order 

to simplify the system the number of 

parameters is reduced by using the following 
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represent the dimensionless parameters of 

the system (2). Moreover the initial condition 

of system (2) may be taken as any point in the 

region 

4
R . Obviously, the interaction functions 

in the right hand side of system (2) are 

continuously differentiable function on 4
R , 

hence they are Lipschitizian. Therefore the 

solution of system (2) exists and is unique. 

Further, all the solutions of system (2) with 

0 initial condition are uniformly bounded as 

shown in the following theorem. 
 

Theorem (1) : 

All the solutions of the system (2) are 

uniformly bounded.  

 

Proof:  

Let )(),(),(),( twtztytx  be any solution of the 

system (2). Define the function 

)()()()()( twtztytxtM  , then the time 

derivative of  tM  along the solution of the 

system (2), gives 
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Then according to the theory of differential 

inequality we have sup 1)( tx , 0t  

nM
dt

dM
1  

where  141211106 ,,,min wwwwwn  . 

Now, by using Gromwell lemma, it obtains 

that: 0 )1(
1

)0()( ntnt e
n

eMtM    which 

yields  
nt tM 1lim   that is independent of 

the initial conditions. Thus the proof is 

complete. 

 

Existence of equilibrium points: 
It is observed that, system (2) has at most 

three biologically feasible equilibrium points, 

namely ),,,( wzyxEi  , 2,1,0i . The existence 

conditions for each of these equilibrium points 

are discussed in the following: 

1. The vanishing equilibrium point  

  0,0,0,00 E  always exists. 

2. The predator free equilibrium point  

    0,0,ˆ,ˆ1 yxE    
 

where  
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while x̂  represents a positive root of the 

following second  order polynomial equation  
 

032
2

1  BxBxB   ................................ (4) 
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Consequently, straightforward computation 

shows that 1E  exists uniquely in the interior of 

the first quadrant of xy  plane if and only if 

the following condition are hold. 

 03 B   ................................................... (5) 

 

3. The positive equilibrium point  

),,,( ***
2 wzyxE   

 

The positive equilibrium point 2E  exists in 

the 4. RInt  if and only if there is a positive 

solution of the following set of algebraic 

equations  
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By solving (6b) and (6d), we obtain that  
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Then by using (6e) and (6f) in (6a) and (6c) 

yield the following two isoclines. 
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Obviously, 01 x provided that: 
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Then the two isoclines (6g) and (6h) 

intersect at a unique positive point ),( ** yx  in 

the 2
Int.R  of xy-plane. Substituting the value 

of *x and 
*y  in Eq. (6e) and (6f) yield that 

*** ),( zyxz  and *** ),( wyxw   which are 

positive if and only if the following condition 

holds. 
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Accordingly, the positive equilibrium point 

2E  exists uniquely in the 4
Int.R  if in addition 

to the conditions (8), (10), (13) and 12 xx  ; the 

isoclinic 0),(1 yxg  intersect the x-axis at the 
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The local Stability Analysis: 

In this section, the local stability analyses 

of system (2) around each of the above 

equilibrium points of system (2) are studied 

with the help of Linearization method. Note 

that the symbols  iziyix  ,,  and iw  denote 

to the eigenvalues of the Jacobian matrix 

2,1,0);( iEJ i  that describe the dynamics in the 

x - direction y -direction, z -direction and 

w -direction, respectively.  

The Jacobian matrix of system (2) at 0E  

can be written as: 
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Clearly the characteristic equation of 0J  

can be written 
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following relations: 
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Hence the equilibrium point 0E  is locally 

asymptotically stable in 4
R  . 

The Jacobian matrix of system (2) at the 
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Clearly the characteristic equation of 1J  can 

be written 
 

 

  0][

][

4334443314433
2
1

2112221112211
2
1





eeeeee

eeeeee




 

 

Therefore, the eigenvalus of 1J  satisfy the 

following relations: 
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221111 eeyx     ................................... (21) 

2112221111 . eeeeyx    ............................ (22) 

443311 eewz     .................................. (23) 

4334443311 . eeeewz    ........................... (24) 

 

Clearly according to the following 

conditions all the eigenvalues have negative 

real parts. 

 

 0and0 2211  ee   ................................... (25) 

 012 e   ..................................................... (26) 

 0and0 4433  ee   ................................... (27) 

 44334334 eeee    ....................................... (28) 

 

Hence the equilibrium point 1E  is locally 

asymptotically stable in 4
R  

In the following theorem, the local stability 

conditions of the positive equilibrium point 

2E  are established. 

 

Theorem (2) : 

Assume that ),,( ****
2 wzyxE   exists in 

the 4
RInt  and the following condition are 

satisfied 
 

    654
*

3 ,,Min.Max. NNNxN   ............ (29) 

  1072
1

,Min.
1

NN
N

   ................................. (30) 

 982
2

,Min.
1

NN
N

   .................................... (31) 

 

here 10,....,1, iNi  are given in proof . Then 

the positive equilibrium point 2E  is locally 

asymptotically stable in the 4
RtIn  

 

Proof:  
The Jacobian matrix of system (2) at the 

positive equilibrium point 2E  can be written: 
 

    4,3,2,1,;
442 
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Now according to the conditions (29) and (30); 

all the values of 
44332211 and,, rrrr  are negative 

values. So according to Gersgorin theorem the 

proof is follows if and only if 




4

1
ji

i

ijii rr , and 

then all the eigenvalues of )( 2EJ  exists in the 

region  
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Clearly, its easy to show that under the 

given conditions (32) all the eigenvalues of 

)( 2EJ  exists in the left half plan and hence 

2E  is  

Locally asymptotically stable. 
 

Numerical analysis of system (2) 
In this section the dynamical behavior of 

system (2) is studied numerically by using 

Runge Kutta method along with predector 

corrector method. Note that, we use turbo C++ 

in programming and matlab. The system (2) is 

studied numerically for different sets of 

parameters and different sets of initial points. 

The objectives of this study are: first 

investigate the effect of varying the value of 

each parameter on the dynamical behavior of 

system (2) and second confirm our obtained 

analytical results. It is observed that, for the 

following set of hypothetical parameters: 
 

4.0,7.0,01.0

,05.0,001.0,1.0

,05.0,25.0,2.0

,05.0,1.0,5.0,5.0

,75.0,5.0,6.0

2114

131211

1098

7654

321
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eew

www

www

wwww

www

  ....... (33) 

  

Note that, in Fig. (2), we will use that (      ) 

to describe the trajectory of system (2) that 

started at (0.0, 0.8, 0.7, 0.6, 0.5) and (…..) to 

describe the trajectory of system (2) that 

started at (0.5, 0.3, 0.3, 0.2). 

Fig.(2): Time series of the solution of  

system (2) 

(a) trajectories of x  as a function of time, 

(b) trajectories of y  as a function of time, 

(c) trajectories of z  as a function of time, 

(d) trajectories of w  as a function of time. 
 

Clearly, Fig. (2) shows that the solution of 

system (2) approaches asymptotically to the 

positive equilibrium point )3.0,2.0,1.0,4.0(* E  

starting from two different initial points and 

this is confirming our obtained analytical 

results. 

Now in order to discuss the effect of the 

parameters values of system (2) on the 

dynamical behavior of the system, the system 

is solved numerically for the data given in Eq. 

(33) with varying one parameter each time. It 

is observed that varying the parameters values 

14,13,12,10,9,7,5,4,2,1; iwi  and 1; iei  do 

not have any effect on the dynamical behavior 

of system (2) and the system still approaches 

to positive equilibrium point. For the 

parameters values given in Eq. (33) with 

varying 3w  in the range 45.03 w , the 

solution of the system (2) approaches to 

)0,0,ˆ,ˆ(2 yxE   in the interior of positive 

quadrant of xy plane, as shown in Fig.(3), 

however for 46.03 w it is observed that the 

solution of system (2) approaches  to positive 

equilibrium point. 
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Fig. (4): Time series of the solution of system 

(2) for the data in given by Eq.(33) with 

45.03 w , which approaches asymptotically 

to (0.57 ,0.61,0,0) the interior of positive 

quadrant of xy plane. 
 

For the parameters values given in Eq. (33) 

with varying 6w  in the range 3.06 w  the 

solution approaches to the solution of system 

(2) approaches  to positive equilibrium point , 

while for 6.04.0 6 w  the solution of the 

system (2) approaches to )0,0,ˆ,ˆ(2 yxE   in the 

interior of positive quadrant of xy plane,, 

finally for 67.0 w  system (2) approaches to 

the vanishing equilibrium point )0,0,0,0(0 E  

as shown in Fig.(5) . 
 

 
 

Fig.(5): Time series of the solution of system 

(2) for the data given by Eq. (33) with 

7.03 w , which approaches asymptotically 

to the vanishing equilibrium point. 
 

On the other hand varying the parameter 

8w  keeping the rest of parameters values as in 

Eq. (33), it observed that for 5.08 w  the 

solution of system (2) approaches asymptotically 

to positive equilibrium point, while for 86.0 w  

approaches to )0,0,ˆ,ˆ(2 yxE   in the interior of 

positive quadrant of xy plane. For the 

parameters values given in Eq. (33) with 

varying 11w  in the range 2.011 w  the solution 

approaches to positive equilibrium point, while 

for 113.0 w  the solution of the system (2) 

approaches to )0,0,ˆ,ˆ(2 yxE   in the interior of 

positive quadrant of xy plane, Finally, For 

the parameters values given in Eq. (33) with 

varying 1e  in the range 4.01 e , the solution 

of the system (2) approaches to )0,0,ˆ,ˆ(2 yxE   

in the interior of positive quadrant of xy

plane, as shown in Fig.(3) ,however for 

5.03 w it is observed that the solution of 

system (2) approaches  to positive equilibrium 

point. 

 

Conclusions and Discussion 

In this paper, an eco-epidemiological model 

has been proposed and analyzed. In order to 

study the effect of infection diseases and 

harvesting on the dynamical behavior of the 

prey-predator system, the dynamical behavior 

of system (2) has been investigated locally. In 

addition to assumed that the prey population is 

harvested and the prey population infected by 

some infectious disease and these disease 

passed from a prey to predator through 

attacking or predation process. While the 

disease transmitted within the prey species by 

contact, between susceptible individuals and 

infected individuals, in additional to the 

external sources from the environment. It is 

assumed that prey- predator model involving 

SIS infection disease in both the prey and 

predator species. Further, in this model, non 

linear type of functional response, represented 

by Holloing type II as well as linear incidence 

rate for describing the transition of disease are 

used. The model included four non-linear 

autonomous differential equations that 

describe the dynamics of four different 

population namely susceptible prey x , 

infected prey y , susceptible predator z , 

infected predator w . 

To understand the effect of varying each 

parameter on the global dynamics of system 

(2) and to confirm our obtained analytical 

results, system (2) has been solved 

numerically and the following results are 

obtained 

1. The system (2) dose not have periodic 

dynamic. 
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2. For the set of hypothetical parameters 

values given Eq. (33), system (2) 

approaches asymptotically to a globally 

asymptoticallystable point ),,,( ****
2 wzyxE  . 

3. It is observed that varying the parameters 

values 14,13,12,10,9,7,5,4,2,1; iwi  and/ 

1; iei  keeping other parameters as given 

by Eq. (33) do not have any effect on the 

dynamical behavior of system (2) and the 

system still approaches to a positive 

equilibrium point. 

As the susceptible prey's maximum attack 

rate by susceptible predator 3w  decreases 

slightly keeping the rest of parameters as 

in Eq. (33), the system has asymptotically 

stable equilibrium point )0,0,ˆ,ˆ(2 yxL  . 

However increasing the parameter 3w  

system (2) still has asymptotically stable 

positive point in the 4. RInt . It is observed 

that the conversion rate from susceptible 

prey to susceptible predator parameter 1e  

respectively, have the same effect as 3w . 

4. As the harvesting rate of susceptible  

prey 
6w  decreases keeping the rest of 

parameters as in Eq. (33), syatem (2) still 

has asymptotically stable positive point in 

the 4. RInt . However, increasing 6w  

causes extinction in the both predator 

species and the solution of system (2) 

approaches to the equilibrium point 

)0,0,ˆ,ˆ(2 yxE  . While, increasing 6w  

causes extinction in the both predator and 

prey species and the solution of system (2) 

approaches to the equilibrium point 

).0,0,0,0(2 E  
 

As the maximum attack rate of the infected 

prey by susceptible predator 8w  decreases 

keeping the rest of parameters as in Eq. (33), 

syatem (2) still has asymptotically stable 

positive point in the 4. RInt . However, 

increasing 6w  causes extinction in the both 

predator species and the solution of system (2) 

approaches to the equilibrium point 

)0,0,ˆ,ˆ(2 yxE  . It is observed that the 

harvesting rate of infected prey 11w as the same 

effect as 8w . 
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 الخلاصة
يتكون  نموذج رياضيدراسة و ، تم اقتراح في هذا البحث

مع حصاد  فريسة والمفترس عند وجود مرض في كليهم من
ناقشنا وجود, وحدانية وقيد الحل. قمنا  .في مجتمع الفريسة

 بدراسة وجود و تحليل الاستقرارية لجميع نقاط التوازن
تاثير كل من المرض ومقدار اخيرا تــم دراسة  الممكنة.

لبحث السلوك الديناميكي  المحاكاة العددية دامـالحصاد باستخ
 .للنظام
 
 
 

 

 


