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Abstract

In this paper, a mathematical model consisting of the prey- predator model involving disease in
both the population with harvesting of prey is proposed and analyzed. The existence, uniqueness
and boundedness of the solution are discussed. The existences and the stability analysis of all
possible equilibrium points are studied. Finally the effects both of the disease and harvest on the
dynamical behavior the model are discussed numerically.
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Introduction Here we study the role of harvesting in an
The effect of disease in ecological system is eco-epidemiological  system  where the
now becoming an important issue of research susceptible and infected prey are subjected to
as infectious disease becomes an important combined harvesting [6].
factor to regulate human and animal On contrast to all the above studies, in this
populationsize. Anderson and May [1]; paper a consideration is given to prey-
Chattopadhyay and Arino [2]; Hadeler and predator model involving infectious disease in
Freedman [3]; Venturino [4]; have been both the prey and the predator species, in
devoted to observe the dynamics of such addition, harvest in prey species is proposed
system when prey population is infected with and analyzed.
some transmissible diseases. Mathematics is In this paper a prey-predator model where
one way to explain many of the ideas and the prey population infected by some
concepts in the sciences. In the field of infectious disease and these disease passed
ecology, a lot of theoretical studies were from a prey to predator through attacking or
carried out since the beginning of last century predation process. While the disease
to explain the interaction between the transmitted within the prey species by contact,
ecological communities. One particular study between susceptible individuals and infected
describes the interaction between one individuals, in additional to the external
population (prey) and the other (predator) sources from the environment. It is assumed
living in a closed environment with the two that prey-predator model involving SIS
populations ving for surviva [5]. infection disease in both the prey and predator
Exploitation of biological resources as species. Further, in this model, non linear type
practiced in fishery, and forestry has strong of functional response, represented by
impact on dynamic evolution of biological Holloing type 11 as well as linear incidence
population. The over exploitation of resources rate for describing the transition of disease are
may lead to extinction of species which used.
adversely affects the ecosystem. However, Mathematical Model
reasonable and controlled harvesting is In this section, an eco-epidemiological
beneficial from economical and ecological model is proposed for study. The model
point of view. The research on harvesting in consists of a prey, whose total population
predator-prey systems has been of interest to density at time T is denoted byN(T),
economists, ecologists and natural resource interacting with  predator whose  total
management for some time now. Very few has population density at time T is denoted by
explicitly put a harvested parameter in a P(T). It is assumed that both the prey and the

predator—prey parasite model and studied its

predator populations are infected by different
effect on the system.

infectious diseases. Further, the following
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assumptions are made in formulating the basic
eco-epidemiological model:
1. There is an SIS epidemic disease in prey
population divides the prey population into
two classes namely X (T) that represents

the density of susceptible prey species at
time T and Y(T) which represents the
density of infected prey species at timeT .
Therefore at  anyT, we have
N(T)=X(T)+Y(T).

2.The disease is transmitted from a prey to
predator during attacking of predator to
prey, which divides the predator population
into two classes namely Z(T) that

represents the density of susceptible
predator species at time T and W (T) which
represents the density of infected predator
species at time T . Therefore at any T we
have P(T)=2Z(T)+W(T)

3. The susceptible prey is capable of
reproducing in logistic fashion with
carrying capacityk >0, intrinsic growth
r>0.

4. The disease transmitted within the same
species (prey) by contact with an infected
individual at infection rates 4 >0 for the
prey. In addition, there is an external source
of disease causes incidence with the disease
within the specific population at an external
infection rates A, >0 for the prey

5. The disease disappears and infected
individuals become susceptible again at the
recover rates y >0 and @>0 for prey and
predator species, respectively

6. In the absence of the prey the susceptible
and infected predator decay exponentially
with natural death rates d, >0 and d3 >0
respectively.

7. The disease in prey may causes mortality
with a constant mortality rate represented
by dl >0.

8. The susceptible and infected predator
consume the prey according to Holling

type-1l  of functional response with
maximum attack rate a; >0and a, >0
(from susceptible prey) and

py>0and B, >0 (from infected prey)
respectively. However the constant m>0

represent the half saturation for the
predator.
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Considering the above basic assumptions
the prey-predator model can be represented in
the following system of differential equations:

dx X+Y aXZ
—=rX[1-—— |- (AY + 1 )X - 2=
dT ( K j (ﬂ“ /12) m+ X
a, XW
-2 g X+
m+ X WX+
dy BYZ  BYW
RN AV I O Al v Al
O RCY it A )
_dlY_qu_VY
dlz_ pYZ +e1a1xz 4,7+ 00
dT  m+Y m+X
dﬂ:ﬂlYZ+e2a2XW_d3W_M
dT m+Y m+X

with X (0) > 0;Y (0) > 0;Z(0) > 0;W (0) > 0 and
0<eg <1; 1 =12 represent the conversion rate
constants and (g, >0and g, >0) represents the

harvesting rate of susceptible and infected prey
respectively. The flow of disease in system
(2.1) can be described in the following block
diagram.

(0, +0,) Y T
(AY +4)X

Infective prey
< Y

o X

Susceptible prey

BYZ
e X7 m+Y

m+X

Infective Predator

Susceptible predator z

dzzj dawl

Fig.(1): Block diagram of the prey-
predator model given by system (1).

ow

Cleary, system (1) included (18) parameters
which make the analysis difficult. So, in order
to simplify the system the number of
parameters is reduced by using the following
dimensionless variables

X Y z w
t:rT,X:—,yz—,Z:—,W:_
K K K K

Thus we obtain the following dimensionless

form of the system (1):



Journal of Al-Nahrain University

B () - (y - M
dt Wy + X W+ X
- WX +W,y = xf,(X,y,2,w)
%:(WMWZ)X_M_M
t W, +Yy W, +Yy

- (W7 W+ W11)y = ny(X, Y, Z,W)
d2__ Wy ewxe
dt  w,+y W, +X
aw_ veyz | ewxw
dt w,+y W, +X

—W,,Z +W,W = zf,(X, Y, Z,W)

- (W13 + W14)W = Wf4(X, Y, Z, W)

here:

represent the dimensionless parameters of
the system (2). Moreover the initial condition
of system (2) may be taken as any point in the

region R? . Obviously, the interaction functions
in the right hand side of system (2) are
continuously differentiable function on R?,

hence they are Lipschitizian. Therefore the
solution of system (2) exists and is unique.
Further, all the solutions of system (2) with
> Qinitial condition are uniformly bounded as
shown in the following theorem.

Theorem (1) :

All the solutions of the system (2) are
uniformly bounded.

Proof:
Let x(t), y(t), z(t), w(t) be any solution of the
system (2). Define the function

M (t) = x(t) + y(t) + z(t) + w(t), then the time
derivative of M(t) along the solution of the
system (2), gives

dM

dx dy dz dw
— =t — 4+ —
dt

dt dt dt dt
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dM WaXZ  WgXW
= XA )~ (way +wp)x - B A
t W5+X W5+X

Wg Yz
W5 +y

— WX + Wy y(WpY +Wy)X —

Wo YW
Wg +Y Wg + Y
e1Ws WgyZ

XZ
- Z+ W+ ————-
W5 + X 2 s W5 +Y

Wgyz

= (W7 +Wyo +Wyq)Y -

+

eoW XW
Ws + X

+

= (W3 +Wyg )W

W3XZ
W5+X
W WeX— Wo yWw
+X Ws + Y
WYz
Wg + Y

M 2
— <X=X"—-xy—-(1-
m y-(-¢&)

-(1-e9)

W4 X
W5

— (W +Wyp)y - —WipZ
—WigW
Then according to the theory of differential
inequality we have sup x(t) <1, vt>0
d—M <1—nM
dt

where n = min {wg, Wyg + W1, W2, W4 |-
Now, by using Gromwell lemma, it obtains

that: 0<M(t)sM(O)e‘”t+%(l—e‘”t) which

yields lim_,,,M(t)<% that is independent of

the initial conditions. Thus the proof is
complete.

Existence of equilibrium points:

It is observed that, system (2) has at most
three biologically feasible equilibrium points,
namely E; =(x,y,z,w), i=0.12. The existence
conditions for each of these equilibrium points
are discussed in the following:

1. The vanishing equilibrium point

Eo =(0,0,0,0) always exists.

2. The predator free equilibrium point
E; =(%9.00)

where

Wz)z . ~
—; (W7 + Wy +Wyp) = WX
(W7 +Wyg + W) —WiX

y=



while X represents a positive root of the
following second order polynomial equation

B]_X2 + Bzx-l- 83 =0

where:
Bl =W > 0;
By =wy(w; +Wp)
—[w7 +wyg +wWypp + Wy +wWo (L+wp)l;
B3 = WoW7 + Wy +Wg +Wypq
—[(w7 +wyg +wyg )(Wo +We)];
Consequently, straightforward computation
shows that E; exists uniquely in the interior of
the first quadrant of Xy — plane if and only if
the following condition are hold.
83 <0

3. The positive equilibrium point
_ (X*, y*1z*,w*)
The positive equilibrium point E, exists in

the IntR? if and only if there is a positive

solution of the following set of algebraic
equations

W,Z

(Y, z,w) =1-(x+y) - (Wy +w,) ——
L+ X
_ W —W,+W,~=0
W, + X
.................................... (6a)
YR A

(X, Y, 2, W) = (W )X -
W +y W;+Yy

—(W, +w, +w,)=0

................................... (6b)
W, €1 Wa X
fa(x, y.Z,W)=—ﬁ+ﬁ—W12 +Wyz 7 =0
................................... (6¢)
fa(xy,z,w) = Yy, SaWaX — (W3 +Wy)=0

W(Wg +Y)  Ws+X

By solving (6b) and (6d), we obtain that

B2Cl[(wy3 + Wia) A= oWy X]

D=0
wgyD

z2(x,y) =
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ABC

w(x,y)=——-:; D=0

Where
A=wg +X, B=wg +y, C=y(wXx—a)+w,x,

D = B[(wy3 +Wi4) A—e€WgX]+ Wg YA

Then by using (6e) and (6f) in (6a) and (6c)
yield the following two isoclines.
g

g,(xy)= y{l—(H y) = (WY +Ww,) - WAC _ s

_ WsBZC[(Wm + W14)A_e2W4] —

0
w,AD
................................. (69)
wgWiz A Wg | €1WsX
9200Y) y{B[(Wls +Wyg)A—eaWy] B} A
-Wypp =0
................................. (6h)

Now from (6g) we notice that, when y—0,
then X — X; so that:

W 5(Wi3 +Wyg)

Xg=——2 2R @)
L ew, - (W3 +Wyg)
Obviously, x; >0 provided that:
62W4 > (W13 + W14) ..................................... (8)

Further, from (6h) we notice that, when

y =0 then, x— Xx, So that:
Wio Wi
Xy = M2WS e ©)
€Wz — Wy
Obviously, x, >0 provide that:
EIW3 > Wi e (10)

Now, we assume thatx, >x;. Then from
Eqg. (6g) we have

%z—(agl) (aglj So, & >0 if one set
dy oy X dy
of the following sets of conditions holds.

o9 091 091 091
W>O’W<O OR W<O’W>O

Further, from (6h) we notice

dx_ (a9, 69_2] L
that dy_ (ay)/[ax . So, <0 if one

set of the following sets of conditions holds.
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92 92 92 992
W>O’W>OORW<O’W<O ......... (12)

Then the two isoclines (6g) and (6h)
intersect at a unique positive point (x",y") in
the Int.R? of xy-plane. Substituting the value
of x"and y* in Eq. (6e) and (6f) yield that
2(x",y)=z"and w(x",y")=w" which are

positive if and only if the following condition
holds.

(w7 +wio +Wyg) _ o« AWz +Wy) (13)
Wy eoWy

Accordingly, the positive equilibrium point
E, exists uniquely in the Int.R? if in addition
to the conditions (8), (10), (13) and x, > x;; the
isoclinic g;(x,y)=0 intersect the x-axis at the
positive value namely x and the isoclinic
g-(x,y)=0 intersect the x-axis at the positive

value namely X, .

The local Stability Analysis:

In this section, the local stability analyses
of system (2) around each of the above
equilibrium points of system (2) are studied
with the help of Linearization method. Note

that the symbols Ay, 4y, 4, and 4, denote

to the eigenvalues of the Jacobian matrix
J(E;); i=012 that describe the dynamics in the

x- direction y-direction, z-direction and
W -direction, respectively.

The Jacobian matrix of system (2) at E,
can be written as:

I(EQ) =[Wijlaxa i 1 =1234 oo (14)

Where :
w11 =1-(Wp +Wg)iy1p =W7;w13 =14 =0;
Wo1 =Wp >0 =—(W7 +Wyg +Wyq) <0;
Wz =W =0w3 =Wz =033 =—Wyp <0
was =Wz >0y g =wap =3 =0;
Wag =—(Wi3 +Wyg) <0

Clearly the characteristic equation of J
can be written

)
[45 — (w11 + w2 Vo +viw o —viwa]
2
[45 - (w3 +was Mo +waswas]=0

Vol.18 (4), December, 2015, pp.'44-152

Science

Therefore, the eigenvalus of J, satisfy the
following relations:

Aox + Aoy ZW1L HW22 v, (15)
Aox- A0y ZW1IW22 —W12W 2101 wereereeeereeeens (16)
207 FA0w SW33 F WAL weveeenenreiinenreeennes a7
207 A0W SWRBWAL weveveereereerrieieni s (18)

Clearly according to the following
condition all the eigenvalues have negative
real parts.

W7 +Wig + Wi + Wy + W,
MaX.{W7 + Wy + Wy, 7 10 11 2 6}

W7 +Wpg +Wpq
< (Wp +Wg)

Hence the equilibrium point E, is locally

asymptotically stable in R? .

The Jacobian matrix of system (2) at the
predator free equilibrium point E; =(X, ¥,0,0)
can be written as:

J(E1)=[eij]4x4 0,212,834 sreereeeneeses (20)
where

€11 =1—(W2 +Wg + 2% + (1+ Wl)y)'
—WS)’Z

e12=W7—(1+W1)>‘<;e13=W +)A(<O;
5

—W4)2 ~
€14 =— —<0;e91 =Wy + Wy >0;
14 Wo + X 21=Wp 2

€2 =W X — (W7 +Wyg +Wy1);

—WgV —WqV
€o3 = 8¥\<0;624=— 9y<0
Ws W5 +Y
. e W3X Wg .
e31 =€z =0;e33 = - —+ Wy |;
W +X |\wg+Y
Wg Y
€y =Wqiq >0:841 =€40 =0;842 = —>0;
34 =Wi3 41 =€42 43 Wo + 9
6‘2W4)2
e = — — (W3 +Wyy)
44 Wo +9 13 + Wiy

Clearly the characteristic equation of J; can
be written

2
[ — (611 +e02 ) +e11890 —€19€1]
2
[ — (633 + €44 )y + 33844 —€34€43]=0

Therefore, the eigenvalus of J; satisfy the
following relations:



/11X + lly =811 +€22 i, (21)
ﬂ’lX -/11y =€11€22 —€12€21 i (22)
ﬂlz + /11w =€33 +E€44 i (23)
/112 -/Ilw =€33€44 —€31€43 i (24)

Clearly according to the following

conditions all the eigenvalues have negative
real parts.

ep1<0and ey <0 v (25)
€12 <O o (26)
€33 <0and €44 <0 oovvvviiiicciee (27)
€34€43 < €33BA4 +rrrerrerririiiiiie i (28)

Hence the equilibrium point E; is locally

asymptotically stable in R?

In the following theorem, the local stability
conditions of the positive equilibrium point
E, are established.

Theorem (2) :

Assume that E,=(x,y ,z W) exists in
the IntR? and the following condition are
satisfied

Max.{N3} <X~ < Min.{N4,N5,Ng} cccevvrrvs (29)
iz<|v|in.{N7,N10} ................................. (30)
Ni
%< Min{Ng, Ng} weveerrrrerrererereiereinn, (31)
N3

here N;,i=1,...,10 are given in proof . Then
the positive equilibrium point E, is locally
asymptotically stable in the IntR?

Proof:
The Jacobian matrix of system (2) at the
positive equilibrium point E, can be written:

I(E2)=Irij |01 1 =1234 oo
where:

Wy + Wg + 2 +(1+ Wl)y*

g =1-

* * .
+W5(W3z +Waw ) |
N{
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*

W3 X
tp) Z[W7 —(1+ W]_)X*lrlg =—§|—<0;
1
*
Wy X
Mg =——2 <0ry =Wy +Wy >0;
Ny
* *
* W5 (Wgz +w ) |
Fpp =W X —| W7 +Wyg +Wyq +—2 ;
N2
* * *
Wi 1 WaWs5Z
g =—8) gy =Y gy, = SISISZ >0,
2 2 N{
*
WsWgZ
3o =— 5 g <0
N3
* *
e WaX Wi
_SWsX WY o
33 N N 12
1 2
* *
8y W, W5 W WeWgZ
34 =Wy3 >0;r41‘=—2 475 >0; g = 5 g >0;
N1 N2
* *
WY _p EaWygX
43 =7 >0; 1y = —(Wy3 +Wyg)
2 1
with
*
N1=W5 + X,
*
Np=ws +y,
1-[wy +wg +(1+w1)y*]
N _ * *
375 _ W5 (W3Z +WaW ) b
2
N1
* *
N 1| wg(wzz +w)
4= |5 |
Wi N2
N *
W,
N5 =—| wyp + 8y |
e1W3 N>
Ny
Ng = (Wi +wyg ),
€oWy
1-[2w, +wg + 2x" + @+ 2W1)y*]
N7 = * * * * !
Wg (W32 +epWaW +Np(wgz +w )
wix — (W7 +Wig + W) —‘W7 -X 1+ Wl)‘
N8_ * ’
w5z (3wg +1)
. 2
N 1 | (e —Dwax —Nywyp
9: * 1
3wgy Ny

*

. 2
1 | ewgXx —Wgy -
N10=[ *{ 24 N (2w +W14)H
W4X 2
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Now according to the conditions (29) and (30);

all the values of r,,r,,,r,,and r,, are negative

values. So according to Gersgorin theorem the

4
proof is follows if and only if |r;|>>"|r;|, and

i=1

:;tj
then all the eigenvalues of J(E,) exists in the
region

4
é::U U*ECZ‘U*—I'“‘<Z‘I'U“
=

Clearly, its easy to show that under the
given conditions (32) all the eigenvalues of
J(E,) exists in the left half plan and hence

E, is
Locally asymptotically stable.

Numerical analysis of system (2)

In this section the dynamical behavior of
system (2) is studied numerically by using
Runge Kutta method along with predector
corrector method. Note that, we use turbo C++
in programming and matlab. The system (2) is
studied numerically for different sets of
parameters and different sets of initial points.
The objectives of this study are: first
investigate the effect of varying the value of
each parameter on the dynamical behavior of
system (2) and second confirm our obtained
analytical results. It is observed that, for the
following set of hypothetical parameters:

wy =0.6,wy =0.5,w3 =0.75,

wy =0.5,wg =0.5, wg =0.1,w; =0.05,
wg = 0.2, wg =0.25,w;g =0.05,

wyp =0.1,wyp =0.001 w3 =0.05,

wyy =0.01, e =07, e, =04

Note that, in Fig. (2), we will use that ()
to describe the trajectory of system (2) that
started at (0.0, 0.8, 0.7, 0.6, 0.5) and (.....) to
describe the trajectory of system (2) that
started at (0.5, 0.3, 0.3, 0.2).
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@® ()

susceptible prey
o
=~
infected prey

Time 5

susceptible predator
infected predator

Time X 105

x10°

Fig.(2): Time series of the solution of
system (2)
(a) trajectories of x as a function of time,
(b) trajectories of y as a function of time,

(c) trajectories of z as a function of time,
(d) trajectories of w as a function of time.

Clearly, Fig. (2) shows that the solution of
system (2) approaches asymptotically to the
positive equilibrium point E* =(0.4,0.1,0.2,0.3)
starting from two different initial points and
this is confirming our obtained analytical
results.

Now in order to discuss the effect of the
parameters values of system (2) on the
dynamical behavior of the system, the system
is solved numerically for the data given in Eq.
(33) with varying one parameter each time. It
is observed that varying the parameters values
w;;1=12,457910121314 and e;i=1 do
not have any effect on the dynamical behavior
of system (2) and the system still approaches
to positive equilibrium point. For the
parameters values given in Eg. (33) with
varying Wz in the range w3<045, the

solution of the system (2) approaches to
E, =(X,9,00) in the interior of positive
quadrant of xy-—plane, as shown in Fig.(3),
however for ws>0.46it is observed that the

solution of system (2) approaches to positive
equilibrium point.



—

-

-—

population

Time ‘ 104

Fig. (4): Time series of the solution of system
(2) for the data in given by Eq.(33) with
ws =0.45, which approaches asymptotically

to (0.57,0.61,0,0) the interior of positive
quadrant of xy—plane.

For the parameters values given in Eq. (33)
with varying wg in the range wg <0.3 the
solution approaches to the solution of system
(2) approaches to positive equilibrium point ,
while for 0.4<wg<0.6 the solution of the
system (2) approaches to E, =(X,V,0,0) in the
interior of positive quadrant of xy-plane,,
finally for 0.7 <wj system (2) approaches to
the vanishing equilibrium point Eg =(0,0,0,0)
as shown in Fig.(5) .

15 T T T T T T

—

==y

-

population
-

05

0 2 4 6 8 10 12 14

Time X 104

Fig.(5): Time series of the solution of system
(2) for the data given by Eq. (33) with
ws =0.7, which approaches asymptotically
to the vanishing equilibrium point.

On the other hand varying the parameter
Wg keeping the rest of parameters values as in
Eq. (33), it observed that for wg<0.5 the

solution of system (2) approaches asymptotically
to positive equilibrium point, while for 0.6 <wg
approaches to E, =(X,¥,0,0) in the interior of
positive quadrant of XYy —plane. For the
parameters values given in Eq. (33) with
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varying Wy, in the range w; <0.2 the solution

approaches to positive equilibrium point, while
for 0.3<w, the solution of the system (2)

approaches to E, =(X,y,0,0) in the interior of
positive quadrant of xy-plane, Finally, For
the parameters values given in Eqg. (33) with
varying €; in the range e <0.4, the solution
of the system (2) approaches to E, =(%,¥,0,0)
in the interior of positive quadrant of xy-
plane, as shown in Fig.(3) ,however for
ws >0.5it is observed that the solution of
system (2) approaches to positive equilibrium
point.

Conclusions and Discussion

In this paper, an eco-epidemiological model
has been proposed and analyzed. In order to
study the effect of infection diseases and
harvesting on the dynamical behavior of the
prey-predator system, the dynamical behavior
of system (2) has been investigated locally. In
addition to assumed that the prey population is
harvested and the prey population infected by
some infectious disease and these disease
passed from a prey to predator through
attacking or predation process. While the
disease transmitted within the prey species by
contact, between susceptible individuals and
infected individuals, in additional to the
external sources from the environment. It is
assumed that prey- predator model involving
SIS infection disease in both the prey and
predator species. Further, in this model, non
linear type of functional response, represented
by Holloing type Il as well as linear incidence
rate for describing the transition of disease are
used. The model included four non-linear
autonomous  differential  equations that
describe the dynamics of four different
population namely susceptible prey X,
infected prey VY, susceptible predator z,

infected predator w.

To understand the effect of varying each
parameter on the global dynamics of system
(2) and to confirm our obtained analytical
results, system (2) has been solved
numerically and the following results are
obtained

1. The system (2) dose not have periodic
dynamic.
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2. For the set of hypothetical parameters
values given Eg. (33), system (2)
approaches asymptotically to a globally
asymptoticallystable point ,=(x",y", " w").

3. It is observed that varying the parameters
values w;;i=1245,7,910121314 and/
ej; i=1 keeping other parameters as given
by Eq. (33) do not have any effect on the
dynamical behavior of system (2) and the
system still approaches to a positive
equilibrium point.

As the susceptible prey's maximum attack
rate by susceptible predator ws; decreases

slightly keeping the rest of parameters as
in Eq. (33), the system has asymptotically
stable equilibrium point L, = (X, ¥,0,0).
However increasing the parameter Ws
system (2) still has asymptotically stable
positive point in the Int.R?. It is observed
that the conversion rate from susceptible
prey to susceptible predator parameter e,
respectively, have the same effect as Ws.

4. As the harvesting rate of susceptible
prey wg decreases keeping the rest of

parameters as in Eq. (33), syatem (2) still
has asymptotically stable positive point in

the Int.R?. However, increasing Wpg

causes extinction in the both predator
species and the solution of system (2)
approaches to the equilibrium point

E, =(X,9,00). While, increasing Wg
causes extinction in the both predator and
prey species and the solution of system (2)
approaches to the equilibrium point

E, =(0,0,0,0).
As the maximum attack rate of the infected
prey by susceptible predator Wg decreases

keeping the rest of parameters as in Eq. (33),
syatem (2) still has asymptotically stable

positive point in the Int.Rf. However,
increasing Wg causes extinction in the both

predator species and the solution of system (2)
approaches to the equilibrium point
E,=(X9,00). It is observed that the

harvesting rate of infected prey wy,as the same
effect as wg.
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