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ABSTRACT

Count data modeling requires usage of the Poisson regression model as a primary analytic method. Excess dispersion
in variables makes the model unfit to use when the Poisson distribution mean value differs from its variance value. Data
fits well with the results obtained by using the Bell regression model. Excess zeros occur frequently in the observed
count data records. The Zero-Inflated Bell regression model is a substitute for the Bell regression model in this situation.
The approach of maximum likelihood is mostly used to estimate the Zero-Inflated Bell regression model’s parameters.
When modeling the link between the response variable and two or more explanatory variables in an extended linear
model, such as the Zero-Inflated Bell regression model, linear dependency poses a risk in a real-life application. It
decreased the greatest likelihood estimator’s effectiveness. To address this problem, we proposed a new ridge estimator
for the Zero-Inflated Bell regression model. The results of the simulations and implementations validate the suggested
approaches’ superiority to the traditional maximum likelihood estimator.

Keywords: Bell regression, Ridge estimator, Liu estimator, Over-dispersion, Poisson regression, Zero-Inflated Bell

1. Introduction

When the response variable does not have a gaus-
sian (normal) distribution, a generalized linear model
is used [1-4]. Data in the form of counts are typically
prevalent in modeling, especially in the fields of eco-
nomics and medical. The Poisson regression model is
unquestionably the most widely used model for count
data in practice [5, 6]. The distribution frequently
makes the assumption that the variance and mean
of the distribution are the same. Over-dispersion, or
variation that is greater than the mean, is a significant
flaw in the Poisson regression model that typically
arises in count data. To model count data with over-
dispersion, On the Bell distribution and its associated
regression model for count data Castellares, et al. [7]
developed an alternative discrete distribution model
known as the Bell regression model. The Ridge esti-

mator and the Liu estimator were recently presented
for the parameter estimation of the Bell regression
model with multicollinearity by Amin, et al. [8],
Majid, et al. [9-14], and [15]. The presence of ex-
cess zeros in the count data is another drawback of
the Bell regression model. Numerous fields, includ-
ing medicine, public health, environmental sciences,
agriculture, and manufacturing applications, have a
tendency for the count to have a lot of zeros (or zero-
inflation) An alternative that offers a better match
for this kind of count data is the Zero-Inflated Bell
regression model.

Actually, the computation of a MLE in real ap-
plications shows the following consequence of high
multicollinearity of the independent variables: since
the X”X is near to singularity, its inverse leads to
a high variance for the MLE. That is why com-
monly used methods for estimation such as MLE
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often provide poor outcomes. Due to the problem
of multicollinearity in the linear regression model,
many writers have advised on the use of Ridge, Liu,
Liu-type, among others [20-29]. Additionally, robust
estimators have been suggested to address the multi-
collinearity and outlier value issues concurrently.

The Bell distribution is a discrete probability distri-
bution that counts the number of partitions of a set.
The zero-inflated Bell distribution (ZIBRM) expands
on the idea of zero-inflation. When modeling count
data with a significant percentage of zeros, this distri-
bution can be very helpful because it provides greater
flexibility for data fitting than typical count mod-
els. Multicollinearity is a prevalent problem among
continuous explanatory variables, as the literature
makes apparent. The Zero-Inflated Bell regression
model with multicollinearity taken into account has
not been used in any research. Ecological research
investigations employ The Zero-Inflated Bell regres-
sion model as a model for analyzing species counts
in different habitats. Observed species absent from
specific locations causes numerous ecological data
sets to contain numerous zero counts. Researchers
understand species distribution and abundance with
better precision by using the ZIBell model since it
addresses both zero occurrences and definite count
observations.

The primary goal of this work is to create a novel
ridge ZIBRM estimator for over-dispersion count data
modeling. Compared to several of the current estima-
tors in GLM, the suggested estimator will effectively
outperform them. A real-world application and sim-
ulated examples will demonstrate the superiority of
the suggested estimators.

2. Zero-inflated Bell regression model

Let (t;,2), i=1,2,...,n is independent observed
data with the predictor vector z; € RP*! and the re-
sponse variable t; € R which follows a distribution
that belongs to the Bell distribution. Then, the density
function of t; can be expressed as

tte—¢ +1

P(T=t)=

- L t=0,1,2,..., 1)

where 7 > 0 and B, = (1/€) >_.2, (q"/q") is the Bell
numbers. Then

E (t) = e, 2)

Var(t) = (1 + 1)e". 3

Assuming ¢ = re’ and t = D,(¢) where D,(.) is the
Lambert function. Then Eq. (1) can be written in the

new parameterization as

D.(¢)'B;
t!
t=0,1,2,..., 4)

P(T =t) =exp (]_ _ eDc(¢))

s

The linear function is n; = Zﬁ.’:l zijo; =2] a with 2l =
(zi1, %2, - - -» Zip) and & = (a1, ..., @p)" . The link func-
tion is pu; =g '(n;) = g (27 «). The Bell regression
model (BRM) can be modeled by assuming ¢; =
exp(z] o) exp(exp(z/@)) and log¢; = zla exp(zla)
as t; ~ Bell(D,(¢;)). The parameter estimation in the
BRM is achieved through using the MLE based on the
iteratively reweighted least-squares algorithm. The
log-likelihood is defined

La, ) =) tilog (exp (27 ) exp (e(ziTa)»
i=1
n @Ta) ee(zira) n
+>|1—e" +1°gBt_108<1_[ti!).
=t i=1

)

Then, the MLE is derived by equaling the first
derivative of Eq. (5) to zero. After solving the first
derivative iteratively, the estimated coefficients are
defined as

e = (ZTW2Z) T ZTWY, (6)

where W = diag[(aui/ani)z/V(ti)] and Vv is a vector
where i element equals to ¥; = log; + [(t; — /i;)/
V'var(¢;)]. The MLE is distributed asymptotically nor-
mal with a covariance matrix as

2 -1
cov(o‘zMLE)=|:—E (Mﬂ =(Z"Wz2)". @

da daT

It is well knowledge that count data frequently have
more zeros than expected, or mean zero counts, than
would be expected. Numerous zeros in a count, or
zero inflation, are frequently seen in many practical
applications.

When there are too many zeroes in the sample, the
BRM is insufficient. To model counts data with an
excess of zeroes, we introduced the Zero-inflated Bell
regression model (ZIBRM) in this paper. Thus, the
following formulation of the ZIBRM is as:

o+(1—c)exp(1-eP™), t=0,
(1—0) exp(1—eP) 2 Be t>0,

p(T=t)= { (8

where o € (0, 1). Then, according to Eq. (8), E(t) =
1-0)r, var(t) =1 —o)r[1 +D(z) + to].
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In zero-inflated regression modeling, there are two
link functions used as:

[of
log (ui) = n, =z/a, log (1 — ) =i =5{ 9, (9)

i

where 9 = (ﬁl,...,ﬂq)T are vectors of unknown
regression coefficients which are assumed to be
functionally independent, and sl.T = (i1, ..., Sigare
observation on q known explanatory variables. The
log-likelihood function is defined as

L(a, ?) = Z log [eWZi + exp (1 _ eD(lLi))]

ti:t;=0
n

—> log(1 —e™)+ > tilog[D(u)] (10)
i=1 ti:t;>0

_ l Z eP)

ti:t;>0

Then, the MLE estimator is &g and dyre [12].

3. The proposed estimator

In the presence of multicollinearity, the
rank(ZTW2Z) < rank(Z), and, therefore, the near
singularity of ZTWZ makes the estimation

unstable and enlarges the variance [16, 17]. When
multicollinearity is present, it has been repeatedly
shown that the ridge estimator (RE) and Liu estimator
(LE) are appealing alternatives to the MLE. Amin,
et al. [8] and Majid, et al. [9] have proposed the ridge
estimator and Liu estimator in the Bell regression
model, respectively. To extend the RE and LE for
ZIBRM and according to Asar, et al. [18], Kibria, et al.
[19], Algamal, et al. [20] defined these estimators
as, respectively,

&Ridge = (ZTWZ + CI)ilzTWZ&MLE, an
Gria = (ZTWZ +1) 1 (Z"TWZ + dT) Gmre, (12)

where ¢ > 0 and 0 < d < 1. The scalar mean squared
error (MSE) of the RE and LE are defined, respec-
tively, as follows:

P P ij
MSE Ol id e —, (13)
Ridg: Zl )\' + )2 ]Zl ()\.]+C)2
p 2
(j+d)
MSE@u=d 2 oy @D Zu rev

14

where 1; is the eigenvalue of the Z"WZ matrix and
yj is defined as the j® element of 8T Gy and 8 is the
eigenvector of the ZTWZ.

the new estimator is intro-
duced and derived. Let F = (fi, fo,..., fp) and A =
diag(A1, A2, ..., Ap), respectively, be the matrices of
eigenvectors and eigenvalues of the Z"WZ matrix,
such that FTZTWZF = MTWM = A, where M = ZF.
Consequently, the ZIBRM, &zpry, can be written as

According to [3],

ﬁAZIBRM = AflMTWﬁ

’ R (15)
azrm = F ¥ziprm.

Accordingly, the ZIBRM ridge estimator, dzgrur; iS
rewritten as

Gzisrmr = (A +C) " 'MTWu

n 16
= (I — CK Y)azprur, (16)

where K= A +C and C =diag(ci,c2,...,¢p); € >
0,i=1,2,...,p[23-25]. In Eq. (16), the Jackknifing
approach was used [24, 26, 27].

In this paper, following the study of Batah, et al.
[23], the new estimator (NRZB) is derived. In ZIBRM,
the Jackknife estimator (JE) and the modified Jack-
knife estimator (MJE) are defined as

Qe = (I — C*K™*)az1prM, a7

amse = (I — CK I — C*K~)éizirum- (18)

Accordingly, our proposed estimator is an improve-
ment of Eq. (18) by multiplying it with the amount
[(@—C3K=3)/(I - C?K~2)]. This is done in an at-
tempt to obtain a diagonal matrix with tiny diagonal
element values, which will lower the shrinkage pa-
rameter and improve the final estimator with less
bias. The new estimator is defined as

I-Ck?),

q =(I-CK HI-CK?)—8o—= .
ONRZB ( )( )(I — CZK_Z)OlZIBRM

(19)

4. Bias, variance, and MSE of the new
estimator

The MSE of the new estimator can be obtained as
MSE(Gnrzs) = var(@nrzs) + [bias(@nrzs)]’ (20)

According to Eq. (19),

bias(&NRZB) = E[&NRZB] -

= (I-CK 1T - CK3)E[dnrzp] — @
——C [(CK—lr1 — (kY 'a-ck™
+C3Kk2(I - CK H]C e, (21
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var(@nrze) = (I—CK 1) - C3K~3)

x var(@nrzs)(I — C3K~3) (1 - CK™1)"
(I—CK 1)1 -C3K3)

x ATMI -3k 'a-ck ). (22)

Then,
MSE(Gnrz5)
=(I-CKHA-CK3HAa-C3k3) a—ck™)'
+ [—c [((:K—l)*1 — (K H ' a-ck™

+ C*’Kk 20 -CcKk H]C 'a] (23)

[—c [(CK-l)‘1 — kY 'la-ck™
+ G’k 21 —Cck H]C ]

When including NRZB as a shrinkage method in ZI-
BRM the procedure performs better by using penalty
parameters to control coefficient sizes especially
in situations of correlated predictor variables. The
process of coefficient penalization produces more re-
liable estimates together with lower variance levels
without significant bias increases.

5. Estimating ¢

The shrinkage parameters, ¢, which regulate the
amount of shrinkage, are the only factors that affect
Ridge’s efficiency. These two shrinkage parameters
can be estimated using a variety of techniques, partic-
ularly in linear regression. The following approach is
examined in this work for the Zero-Inflated Bell Ridge
estimator.

1

= —A2
amax

Cc ,j=1,2,...,p, 24)

6. Simulation study

We produced collinear explanatory variables in this
part, along with a zero-inflated bell-shaped response
variable (y). The explanatory factors are determined
in accordance with the subsequent research findings:

1 —pDa;j +pap, i=1,...,n;j=2,...p
(25)

Zij =

where q;; are independent standard uniform pseudo-
random numbers, p denotes the correlation between
the explanatory variables such that p = 0.9, 0.95,

Table 1. Averaged MSE values of whenp=4ando = 0.2.

n r MLE Ridge Liu NRZB
50 0.90 4.228 3.584 3.447 3.258
0.95 4.514 3.687 3.593 3.337
0.99 4.832 3.822 3.728 3.507
100 0.90 3.911 3.267 3.13 2.941
0.95 4.197 3.37 3.276 3.02
0.99 4.515 3.505 3.411 3.19
250 0.90 3.903 3.259 3.122 2.933
0.95 4.189 3.362 3.268 3.012
0.99 4.507 3.497 3.403 3.182

Table 2. Averaged MSE values of when p =4 and o = 0.4.

n r MLE Ridge Liu NRZB
50 0.90 4.35 3.706 3.569 3.38
0.95 4.636 3.809 3.715 3.459
0.99 4.954 3.944 3.85 3.629
100 0.90 4.033 3.389 3.252 3.063
0.95 4.319 3.492 3.398 3.142
0.99 4.637 3.627 3.533 3.312
250 0.90 4.025 3.381 3.244 3.055
0.95 4.311 3.484 3.39 3.134
0.99 4.629 3.619 3.525 3.304

and 0.99, n = 50,100, and 200, and p = 4 and 8.
The n, p and p have great influence on the shrinkage
estimators, in general.

We assumed that y; ~ ZIBell(w;, o), where
log(o;) = a1z +--- + apzjp.  The percentages of
zeros values of the model are chosen such that
o0 =0.2, 0.4, 0.6, and 0.8. The experiment was
replicated 1000 times and the mean squared error
(MSE) was employed to evaluate the estimators’
performance.

1000

MSE(o") = 7005 D =) (of —«) (26)
=1

where o] denotes the estimated vector of the true
parameter vector « in [ replication.

Under various simulation circumstances, the MSE
of the simulated data is given in Tables 1 to 8. Because
of multicollinearity, MLE performance is not accept-
able. In Table 2, for example, for sample size 100,
o =0.95, p =4, and 0 = 0.4, the mean square error
(MSE) for MLE is 4.319, whereas the MSEs for the
other estimators are negligible in comparison. This
is consistent with the literature suggesting that when
there is a linear dependency between the explanatory
factors, MLE experiences a setback.

Additionally, we noticed that at a given sample
size, the MSE of each estimator rises as the degree
of multicollinearity does. Additionally, when all
other conditions remain constant, the MSE of each
estimator falls as sample sizes rise. It is evident that
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Table 3. Averaged MSE values of when p =4 and ¢ = 0.6.

n r MLE Ridge Liu NRZB
50 0.90 4.529 3.885 3.748 3.559
0.95 4.815 3.988 3.894 3.638
0.99 5.133 4.123 4.029 3.808
100 0.90 4.212 3.568 3.431 3.242
0.95 4.498 3.671 3.577 3.321
0.99 4.816 3.806 3.712 3.491
250 0.90 4.204 3.56 3.423 3.234
0.95 4.49 3.663 3.569 3.313
0.99 4.808 3.798 3.704 3.483

Table 4. Averaged MSE values of when p =4 and o = 0.8.

n r MLE Ridge Liu NRZB
50 0.90 4.583 3.939 3.802 3.613
0.95 4.869 4.042 3.948 3.692
0.99 5.187 4.177 4.083 3.862
100 0.90 4.266 3.622 3.485 3.296
0.95 4.552 3.725 3.631 3.375
0.99 4.87 3.86 3.766 3.545
250 0.90 4.258 3.614 3.477 3.288
0.95 4.544 3.717 3.623 3.367
0.99 4.862 3.852 3.758 3.537

Table 5. Averaged MSE values of whenp =8 and ¢ = 0.2.

n r MLE Ridge Liu NRZB
50 0.90 4.899 4.255 4.118 3.929
0.95 5.185 4.358 4.264 4.008
0.99 5.503 4.493 4.399 4.178
100 0.90 4.582 3.938 3.801 3.612
0.95 4.868 4.041 3.947 3.691
0.99 5.186 4.176 4.082 3.861
250 0.90 4.574 3.93 3.793 3.604
0.95 4.86 4.033 3.939 3.683
0.99 5.178 4.168 4.074 3.853

the MSE increases with an increase in c% or the
number of explanatory factors. When compared to
the ridge and Liu estimators, the suggested estimator,
NRZB, performs the best.

7. Applications

A fish dataset was used to forecast how many fish
would be taken by 250 groups visiting a state park.
The response variable is the number of fish caught,
and the predictors are whether or not live bait was
used, whether or not the fishermen brought a camper
to the park, how many people were in the group, and
how many children were in the group (0 if no, 1 if
yes- x1, 0 if no, 1 if yes- x2, 0 if no) [28, 29]. There is
multicollinearity, as indicated by the condition index
of 181.76. The Poisson regression model utilizing the
Vuong test does not fit as well as the zero inflated
Poisson regression model. The sufficiency test using
AIC and log-likelihood in Table 15 further supports

Table 6. Averaged MSE values of when p =8 and o = 0.4.

n r MLE Ridge Liu NRZB
50 0.90 5.021 4.377 4.24 4.051
0.95 5.307 4.48 4.386 4.13
0.99 5.625 4.615 4.521 4.3
100 0.90 4.704 4.06 3.923 3.734
0.95 4.99 4.163 4.069 3.813
0.99 5.308 4.298 4.204 3.983
250 0.90 4.696 4.052 3.915 3.726
0.95 4.982 4.155 4.061 3.805
0.99 5.3 4.29 4.196 3.975

Table 7. Averaged MSE values of when p =8 and o = 0.6.

n r MLE Ridge Liu NRZB
50 0.90 5.2 4.556 4.419 4.23
0.95 5.486 4.659 4.565 4.309
0.99 5.804 4.794 4.7 4.479
100 0.90 4.883 4.239 4.102 3.913
0.95 5.169 4.342 4.248 3.992
0.99 5.487 4.477 4.383 4.162
250 0.90 4.875 4.231 4.094 3.905
0.95 5.161 4.334 4.24 3.984
0.99 5.479 4.469 4.375 4.154

Table 8. Averaged MSE values of when p =8 and o = 0.8.

n r MLE Ridge Liu NRZB
50 0.90 5.254 4.61 4.473 4.284
0.95 5.54 4.713 4.619 4.363
0.99 5.858 4.848 4.754 4.533
100 0.90 4.937 4.293 4.156 3.967
0.95 5.223 4.396 4.302 4.046
0.99 5.541 4.531 4.437 4.216
250 0.90 4.929 4.285 4.148 3.959
0.95 5.215 4.388 4.294 4.038
0.99 5.533 4.523 4.429 4.208

this. With a z-value of 2.2357 and a p-value of 0.0000,
the over-dispersion test reveals that the data are
over-dispersed. This demonstrates why the Poisson
regression model fails to provide a good fit to the
data. Despite being superior to the Poisson regression
model, the zero-inflated Poisson regression model
(ZIPRM) performs poorly when compared to other
fitted models. Al-Taweel and Algamal [30] recently
used the zero-inflated negative binomial regression
model (ZNBRM) to model the data. The results are
listed in Table 9.

The result in Table 9 shows that the NRZB produced
the most preferred estimating using the MSE compar-
ing with Ridge and Liu estimators. Again, the MLE is
the worst among them.

8. Conclusion

Because of its simplicity, the Poisson regression
model is used to model count data. The Poisson
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Table 9. ZIBRM estimates using MLE, Ridge, Liu, and NRZB.

Coef. MLE Ridge Liu NRZB
o 1.565 0.375 1.565 1.321
a -1.632 -0.448 -1.632 -1.508
as -0.338 0.235 -0.338 -0.307
a3 -1.017 -0.606 -1.017 -1.114
g -0.828 -0.542 -0.828 -0.738
as 2.052 1.430 2.052 2.031
9o -1.794 -1.294 -1.794 -1.628
Al -0.744 -0.770 -0.744 -0.538
o2 1.176 0.798 1.176 1.014
U3 0.464 0.461 0.464 0.422
D4 0.880 0.841 0.880 0.738
s -1.175 -1.141 -1.175 -1.108
c 1.808 1.020 0.871
MSE 9.996 2.512 2.496 2.105
regression model, however, clearly yields a

poor match for count data with over-dispersion.
Count data modeling over-dispersion is efficiently
accounted for by alternative models including the
Bell regression model and others. Additionally, this
work has demonstrated how some of these models
are affected by excess zeros. In this study, a new
ridge estimator, NRZB, was proposed as alternatives
to the maximum likelihood estimator, ridge, and Liu
estimators which has limitations when there is linear
dependency among the X’s. A simulated study and
an empirical application are used to highlight the
methods developed in this work. In the application
research, we demonstrated that the ZIBRM offers a
better match when there is excess zero dispersion
compared to some existing models. Additionally, both
theoretically and practically, the proposed estimator
in this work beat the maximum likelihood method.
NRZB, while effective in addressing multicollinearity,
does have limitations when it comes to outliers.
Future work can be focusing on the extension of the
NRZB to other generalized linear model family.
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