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ABSTRACT

When ensuring the reliability of device or the suitability of a material, it is necessary to take into consideration the
stress cases in the operating environment. This means that the uncertainty about the reality environmental stress must be
taken into as random. The stress-strength (S-S) model treated the stress and strength variables as random. In the simplest
form of stress-strength model, y represents the stress put on the unit by the operating environment, and the strength of
the unit represented by x. A unit is able to perform its required function if its stress imposed on it is less than the strength
of the unit. In this paper, the stress-strength reliability estimation for the modified exponentiated Lomax distribution,
which is generalization of the Lomax distribution, with an unknown shape parameter and a known scale parameters is
studied using different methods. These methods include the maximum likelihood method, Bayesian estimation method
under a quadratic loss function, and the least squares method for complete data. The estimators are compared based on
Markov Chain Monte Carlo (MCMC) simulations using R-Studio, evaluated by the mean square error (MSE) criteria. The
simulation results show that the maximum likelihood estimators are the best in two cases: the first is when the sample
sizes are equal and the second is when the shape parameter of the strength variable is greater than the shape parameter
of the stress variable. While least squares estimators are the beast if the strength sample size is smaller than the stress
sample size. Finally when the strength sample size is greater than the stress sample size, then the best estimators differ
between the maximum likelihood estimators and Bayesian estimators. Bayesian estimators become the best when the
shape parameter of stress variable is larger than the shape parameter of the strength variable.

Keywords: Stress-strength (S-S) reliability, Modified exponentiated Lomax distribution, Maximum likelihood estimator,
Bayesian estimator, Least squars estimator

1. Introduction

The Lomax distribution family can be used in the
study of stress-strength reliability in many fields
such as industrial maintenance, risk management and
performance evaluation, this distribution helps in an-
alyzing data and decision making to improve the
efficiency [2], one of the extended distributions of
Lomax distribution is the exponentiated Lomax dis-
tribution was presented by [3] through the addition
of a shape parameter λ to the cumulative distribution

function in the following form:

F (x;α, θ, λ) =
(
1− (1+ αx)−θ

)λ
; x > 0 α, θ, λ > 0

and the probability density function is:

f (x;α, θ, λ) = αθλ
(
1− (1+ αx)−θ

)λ−1

× (1+ αx)−(θ+1)
; x > 0 α, θ, λ > 0 (1)

modified this distribution [11] by assuming that α =
1 and θ = 2. This is called the modified exponentiated
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Lomax distribution (MELD), which is used in this
paper. The cumulative distribution function and the
probability density function are as follows:

F (x; λ) =
(
1− (1+ x)−2)λ

; x > 0 λ > 0 (2)

and

f (x; λ)

=

{
2 λ
(
1− (1+ x)−2)λ−1(1+ x)−3

; x > 0, λ > 0
0; O.W.

(3)

This distribution has been applied in many fields,
such as actuarial science and biological engineering
as he pointed [8]. In the context of stress-strength
models, stress refers to the loads and forces exerted
on a machine, while strength refers to the machine’s
ability to resist these loads and perform its required
function. The concept of stress-strength models was
proposed by [10]. Failure occurs if the stress is
greater than the strength. If y represents stress and
x represents strength, the main aim is to estimate
the probability of failure or reliability of this model
Stress-Strength models are applied in many fields,
including civil engineering, biomechanics and geo-
logical application. One of these applications is the
study of two data sets of coating the roofing iron
sheets by [18] In this paper, the aim is to find the esti-
mation of the reliability of the stress-strength model,
defined as p(y < x). This model has many applica-
tions in different fields; for more details, refer to [22],
which discusses two methods for estimating reliabil-
ity: traditional and Bayesian.

The main objective of this paper is to compare
three estimation methods of the stress-strength (S-
S) reliability model p(y < x) using the mean square
error criteria. This paper contains eight sections. Sec-
tion 2 describes the stress-strength model p(y < x)
and computes the reliability of (MELD). Section 3
covers the maximum likelihood estimation for the
stress-strength (S-S) reliability. Section 4 presents
the Bayesian estimation of (S-S) reliability under a
quadratic loss function. Section 5 introduces the least
squares method for estimation. Section 6 provides a
simulation study. Section 7 discusses the simulation
results to identify the best estimator. Finally, the con-
clusion is presented in Section 8.

2. Stress-strength (S-S) model

Reliability refers to the ability of a component or
system to perform its function accurately without fail-
ure within a specified period of time. Reliability has
been used in many fields especially in engineering

fields based on statistical models. There are studies
that aim to evaluate the probability of failure in
engineering structures which is called structural reli-
ability [4] or Reliability Allocation [20] others have
used accelerated life testing technology to analyze
the durability of engineering products or components
which helps reduce the time and the cost [1, 6].
Finally reliability can be used to determine the prob-
ability of failure or success of a component or system
based on the relationship between the strength it pos-
sesses and the stress it is exposed to during operation
[16] this is called stress-strength reliability which can
used in this paper. For the stress-strength parame-
ter of the modified exponentiated Lomax distribution
(MELD), let x and y represent the strength and stress,
respectively, observed from (MELD). We can express
the stress-strength reliability as follows [5, 13]:

R = p
(
y < x

)
=

∞∫
0

∞∫
0

f (x; λ1) f
(
y; λ2

)
dy dx

=

∞∫
0

Fy (x) f
(
y; λ2

)
dx

where Fy(x) = (1− (1+ x)−2)λ2 and f (x; λ1) defined
in Eq. (3) then where:

R =
∞∫

0

2 λ1
(
1− (1+ x)−2)λ2(1− (1+ x)−2)λ1−1

× (1+ x)−3 dx

By simplifying the relation above we have the (S-S)
reliability as follows:

R =
(

1+
λ2

λ1

)−1

(4)

3. Maximum likelihood estimation

The likelihood function of (MELD) can be expressed
in the following form for a complete random strength
sample of sizes n1 [14, 15].

L(X
−
|λ1) =

n1∏
i=1

f (xi; λ1)

= 2n1λ
n1
1

n1∏
i=1

(1− (1+ xi)−2)λ1−1
n1∏

i=1

(1+ xi)−3

= A λ
n1
1

n1∏
i=1

(
1− (1+ xi)−2)λ1−1 (5)
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where

A = 2n1

n1∏
i=1

(1+ xi)−3

To find the maximum likelihood estimation for the
parameter λ1 of the strength function, we use the
natural logarithm of the likelihood function:

lnL
(
X
−
|λ1

)
= ln (A)+ n1 ln (λ1)

+ (λ1 − 1)
n1∑

i=1

ln
(
1− (1+ xi)−2)

∂ lnL
(
X
−
|λ1

)
∂λ1

=
n1

λ1
+

n1∑
i=1

ln
(
1− (1+ xi)−2)

Then

λ̂1ML =
−n1∑n1

i=1 ln
(
1− (1+ xi)−2) (6)

Eq. (6) represent the M.L.E. for the λ1 (the parameter
of strength sample) In the same way, the maximum
likelihood estimator for λ2 (the parameter of stress
sample) of sizes n2 can be found:

λ̂2ML =
−n2∑n2

j=1 ln
(
1−

(
1+ y j

)−2
) (7)

Using the invariance properly of maximum likelihood
estimation, the M.L.E. for the stress-strength (S-S)
reliability (R) is of the following form:

R̂ML =

(
1+

λ̂2ML

λ̂1ML

)−1

(8)

Where λ̂1ML and λ̂2ML are defined in Eqs. (6) and (7)
respectively.

4. Bayesian estimation

In the section the Bayes estimate using the
quadratic loss function (QLF) of the stress-strength
(S-S) reliability will be obtained. The Bayes estimates
are considered under the assumption that the
parameter (λ1, λ2) follow an independent Gamma
distribution. It is assumed that [8, 9, 12, 19],
λ j ∼ Gamma(a j, b j) for j = 1,2. Then the prior
density of λ j can be written as:

g
(
λ j
)
= λ

a j−1
j e−λ jb j for j = 1,2 (9)

Where the hyper parameters, a j, b j are known and
non-negative.

Then the posterior distribution for the strength pa-
rameter λ1 is:

p
(
λ1|X−

)
∝ L

(
X
−
|λ1

)
g (λ1)

Using Eqs. (3) and (7) we have:

p
(
λ1|X−

)
∝ λ

n1
1

n1∏
i=1

(
1− (1+ xi)−2)λ1−1

λ
a1−1
1 e−λ1b1

∝ λ
n1+a1−1
1 e−λ1b1 (10)

Then (λ1|X− ) ∼ Gamma(n1 + a1, d1) where d1 =

−
∑n1

i=1 ln(1− (1+ xi)−2)+ b1, and the posterior
distribution for the stress parameter λ2 is:

p
(
λ2|Y−

)
∝ λ

n2+a2−1
2 e−λ2b2 (11)

where d2 = −
∑n2

j=1 ln(1− (1+ x j)−2)+ b2, and the
“joint posterior distribution” for λ1 and λ2 is:

p(λ1, λ2|X− ,Y− ) = p
(
λ1|X−

)
p
(
λ2|Y−

)
=

dn1+a1
1 dn2+a2

2
0 (n1 + a1) 0 (n2 + a2)

× λ
n1+a1−1
1 λ

n2+a2−1
2 e−λ1d1 e−λ2d2 (12)

The quadratic loss function for the reliability (S-S) is
of the form by Sindhu and Islam [21].

L
(
R̂B,R

)
=

(
R̂B − R

)2
R

(13)

To find the Bayesian estimation for the stress-
strength (S-S) reliability under quadratic loss func-
tion, the risk function should be minimized as much
as possible. For the minimization of the risk function,
we have:

Risk
(
R̂
)
= E

(
L
(
R̂B,R

))
= E

((
R̂B − R

)2
R

)

=

∞∫
0

∞∫
0

(
R̂B − R

)2
R

p
(
λ1, λ2|x−, y

−

)
dλ1dλ2 (14)

∂E
(
L
(
R̂B,R

))
∂R̂B

= 0

2
∞∫

0

∞∫
0

(
R̂B

R
− 1

)
1
R

p
(
λ1, λ2|x−, y

−

)
dλ1dλ2 = 0
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R̂B

∞∫
0

∞∫
0

1
R2 p

(
λ1, λ2|x−, y

−

)
dλ1dλ2

−

∞∫
0

∞∫
0

1
R

p
(
λ1, λ2|x−, y

−

)
dλ1dλ2 = 0

R̂B =

∫
∞

0
∫
∞

0
1
R p
(
λ1, λ2|x−, y

−

)
dλ1dλ2∫

∞

0
∫
∞

0
1
R2 p

(
λ1, λ2|x−, y

−

)
dλ1dλ2

This mean that:

R̂B =

E
(

1
R |x−, y−

)
E
(

1
R2 |x−, y

−

) (15)

where R is defined in Eq. (4), then:

E
(

1
R |x−, y−

)
=

∞∫
0

∞∫
0

(
1+ λ2λ

−1
1
)

p(λ1, λ2|x−, y
−

)

× dn1+a1
1 dn2+a2

2 λ
n1+a1−1
1 λ

n2+a2−1
2 e−λ1d1 e−λ2d2dλ1dλ2

by solving the integral and simplifying the result we
get:

E
(

1
R
|x
−
, y
−

)
=

(n2 + a2) d1

(n1 + a1 − 1) d2
+ 1 (16)

by using the same method as before we can compute:

E
(

1
R2 |x−, y−

)
= 1+

2 n2 + a2

d−1
1 d2 (n1 + a1 − 1)

+
(n2 + a2 + 1) (n2 + a2) d2

1
(n1 + a1 − 1) (n1 + a1 − 2) d2

2
(17)

Substituting the Eqs. (16) and (17) in Eq. (15), we
get:

R̂B =

(n2+a2)d1
(n1+a1−1)d2

+ 1

1+ 2 n2+a2
d−1

1 d2(n1+a1−1) +
(n2+a2+1)(n2+a2)d2

1
(n1+a1−1)(n1+a1−2)d2

2

5. Least squares estimation

This method was proposed by [23] and it has
been used by many researchers such that [17] to
estimate the parameters of some distributions. Let
x1:n1, x2:n2, x3:n3, . . . , xn:nn be the order statistics of
random sample of sizes n1 form (MELD(α, θ, λ)) and
let y1:n1, y2:n2, y3:n3, . . . , yn:nn be order statistics of
random sample size n2 form (MELD(λi;Y− )). The least

squares estimation of the unknown parameters λ1, λ2
can be obtained by minimizing the following function
with respect to λ1, λ2 as follows:

LS (λ1, λ2) =
n1∑

i=1

(
F (xi : n1)−

i
n1 + 1

)2

+

n2∑
j=1

(
F
(
y j : n2

)
−

j
n2 + 1

)2

(18)

By substituting the cumulative distribution function
defined in Eq. (2) in Eq. (18) [5, 11]:

LS (λ1, λ2) =
n1∑

i=1

((
1− (1+ xi : n1)−2)λ1

−
i

n1 + 1

)2

+

n1∑
i=1

((
1−

(
1+ y j : n2

)−2
)λ2
−

j
n2 + 1

)2

∂LS (λ1, λ2)
∂λ1

= 2
n1∑

i=1

(
1− (1+ xi : n1)−2)λ1

× ln
(
1− (1+ xi : n1)−2) (1− (1+ xi : n1)−2)λ1

−
i

n1 + 1
(19)

∂LS (λ1, λ2)
∂λ2

= 2
n1∑

i=1

(
1−

(
1+ y j : n2

)−2
)λ2

× ln
(
1−

(
1+ y j : n2

)−2
) (

1−
(
1+ y j : n2

)−2
)λ2

−
j

n2 + 1
(20)

To find the least square estimators for λ1, λ2, Eqs. (19)
and (20) are solved using the Newton-Raphson
method. Thus, λ̂1LS, λ̂2LS are obtained, and then
estimated reliability function R(S-S) is calculated ac-
cording to the following formula:

R̂LS =

(
1+

λ̂2LS

λ̂1LS

)−1

(21)

6. Simulation study

In this section, a Monte Carlo simulation is con-
ducted to estimate the unknown parameters λ1, λ2
of the expoentiated Lomax distribution (MELD) and
to compute stress-strength reliability. The maximum
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Fig. 1. Algorithm flowchart.

likelihood estimation (ML), Bayesian estimation un-
der quadratic loss function (BQLF) [7], and the
least squares estimation (LS) methods are evalu-
ated using the mean square error criteria (MSE)
with different sample size (25,50,150) where (λ1 =

λ2 = 0.1, 0.6, 0.9), (a1 = 1.7, a2 = 1.2) and (b1 =

0.99, b2 = 0.7) for 1000 replicates. The simulation
study is conducted using R-Studio to compute the re-
liability estimators through the following three steps:

Generating the random values for the two random
variables (x, y) by using the inverse of the distribution
function according to the following formula:

xi =
(
1− u

1
λ

i

)− 1
2
− 1; 0 < ui < 1 (22)

Where u is a random variable that distributed as con-
tinuous uniform distribution ui ∼ U (0,1).

Compute the mean of the estimated reliability as
follows:

R̂i =

∑N
i=1 Ri

N
(23)

Table 1. Reliability estimation when λ1 = 0.6, λ2 = 0.9
R = 0.4, a1 = 1.7, a2 = 1.2, b1 = 0.99, b2 = 0.7.

Samples
Size(n1, n2)

R̂MLE R̂BQLF R̂LS Best

(25,25)
Mean 0.402663 0.387377 0.388414 R̂GQLF
MSE 0.004369 0.004350 0.004488

(50,50)
Mean 0.403843 0.396013 0.384350 R̂BQLF
MSE 0.002325 0.002283 0.002336

(150,150)
Mean 0.399423 0.396784 0.413772 R̂BQLF
MSE 0.000696 0.000691 0.000698

(25,50)
Mean 0.404697 0.394412 0.400601 R̂LS
MSE 0.003234 0.003250 0.003149

(25,150)
Mean 0.403919 0.397170 0.42586 R̂LS
MSE 0.002658 0.002566 00.25615

(50,25)
Mean 0.396510 0.383774 0.426846 R̂MLE
MSE 0.003497 0.003616 0.003796

(50,150)
Mean 0.402566 0.398306 0.428401 R̂LS
MSE 0.001560 0.001533 0.001513

(150, 25)
Mean 0.395815 0.384620 0.383671 R̂MLE
MSE 0.002363 0.002477 0.002490

(150,50)
Mean 0.398152 0.391962 0.389028 R̂BQLF
MSE 0.001475 0.001467 0.001573

Table 2. Reliability estimation when λ1 = 0.6, λ2 = 0.1 R =
0.8571429, a1 = 1.7, a2 = 1.2, b1 = 0.99, b2 = 0.7.

Samples
Size(n1, n2)

R̂MLE R̂BQLF R̂LS Best

(25,25)
Mean 0.9214349 0.917854 0.783991 R̂BQLF
MSE 0.0114465 0.011226 0.012684

(50,50)
Mean 0.9639194 0.963107 0.967569 R̂BQLF
MSE 0.0159511 0.015934 0.016019

(150,150)
Mean 0.9974757 0.997457 0.999895 R̂BQLF
MSE 0.0200867 0.020085 0.020129

(25,50)
Mean 0.9606749 0.959748 0.996813 R̂LS
MSE 0.0156505 0.015689 0.015620

(25,150)
Mean 0.9972851 0.997262 0.987954 R̂LS
MSE 0.0201064 0.020108 0.020103

(50,25)
Mean 0.9148838 0.911167 0.916269 R̂MLE
MSE 0.0104861 0.010700 0.010795

(50,150)
Mean 0.9971154 0.997093 0.991564 R̂LS
MSE 0.0200510 0.020052 0.020049

(150, 25)
Mean 0.9156633 0.916215 0.916684 R̂MLE
MSE 0.0106712 0.010841 0.010872

(150,50)
Mean 0.9608007 0.95995 0.962765 R̂MLE
MSE 0.0156215 0.015659 0.156829
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Table 3. Reliability estimation when λ1 = 0.1, λ2 = 0.6 R =
0.1428571, a1 = 1.7, a2 = 1.2, b1 = 0.99, b2 = 0.7.

Samples
Size(n1, n2)

R̂MLE R̂BQLF R̂LS Best

(25,25)
Mean 0.0801339 0.080168 0.080139 R̂BQLF
MSE 0.0108112 0.010811 0.010812

(50,50)
Mean 0.0354731 0.035287 0.035663 R̂BQLF
MSE 0.0161058 0.016104 0.016106

(150,150)
Mean 0.0033805 0.003574 0.003487 R̂BQLF
MSE 0.0199900 0.019990 0.019991

(25,50)
Mean 0.0792548 0.079318 0.079848 R̂LS
MSE 0.0109178 0.010916 0.010914

(25,150)
Mean 0.0766278 0.076962 0.076710 R̂LS
MSE 0.0110536 0.011051 0.011039

(50,25)
Mean 0.0805872 0.080918 0.080187 R̂MLE
MSE 0.0105715 0.010574 0.010576

(50,150)
Mean 0.0394471 0.039657 0.039411 R̂LS
MSE 0.0154952 0.015497 0.015492

(150, 25)
Mean 0.0030872 0.003006 0.003023 R̂MLE
MSE 0.0200146 0.020019 0.020018

(150,50)
Mean 0.0022888 0.002280 0.002293 R̂BQLF
MSE 0.0201120 0.020110 0.020113

Table 4. Reliability estimation when λ1 = 0.1, λ2 = 0.9 R =
0.1, a1 = 1.7, a2 = 1.2, b1 = 0.99, b2 = 0.7.

Samples
Size(n1, n2)

R̂MLE R̂BQLF R̂LS Best

(25,25)
Mean 0.0540309 0.056824 0.0536892 R̂BQLF
MSE 0.0055547 0.005435 0.0056643

(50,50)
Mean 0.0282497 0.028864 0.0273946 R̂BQLF
MSE 0.0076057 0.007537 0.0076069

(150,150)
Mean 0.0016322 0.001695 0.001599 R̂BQLF
MSE 0.0098534 0.009848 0.0098578

(25,50)
Mean 0.0561333 0.055866 0.0556757 R̂LS
MSE 0.0054004 0.005400 0.0054004

(25,150)
Mean 0.0592993 0.059482 0.0591892 R̂LS
MSE 0.0051036 0.005103 0.0050950

(50,25)
Mean 0.0293769 0.028937 0.0294936 R̂MLE
MSE 0.0075227 0.007537 0.0075348

(50,150)
Mean 0.0266031 0.026511 0.0264716 R̂LS
MSE 0.0076973 0.007696 0.0076960

(150, 25)
Mean 0.0021683 0.002209 0.0021938 R̂MLE
MSE 0.0097939 0.009794 0.0097920

(150,50)
Mean 0.0018941 0.001867 0.0018883 R̂BQLF
MSE 0.0098382 0.009837 0.0098379

Table 5. Reliability estimation when λ1 = 0.9, λ2 = 0.1 R =
0.9, a1 = 1.7, a2 = 1.2, b1 = 0.99, b2 = 0.7.

Samples
Size(n1, n2)

R̂MLE R̂BQLF R̂LS Best

(25,25)
Mean 0.9449105 0.941886 0.9453795 R̂BQLF
MSE 0.0054944 0.005311 0.0054873

(50,50)
Mean 0.9728077 0.972068 0.9719535 R̂BQLF
MSE 0.0076937 0.007517 0.0076940

(150,150)
Mean 0.9987453 0.998734 0.9985836 R̂BQLF
MSE 0.0098816 0.009882 0.0098817

(25,50)
Mean 0.9751604 0.974329 0.9755249 R̂LS
MSE 0.0078940 0.007913 0.0078901

(25,150)
Mean 0.9990969 0.999080 0.9991008 R̂LS
MSE 0.0099287 0.009927 0.0099267

(50,25)
Mean 0.9409184 0.938010 0.9415873 R̂MLE
MSE 0.0051087 0.005220 0.0052367

(50,150)
Mean 0.9986837 0.998666 0.9987025 R̂LS
MSE 0.0098849 0.009884 0.0098839

(150, 25)
Mean 0.9407342 0.938051 0.9402264 R̂MLE
MSE 0.0050816 0.005185 0.0051253

(150,50)
Mean 0.975594 0.975015 0.9752622 R̂MLE
MSE 0.0078939 0.007890 0.0078918

Table 6. Reliability estimation when λ1 = 0.9, λ2 = 0.6 R =
0.6, a1 = 1.7, a2 = 1.2, b1 = 0.99, b2 = 0.7.

Samples
Size(n1, n2)

R̂MLE R̂BQLF R̂LS Best

(25,25)
Mean 0.5922679 0.575484 0.573579 R̂BQLF
MSE 0.0055568 0.004979 0.005549

(50,50)
Mean 0.6003591 0.591919 0.599810 R̂BQLF
MSE 0.0023264 0.002204 0.002384

(150,150)
Mean 0.5996672 0.596840 0.596539 R̂BQLF
MSE 0.0007589 0.000751 0.000759

(25,50)
Mean 0.6000496 0.588649 0.601026 R̂LS
MSE 0.0036451 0.003749 0.003599

(25,150)
Mean 0.6027698 0.595034 0.602666 R̂LS
MSE 0.0026445 0.002588 0.002547

(50,25)
Mean 0.5967427 0.582983 0.595937 R̂MLE
MSE 0.0031363 0.003454 0.003460

(50,150)
Mean 0.6012285 0.596469 0.601302 R̂LS
MSE 0.0014423 0.001442 0.001442

(150, 25)
Mean 0.5954787 0.583690 0.591647 R̂MLE
MSE 0.0026699 0.002932 0.002949

(150,50)
Mean 0.5978719 0.591368 0.592388 R̂MLE
MSE 0.0013971 0.001476 0.001499
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Comparing the three estimation methods is done us-
ing the mean square error (MSE) criteria:

MSE =
∑N

i=1
(
R̂i − R

)2
N

(24)

Where N the number of replication in each experi-
ment, set to 1000. Below is the algorithm flowchart
(Fig. 1) of the simulation steps to find the estimated
value of the reliability function.

The hyperparameters of the prior distribution were
selected by Empirical Bayesian method using the
package (ebayesthresh) of R-Studio. The following six
tables contain the results of three reliability estima-
tors (R̂MLE , R̂BQLF , R̂LS).

7. Discussion

The results in the above tables show the relia-
bility values 0.4, 0.8571, 0.143, 0.1, 0.9, and 0.6
respectively.

1. When n1 = n2, the Bayesian estimation under
quadratic loss function of the reliability is the
best estimator.

2. When n1 6= n2, the following results are: if n1 <

n2 the least square method gave the best es-
timator and if n1 > n2 the preference varies
between the maximum likelihood method and
Bayesian method, where λ1 > λ2 the maximum
likelihood method is the best and where λ1 < λ2
the Bayesian method is the best.

8. Conclusion

In this paper, three estimation methods were
presented to find the estimation for the reliability
function of the stress-strength (S-S) model p(y < x)
when each of x and y follows exponented Lomax
distribution with different shape parameters for
complete data. The estimation methods included
maximum likelihood, Bayesian method under
quadratic loss function, and least square method.
The simulation results confirm that the Bayesian
estimator under quadratic loss function is the best
estimator for the equal sample sizes. If the sample
sizes are different, the preference will vary among the
three methods as indicated in the discussion section.

Acknowledgment

We are very grateful to experts for their appro-
priate and constructive suggestions to improve this
template.

References

1. A. S. J. A. Obaidi and K. A. Mohammed, “Parameters estimate
of step-stress in accelerated life tests of exp. Distribution with
Type I Censor,” 2022 8th International Conference on Contempo-
rary Information Technology and Mathematics (ICCITM), Mosul,
Iraq, pp. 442–446, 2022, doi: 10.1109/ICCITM56309.2022.
10032034.

2. E. G. Abd alkader and R. Al-Rassam, “Estimating two parame-
ters of lomax distribution by using the upper recorded values
under two balanced loss functions”, Iraqi Journal of Statistical
Sciences, vol. 16, no. 1, pp. 1–28. 2019. doi: 10.33899/iqjoss.
2019.0164181.

3. I. B. Abdul-M. oniem and H. F. Abdel-Hameed, “ON ex-
ponentiated LOMAX distribution,” International Journal of
Mathematical Archive, vol. 3, no. 5, pp. 1–7, 2012. [Google
Scholar].

4. S. A. Abed, M. Ghassan, S. Qaes, M. S. Fiadh, and Z. A.
Mohammed, “Structural reliability and optimization using dif-
ferential geometric approaches,” Iraqi Journal for Computer
Science and Mathematics, vol. 5, no. 1, pp. 168–174, 2024. DOI:
https://doi.org/10.52866/ijcsm.2024.05.01.012.

5. A. A. J. Ahmed, F. Sh M. Batah, “On the estimation of
stress-strength model reliability parameter of power rayleigh
distribution,” Iraqi Journal of Science, vol. 64, no. 2, pp. 809–
822, 2023. DOI: 10.24996/ijs.2023.64.2.27.

6. S. M. Ahmed, “Constant-stress partially accelerated life testing
for weibull inverted exponential distribution with censored
data,” Iraqi Journal for Computer Science and Mathematics, vol.
5, no. 10, pp. 94–111, 2024. DOI: https://doi.org/10.52866/
ijcsm.2024.05.02.009.

7. B. G. AL-Ani, R. S. AL-Rassam, and S. N. Rashed, “Bayesian
estimation for two parameter exponential distribution using
linear transformation of reliability function,” Periodicals of
Engineering and Natural Sciences, vol. 8, no. 1, pp. 2303–4521,
2020. DOI:10.21533/PEN.V8I1.1111.

8. S. Al-Marzouki, “A new generalization of power lomax
distribution,” International Journal of Mathematics And its Ap-
plications, vol. 7, no. 1, pp. 59–68, 2019.

9. E. M. Almetwally and H. M. Almongy, “Parameter estimation
and stress-strength model of power lomax distribution: Classi-
cal methods and bayesian estimation,” Journal of Data Science,
vol. 18, no. 4, pp. 718–738, 2020. DOI: 10.6339/JDS.202010_
18(4).0008.

10. Z. W. Birnbaum, “On a use of the mann-whitney statistic,”
Third Berkeley Symposium: Birnbaum, vol. 3, no. 1, pp. 13–17,
1956. [Google Scholar].

11. A. M. Hamad, “Properties and application of the suggested
exponentiated lomax distribution family,” Iraqi Journal of Sci-
ence, vol. 64, no. 5, pp. 2422–2428, 2023. DOI: 10.24996/ijs.
2023.64.5.27.

12. A. M. Hamad and B. B. Salman, “Different estimation meth-
ods of the stress-strength reliability restricted exponentiated
lomax distribution,” Mathematical Modelling of Engineering
Problems, vol. 8, no. 3, pp. 477–484, 2021. DOI: 10.18280/
mmep.080319.

13. A. S. Hassan and H. M. Basheikh, “Estimation of reliability in
multi-component stress-strength model following exponenti-
ated pareto distribution,” The Egyptian Statistical Journal, vol.
56, no. 2, pp. 82–95, 2012. DOI: 10.21608/esju.2012.314338.

14. K. Debasis and M. Z. Raqab, “Estimation of R= P (Y<X) for
three-parameter weibull distribution,” Statistics & Probability
Letters, vol. 79, no. 17, pp. 1839–1846, 2009. DOI: 10.1016/
j.spl.2009.05.026.

https://doi.org/10.1109/ICCITM56309.2022.10032034
https://doi.org/10.1109/ICCITM56309.2022.10032034
https://doi.org/10.33899/iqjoss.2019.0164181
https://doi.org/10.33899/iqjoss.2019.0164181
https://doi.org/10.52866/ijcsm.2024.05.01.012
https://doi.org/10.24996/ijs.2023.64.2.27
https://doi.org/10.52866/ijcsm.2024.05.02.009
https://doi.org/10.52866/ijcsm.2024.05.02.009
https://doi.org/10.21533/PEN.V8I1.1111
https://doi.org/10.6339/JDS.202010\protect \LY1\textunderscore 18(4).0008
https://doi.org/10.6339/JDS.202010\protect \LY1\textunderscore 18(4).0008
https://doi.org/10.24996/ijs.2023.64.5.27
https://doi.org/10.24996/ijs.2023.64.5.27
https://doi.org/10.18280/mmep.080319
https://doi.org/10.18280/mmep.080319
https://doi.org/10.21608/esju.2012.314338
https://doi.org/10.1016/j.spl.2009.05.026
https://doi.org/10.1016/j.spl.2009.05.026


106 IRAQI JOURNAL FOR COMPUTER SCIENCE AND MATHEMATICS 2025;6:99–106

15. K. Debasis and R. D. Gupta, “Estimation of P (Y<X) for
weibull distributions,” IEEE Trans. Reliab, vol. 55, no. 2, pp.
270–280, 2006. DOI: 10.13189/ujer.2015.010829.

16. L.-F. Shang and Z.-Z. Yan, “Reliability estimation stress–
strength dependent model based on copula function using
ranked set sampling,” Journal of Radiation Research and Ap-
plied Sciences, vol. 17, no. 1, 2024. https://doi.org/10.1016/
j.jrras.2023.100811.

17. W. S. Loay and A. J. S. Hayfa, “Parameters estimation for mod-
ified weibull distribution using some methods of estimators
with simmulation,” 7th International Conference on Contempo-
rary Information Technology and Mathematics (ICCITM), Mosul,
Iraq, pp. 298–3022021, doi: 10.1109/ICCITM53167.2021.
9677666.

18. M. Oqbah and R. S. AL-Rassam, “Point and interval estimation
of stress-strength model for exponentiated inverse rayleigh
distribution,” Iraqi Journal of Statistical Sciences, vol. 20, no.
2, pp. 225–234, 2023, doi: 10.33899/iqjoss.2023.181256.

19. S. N. Rashed and R. S. AL-Rassam, “Bayesian estimation
for life-time distribution parameter under compound loss

function with optimal sample size determination,” Iraqi Jour-
nal of Statistical Sciences, vol. 1, no. 17, pp. 34–45, 2020. doi:
10.33899/iqjoss.2020.0165447.

20. S. A. Abed and Z. H. Khalil, “Reliability allocation in com-
plex systems using fuzzy logic modules,” Babylonian Journal
of Mathematics, vol. 1, pp. 78–83, 2023. https://doi.org/10.
58496/BJM/2023/015.

21. T. N. Sindhu and M. Aslam, “Objective bayesian analysis for
the gompertz distribution under doudly type II cesored data,”
Scientific Journal of Review, vol. 8, no. 2, pp. 194–208, 2013.
DOI: 10.13189/ujer.2015.010829.

22. S. K. Singh, S. Umesh, K. S. Vikas, “Estimation on system reli-
ability in generalized lindley stress-strength model,” Universal
Journal of Educational Research, vol. 3, no. 1, pp. 61–75, 2014.
DOI: 10.12785/jsap/030106.

23. J. J. Swain, S. Venkatraman, J. R. Wilson, “Least-squares
estimation of distribution functions in johnson’s transla-
tion system,” Journal of Statistical Computation and Simu-
lation, vol. 29, no. 4, pp. 271–297, 1988. DOI: 10.1080/
00949658808811068.

https://doi.org/10.13189/ujer.2015.010829
https://doi.org/10.1016/j.jrras.2023.100811
https://doi.org/10.1016/j.jrras.2023.100811
https://doi.org/10.1109/ICCITM53167.2021.9677666
https://doi.org/10.1109/ICCITM53167.2021.9677666
https://doi.org/10.33899/iqjoss.2023.181256
https://doi.org/10.33899/iqjoss.2020.0165447
https://doi.org/10.58496/BJM/2023/015
https://doi.org/10.58496/BJM/2023/015
https://doi.org/10.13189/ujer.2015.010829
https://doi.org/10.12785/jsap/030106
https://doi.org/10.1080/00949658808811068
https://doi.org/10.1080/00949658808811068

	Different Methods to Estimate Stress-Strength Reliability Function for Modified Exponentiated Lomax Distribution
	Different Methods to Estimate Stress-Strength Reliability Function for Modified Exponentiated Lomax Distribution
	1 Introduction
	2 Stress-strength (S-S) model
	3 Maximum likelihood estimation
	4 Bayesian estimation
	5 Least squares estimation
	6 Simulation study
	7 Discussion
	8 Conclusion

	Acknowledgment
	References

