2008, 9 , 26

2008/0/ 0: 2008/3 /6:

Aabstract

In this work a laser scanning setup was designed and constructed by using Laser speckle technique, in which a linear relationship between Laser speckle Contrast and surface roughness . During the work standard stainless steel rough Surface was been used. From the results it is found that incident angle HAS a great influence on the measurements and this due to the saturation phenomena. For Incident angle (15°) saturation takes place with(R=0.12 μm) AND for more roughness the contrast decreased .When the incident angel become (30°) the contrast saturated at (R= 0.12 μm) and stay constant for more roughness . At angle (75°) saturation in CONTRAST TAKES place at(R=0.4 μm) and the value of contrast less than that of 15° and 30° angles.

, (4,3)

NON CONTACT)

SCANNING,MEASURMENT AND

(INSPECTION

.(7-5)

/1

```
,( 14,13,10)
(
                                                                    ( DEVIATION
                           , (17,16,15,8)
                                            WAVINESS)
    -: (19,18,13 )
                                                                          , (8){ (
                                .1
                                               .(9) {
                                                                }
. (10) {
                                .2
                        )
                                           (8){
                                                           (SURFACE FLOW)
                                           .(10) (CRACKS OR
CONTACT LESS- )
                . ( OPTICAL METHOD
                       -3-1
                                                                        (R)
.(22-18,13,12)
                                                              ,(11,8)
     (24-21,11)
                                                        . (12,8) .
```

```
((h))
                                                                                                              \begin{pmatrix} \Delta r \end{pmatrix}
                                                                                         )
                                                  (\Delta \phi)
                                                                                                                                        (\Delta r)
                                                                                         )-:
                                                                                                                                              (31,29,19,7,1
                                                                                                                         \Delta r = 2h\sin\varphi i....(5-1)
. (
                       )
                                                                                                                           \Delta \phi = \frac{2\pi}{\lambda} \Delta r....(6-1)
(\lambda)
                                      (\pi)
(o \le \Delta \phi \le \pi)
                                                                                          ( 5-1 ) ( 6-1 )
                                                                                                                      \Delta \phi = 4\pi \frac{h}{\lambda} \sin \varphi \dots (7-1)
             (7-1)
                             h < \frac{\lambda}{8\sin\theta} \dots (18-1)
                                                                                                                    (\Delta \phi, h, \lambda, \theta)
                                                                                                       (\Delta \phi, h)
                                                                                                                                              , (\theta,\lambda)
                                                      }
                                                                                         ((h) )
                                                                     (7)
( \quad \varphi = 0 \quad )
                                                     -1
```

```
(\frac{h}{\lambda} \to o)
                                                                                       -2
                                                                                      (..., \frac{\pi}{8}, \frac{\pi}{4})
                                                       S)
                                             .1
                                                              ( SCATTERING COEFFICIENT )(
                                             .2
TOTAL SCATTERING
              . ( tis )
                         INTEGRATED
                                                       S )
                                           1-2
                                                            . \{(E_R)
                                                                              s = \frac{I_{ES}}{I_{ER}}....(19-1)
               (LASER SPECKLE)
                                                              وبذلك يكون شرط الحشونة للسطوح الموصلة كهر بائيا هو :-
                                 )
SPECKLES )(
                       )
(13,2). ( PATTERN
                                                                                                |S| \leq 1
                                                                                                   -2
-:
                                              (
                          , (13)
13,3)
                                                                                              (
```

```
2008 , 9 , 26 ,
                                                                (0.1\mu m)
                                                                , ( 30^{\circ} )
                                                                                      ( 0.1µm )
                                           (H)
                                                                                                (80^{\circ})
                                                                )
                                                                                                        . (0.4 \mu m)
                 (C)
                                                                                               (0)
                                                                                 )
                                                                                        . (15-1)
                                                 -1-2
                                                                                  (25)
                                                                        ( 37-33,13 ) -:
                                                                                           C = \frac{\sigma}{\langle I \rangle} \dots (20 - 1)
                                             (1)
                                                    -2
                                                                SPECKLE (
                                                                                                  CONTRAST
                                                                                 .STANDARD DEVIATION
                                                                   \langle I \rangle = \frac{I_1 + I_2 + I_3 \dots I_N}{N} \dots (21 - 1)
                                                                                 \sigma = \sqrt{\langle I^2 \rangle - \langle I \rangle^2} \dots (22 - 1)
                                                                                                   ( SCANNING
                                       . (
                                                                                                       (C)
UNILITE SERVO- MOTOR CONTROL
```

```
( DACTRON ) ( SYSTEM
       (15CM) (FOCAL LENGTH)
                                                       ( svc 1000 w)
Optical
                                 -2
                                             ( 110v ) ( 220v )
                                 filter
                                         110v)
                 , (630NM-680NM)
                                                           (220v)
)
            ( INTERFERENCES FILTER
                    (672NM)
                                                        (I_0)
                              -:
                                   . 1
                                                                       - -2-
670NM)
                                                                       LASER
                                         ( LASER DIODE )
               (672NM)
                                                      (40,29,2)
                                                                        (G a as
                                                                        ( tem_{00}
                               - -2
                                                          (tem<sub>00</sub>)
                .DETECTOR (SENSOR)
                                                   ( <5MW )
                                                               (4.5v)
-:
                                                                   (635-680Nm
                                -1
                                                                         .1
                                                                         .2
)
                                                      -: (
                         , (
)
                                                           )
                               (
```

ı

.(2) (25CM) $(75^{\circ} - 10^{\circ} -)$ (120°) تكون (5MM) (x) 15⁰) -1 $(0.025 \ \mu m)$ (0.023468)(180°) $(0.12 \ \mu m) \ (0.4998$ $(0.16 \ \mu m)$ (0.31415)μm) (0.2418) , (3) (0.25)(7CM) (1) () $. (0.12 \mu m)$ (5)(4) $05 \ \mu m) (0.025 \ \mu m)$) (0. $. (75^{\circ} - 10^{\circ})$ عناصر السطح, ولكن عند رسم مخططات الجانبية السطوح (μm

2008 , 9 , 26 ,

.

0.16)و (μm و0.25) على النوالي تبين إن شكل وهيئة المخطط تبدأ

بالاقتراب من السطوح ذات الخشونة الأقل وهذا بسبب تأثير

-3

```
2008 , 9 , 26 ,
                                                                           (75°)
(0.12 \ \mu m)
                (0.025 \ \mu m)
                   (2)
                                                      )
                       (75^0)
                                                                                          .~(~0.12 \mu m
)
                                       0.4 \mu m
                                                                             (75)
0.4\mu m )
                                              (
                                                       (0.12 \mu m)
. (75°)
                             (9)
                                    ( 0.07988
(0.025 \mu m)
                                                                                            (0.12 \mu m)
         (0.4722)
                            (0.4\mu m)
                                                       )
                                                                                      (
                         (75^{0})
(30^{0}) (15^{0})
                                                             . (75<sup>0</sup>)
     (3)
                                                                      (
                                                                                    )
)
μm)
                                (11) (10
                               ( 0.12 ),(0.025
                                                                     (30^{0})
                                                                                                   -2
                                            -4
                                            -1
                                                                 (0.12 \ \mu m)
                                                                                          (6)
                                                                  (0.12 \ \mu m)
                                            -2
                                            -3
                                                                                        8) (7)
```

هيفاء ثمين دلالي- (قياس وتقيم معالم خشونة السطوح الهندسية بمعونة الحاسوب)-)الجامعة التكنولوجية- قسم هندسة الإنتاج والمعادن- بغداد -1998. Encyclopedic - Dictionary Of Physics -Vol. 6 - Bergman Press . The Macmillan Company -New York 1962. د محمد التورنجي و د ضياء شنشل (قطع المعادن))الجامعة التكنولوجية- قسم الإنتاج والمعادن-اللجنة الجامعية للشؤون العلمية- 1990.

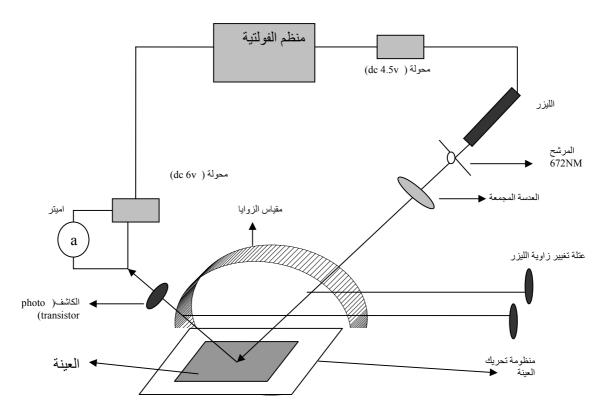
Tribology Group (White House 'D' J) "Surface Link Between Manufacturing And Function " Proc .Instu . Mech . Angers ' 1978 'Vol 192 P. P 179 188 12 د. قحطان خلف الخزرجي و د. عادل محمود حسن (المواد الهندسية واختباراتها)- جامعة بغداد - كلية الهندسة -قسم الهندسة الميكانيكية - 1987.

Lisa C. Leonardo" & Vincent Toal -13"Roughness Measurement . Metallic Surface Based On The Laser Speckle Contrast Method" J-Optics @Laser Engineering -1998 -Vol30 -Pp 433-440 هوانك-جون (مدخل في علم الترايبولوجيا) -ترجمة-الجامعة التكنولوجية- بغداد 1985.

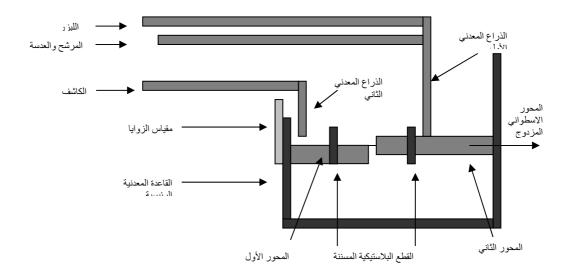
Jean M. Bennet @K.H.Guenther -15Wierer Blazers(Surface @P.G. Finish Measurements On Low Scatter Laser Mirrors And Roughness Measurement Laser Induced Damaged In Optical Materials)1983.Pp.220-235.

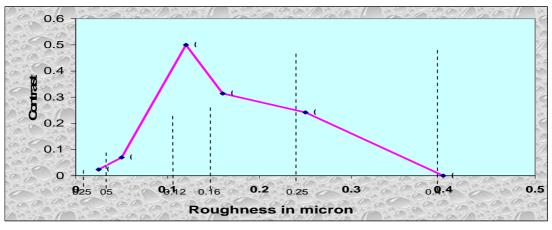
Shunmugam . M .S (Compression -16Of Motif Combination With Mean Line (-1.2001 -) -2 . 1988

Riyadh A.A.Mirza."Lazer And Application"-Speckles The University Of Technology—School Of Applied Science-Master-1995. Butler And

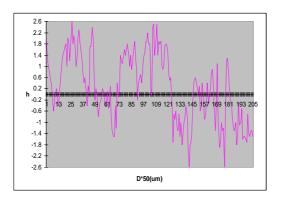

G.Gregoriou"Senser And Actuators"-Vol- A31(1992) Pp 68-77.

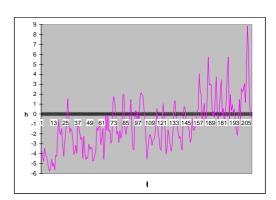
H.G. Tizian I "Optical Methods -5 For Precision Measurements ." Optical And Quantum Electronics, -Vol.21 -(1989) P.P.253-282.

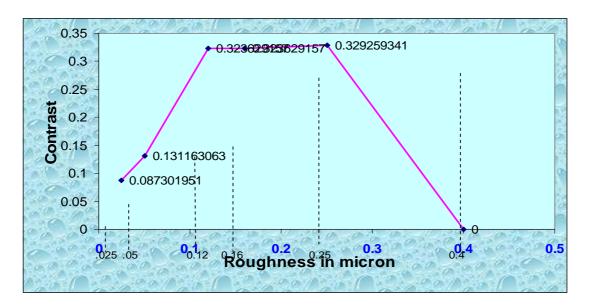

A.Chabli "Optical Characterizing Of -6 Layers For Silicon Micro Electronics" Micro Electronics Engineering -1998; Vol 40; Pp-263-274.


Peter Beckman And Andre _7 Spizzichino " The Scattering Of Electromagnetic Wave From Rough Surface

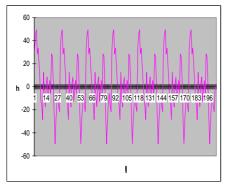
& . L . E . M 1998 – Vol . 29 – P.P 1 -15.	And Envelop System Used For Surface
Wyant Y.C.(Development Of –23	Profile Analysis)Wear -1987 –Vol. 117 –
Three-Dimensional Non-Contact Digital	P.P.335- 345.
Optical Profile)-J.Of Tripology	Reason ' R ' E " Progress In -17
,1986,Vol,108 –Pp.7-15.	Appraisal Of Surface Topography During
Sherrington@Smith(Modern –24	The First Half Century Of Instrument
Measurements Technique In Surface	Development", Wear 1979 ,Vol.57 ,Pp.39-
Metrology :Part 2. Optical Instrument) –	49.
Wear.Vol.125 -1998-Pp.289-308.	Constantinos Christover"Photo –18
Shnider E.J.(Resent American –25	Modulated Theorem Reflectance
And International Development In The	Investigation Of Simi Conducting Implanted
Assessment Of Surface Quality And Their	Wafers " Microelectronics
Effect On The Surface) Wear-1979 -Vol.57	Engineering-1998-Vol-40-Pp 251-261.
−Pp.17-32.	R. Brodman @G.Thurn"Roughness -19
Dr.Ahmed M.Wahed (Medical	Measurement Of Ground ,Turned And Shot-
26-David Halliday@Robert	Penned Surface By The Light Scattering
Resnick(Physics)Part 1-2 .Third Edition -	Method" Wear ,Vol.109,(1986) Pp.1-13.
John Willy@Sons -New-York 1977.	Jean M. Bennet(Round- Robin -20
27-Sanders Murfh (Statistics Afresh	Testing Of Low Scatter Optics)Laser
Approach) McGraw -Hill International	Induced Damaged In Optical
Edition —1976.	Materials)1983.Pp.182-206.
)28	Steen G . Hanson & Lars R21
(Lindvold & B . H . Hansen (Robust
.1985-	Optical Systems For Non Destructive
-29	Testing Based On Laser Diodes And
_()	Diffractive Optical Elements) J. Optics And
. 1987	Laser Engineering -1998 -Vol30 -Pp.179-
) . – . 0 –30	189.
(Z- Yilbas And M. S. J. Hashmi –22
1986	(9an Optical Method And Neural Network
)31	For Surface Roughness Measurements)J. O.

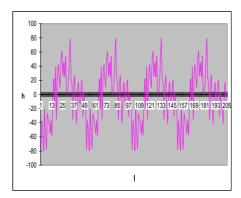


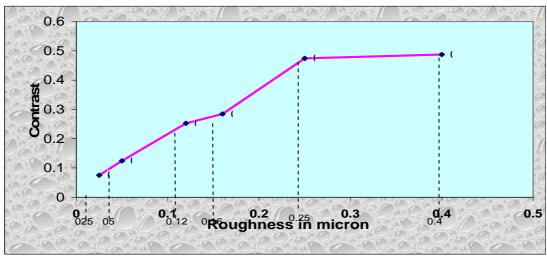

الشكل (1) يبين مكونات المنظومة الليزرية الماسحة

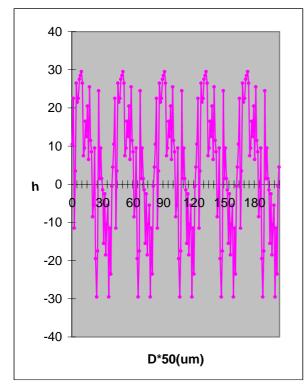


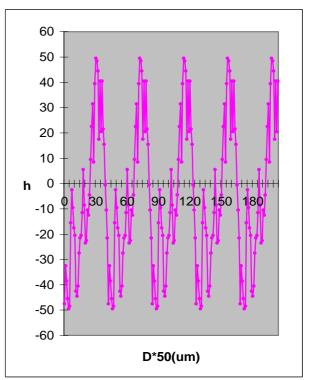
شكل رقم (3) المنحني المرجعي عند الزاوية (15⁰)




شكل (4): مخطط جانبية السطح (10.025 µm) عند الزاوية (15) عند الزاوية (15) عند الزاوية (15)


شكل رقم (4-7):ال نحنى المرجعي عند الزاوية (300)


 (30^0) عند الزاوية ($0.025~\mu m$) عند الزاوية ((7)



شكل (8):مخطط جانبية السطح (121 µm) عند الزاوية (80)

شكل رقم (9):المنحنى المرجعي عند الزاوية (75⁰)

شكل (10): مخطط جانبية السطح (μm 20.025 عند الزاوية (75^0) عند الزاوية (75^0