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Innov’COM, National School of Electronics and Telecommunications of Sfax, University of Sfax, Tunisia

ABSTRACT

Texture features and stability have generated significant interest in biometric recognition. The inner knuckle print
is distinctive and difficult to fake, making it extensively used in individual identification, criminal investigation,
and various other domains. In recent years, the rapid progress of deep learning technology has created new prospects for
internal knuckle recognition. This paper proposes a robust inner-knuckle-print recognition system (RIKP-RS) depending
on two deep learning (DL) models. This paper focuses on the key components of the inner surface of the hand namely the
little finger, ring finger, middle finger, index finger, and thumb finger that are used for human identification. Using the
new segmentation method, rely on the Hands Landmark Module (MediaPipe Module) to detect components that have
important biometric features. By Considering the inner knuckle print (IKP) as a texture, this study adopts two effective
models: The DenseNet201 model and the InceptionV3 model to extract distinctive features from every modality. Uses all
the key points of inner knuckle prints (IKP) of ten fingers for concatenated fusion recognition of all the features extracted
by these models. Ultimately, these features are classified by different similarity metrics that are employed to compute
the matching procedure for each model individually. A dataset of 11,076K hands with left and right palms was used to
evaluate the proposed system. The system achieved the best performance on this dataset with a rank-1 score of 98.45%
on the denseNet201 model, a rank-1 score of 99.81% on the inceptionV3 model for all left IKP, a rank-1 score of 96.68%
on the denseNet201 model, and rank-1 score of 98.32% on the inceptionV3 model for all right IKP. These results cover
the inceptionV3 model for all concatenated fusion recognition. In terms of performance, the RIKP-RS outperforms the
most advanced inner knuckles pattern (IKP) recognition systems.

Keywords: Inner knuckle print (IKP) recognition, Feature extraction (FE), Fusion features, Deep learning, Densnet201
model, InceptionV3 model, MediaPipe module

1. Introduction

In recent years, there has been considerable schol-
arly interest in novel biometric identification tech-
nologies that leverage the distinctive features of
the human hand. Apart from conventional palm
print, palmar vein, and finger vein recognition,
knuckle print recognition has emerged as one of the
most prominent technologies [1–4]. Initially, knuckle
prints have rich texture and line features that can
achieve excellent recognition accuracy [5]. The sec-
ond, knuckle prints are easy to capture and can only
be acquired with standard low-resolution cameras.

The widespread use and low cost of cameras nowa-
days make it convenient to promote and use knuckle
print recognition [6, 7]. To create a high-precision
recognition system, the knuckle print can also be
paired with the palm print, hand shape, and finger
vein. Lastly, unique features of knuckle prints, like
line distance and orientation, may improve their ap-
plicability for large-scale retrieval tasks, especially
when significant data gathering is possible [8–10].

Knuckle prints are the textured areas or curving
muscle lines found on a person’s first, second, and
third finger joints. It is distinct from other biologi-
cal characteristics like fingerprints and palm prints
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and has its own set of rules. These areas include
the hand’s knuckles’ delicate structure and texture
features, which are useful for identifying and rec-
ognizing specific individuals. Knuckle prints are a
valuable and independent biometric recognition tech-
nique since they differ from fingerprints and palm
prints in certain aspects, such as shape. Its lines are
somewhat thicker and the tiny grooves between them
are marginally wider than those of fingerprints. The
knuckle print’s texture structure is often simple, con-
sisting primarily of curved, wavy, and horizontal or
oblique straight lines. In contrast to the palm print,
its line is typically shorter, has fewer lines than the
palm print’s primary line, and is also comparatively
single-directional [11].

Human knuckle prints are found on all ten fin-
gers and can be classified into two categories: palm
knuckle prints and hand-back knuckle prints. While
the knuckles on the palm are referred to as the in-
ner knuckles, the knuckles on the back of the hand
are also known as the dorsal knuckles. There are
additional sources of information for biometric iden-
tification because the two categories of knuckle prints
have different positions and features. By examining
and contrasting the dorsal and inner knuckles of the
hand, more thorough and precise individual recogni-
tion can be accomplished. Even if identical twins have
the same fingerprint, their textures are thought to be
distinct and unchanging throughout time [11–13].

Three different flexor muscle lines, which roughly
correspond to three knuckles, are typically found in
a finger. The main knuckle prints are those that are
located in the middle and provide a lot of informa-
tion. The first little knuckle line is the region nearest
the nail tip of the flexor muscle line. The second
little knuckle is the region that is nearest to the
palm’s flexor muscle line. The position and features of
these several knuckle sites vary, offering more precise
information for identifying individual fingers. Fin-
ger feature recognition can be made more thorough
and precise by examining and contrasting the main
- knuckle print (MKP), the first little -knuckle print
(FL-KP), and the second little -knuckle print (SL-KP).

Deep learning (DL) is a branch of artificial intelli-
gence that utilizes neural networks (NN) with many
layers to automatically learn and extract patterns
from large datasets. It offers many benefits, compris-
ing enhanced accuracy, the ability to handle complex
and large-scale data, and reduced reliance on manual
feature extraction (FE). DL enables systems to adapt
and improve over time, making it ideal for tasks such
as image recognition (IR), natural language process-
ing (NLP), and predictive analytics [14]. DL in inner
knuckle print (IKP) recognition is an emerging field in
biometric technology that leverages advanced neural

networks (NN) to analyze the unique patterns found
within the inner knuckle area. Unlike conventional
techniques that often rely on fingerprints or palm
prints, inner knuckle print (IKP) recognition offers
an additional layer of security by utilizing these sub-
tle, intricate patterns. By training deep learning (DL)
models on high-resolution images of inner knuckle
print (IKP), researchers aim to enhance the accuracy
and reliability of identification systems, making this
technology a promising addition to the field of bio-
metric recognition [10].

According to the current research, no studies have
been conducted using all ten fingers on both hands
and combining them to identify the inner knuckle
print. Our work proposes a robust inner-knuckle-
print recognition system, named RIKP-RS based on
the DenseNet201 model and Inception V3 model to
extract texture features for all inner-knuckle-prints
(IKP) in both hands. To obtain these texture features,
the first step is to select a dataset that contains the
entire hand. In order to detect the inner knuckle
print (IKP), this step is given to blur the hand image,
convert it to HSV color space, perform morphological
operations (Dilation and Erosion), median filtering,
and the Mediapipe Module. The second step is two
deep learning (DL) models using fine-tuned hyperpa-
rameters to extract texture features. The final step is
to compare each model separately using a set of sim-
ilarity metrics. The inner-knuckle print recognition
system is the main focus of this paper. The following
are the most significant contributions of this study:

1. Proposing a novel segmentation method to ob-
tain the inner knuckle print (IKP) Using the
Mediapipe Module which is fast and universal.
Mediapipe’s hand-tracking module’s sophisti-
cated landmark detection and skeletal modelling
allow for segmenting inner knuckles. Region
segmentation, median filters, blurring, HSV
color space conversion, and morphological op-
erations (Dilation and Erosion) can extract inner
knuckle patterns from finger phalanges.

2. Prove an effective segmentation method by eval-
uating actual and predicate samples for the inner
knuckle print to impact the robustness of an im-
age recognition system. This method improved
boundary clarity, reduced noise, and adapted to
illumination and hand position differences.

3. Investigate many fundamental convolution neu-
ral network (CNN) models to achieve optimal
performance in texture feature extraction. After-
wards, fine-tune using the highest performing
models, DenseNet201 and InceptionV3. Fine-
tuning improves texture features that enhance
robustness against illumination and hand
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variations. Utilizing pre-trained weights speeds
up training and prevents overfitting for effective
biometric recognition.

4. Propose concatenated fusion inner knuckle print
features for all fingers (little, ring, middle, index,
and thumb) for both hands, as well as extract
them separately to differentiate among them and
determine the strength of concatenated fusion
features which was not investigated yet in the
literature. The Concatenated inner knuckle print
features improve recognition accuracy by com-
bining patterns from many fingers. Integrated
feature vectors from multiple knuckle regions
provide more discriminative information, en-
hancing robustness against hand orientation,
illumination, and texture noise. The fused repre-
sentation improves biometric recognition by di-
versifying features and lowering false matches.

5. Propose similarity metrics (Hamming distance
(HamD) similarity, Jaccard distance (JaD) simi-
larity, Braun-Blanquet (BB) similarity, and Bray-
Curtis (BC) similarity) to obtain a robustness
performance recognition system by comparing
texture features for each model individually.
As far as we know, this is the first study to
compare features using this metric in a biometric
context. Distance similarity in inner knuckle
pattern recognition improves feature stability,
matching accuracy, and distortion reduction.

The subsequent sections of this paper are structured
as follows: Section 2 reviews the previous works. Sec-
tion 3 presents the materials and methods. Section 4
highlights the evaluation results for each model.
Section 5 provides the comparison and discussion.
Section 6 discusses the conclusion.

2. Previous works

IKP recognition only became popular a few years
ago in the field of biometric technologies. Face print,
palm print, outer FKP, and IKP recognition have all
been the focus of many studies. With these, a variety
of feature extraction and description techniques have
been applied, with varying degrees of accuracy and
performance. A novel inner-knuckle-print recognition
system (IKP) was proposed by Liu et al. [15]. To ex-
tract features, an improved local binary pattern (LBP)
technique was utilized. This technique diverges from
traditional 3 × 3 neighborhood encoding by instead
capturing features within four specific neighborhoods
aligned horizontally on the right and left. Once the
encoded image is generated, it undergoes decom-
position into multilayer binary images, with cross-
correlation employed for precise feature matching.

The results showed that the system, when applied
to 2,000 images of 100 different persons, achieved
good accuracy and robustness. Another system for
examining the identification of an individual based
on inner knuckle print (IKP) was put up by Bahmed
and Mammar [16]. To extract features, an enhanced
method called “Average Line Local Binary Pattern”
(ALLBP) for the IKP region. Utilizing Hamming Dis-
tance (HamD) to confirm image matching has proven
to be an effective system. Experimental results on the
standard contact-free dataset have shown the high-
est accuracy in the system. Another system for inner
knuckle print (IKP) recognition was developed by
Rajini and Prabha [17], which highlights on local
line binary pattern (LLBP) to extract features after
suppressing noise through the use of image filtering.
For efficient classification use two methods “artificial
neural network” (ANN) and “support vector machine”
(SVM) for IKP recognition. An accuracy of 89% and
97% classification was obtained by SVM and ANN
classifier with 100 images taken from 100 various
individuals. Viswanathan et al. [18] created an Inner-
Knuckle-Print (IKP) recognition system that depends
on a two-finger image contactless, which employs
the LBP approach to extract features from IKP. For
matching using the Back-Propagation (BP) algorithm
which achieved the best accuracy with 100 images.
A technique integrating global features that repre-
sent “principal component analysis” (PCA) and local
features that represent “Local binary pattern” (LBP)
was developed by Li W [19] to extract the texture
features. The developed technique can increase both
the recognition rate and the recognition speed by
combining the high accuracy of local refined match-
ing with the quick speed of global coarse matching
that is achieved with 1500 images. An identification
system reliant on inner-knuckle-print (IKP) was de-
veloped by Tao et al. [20], where a new extraction
method proposed by modified maximum curvature
point (MMCP) is used to obtain a central IKP area
line pattern that is robust to changes in illumina-
tion. To match features, use the normalized Hamming
Distance (HamD). Experiments were conducted on a
dataset comprising 1987 IKP images from 209 various
fingers, with 8–10 images from each finger show-
ing good performance. Sadik et al. [21] designed an
identification system reliant on Center inner knuckle
prints (CIKP). To extract features and matching
employ the two techniques: Neighboring Direction
Indicator (NDI) and Chi-Square. The experiments
conducted on the Sfax-Miracle dataset achieved the
highest outcomes for both Equal Error Rate (EER)
and Best Identification Rate (BIR). To identify the
person, Nezhadian and Rashidi [22] adopted two
techniques “Gabor Wavelet Filtering” (GWF) and
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“Wavelet Energy” (WE) to extract features. These
features are classified by several classification tech-
niques such as “K-Nearest Neighbor” (KNN), “Fuzzy
K-Nearest Neighbor” (FKNN), “Parzen Window”
(PW), and “Support Vector Machine” (SVM). The
experiment was done at Hong Kong Polytechnic Uni-
versity using non-contact 3D/2D hand images and
included 177 persons. The 2D Gabor Filter (GF) along
with proper scale orientations, was used by Kazem-
targhi et al. [23] to extract features for the inner
side of the knuckle print (ISKP). SVM classifier ap-
plies to these features. The high accuracy rate was
achieved using 177 individuals. Jaswal et al. [24]
examined novel features based on an inner knuckle
print (IKP) recognition system, whereby texture fea-
tures depend on local direction patterns and knuckle
distance depends on geometrical features. Utilizing a
K-NN classifier to classify features for each class. The
system achieved the highest performance in terms of
CRR (96%), and EER (3.45%) applied to 720 images,
collected over a period of three months. A novel iden-
tification system that relied on the geometric features
of the IKP was introduced by Zhu et al. [25] First, the
system extracts the “region of interest” (ROI) from the
IKP and then uses the K-means clustering algorithm
to determine ROI centroid. Lastly, feature matching
using “Euclidean Distance” (ED) based on “K-nearst
neighbor” (KNN) algorithm. The system achieved
high results (98.39%) using a small dataset collected.
The system has difficulty identifying IKP features, as
it is not done accurately which impacts the system
performance. Another system for analyzing an indi-
vidual’s identity based on the Finger Inner Surfaces
(FISs) was presented by Al-Nima et al. [26], Initially,
an innovative strategy that employs a variety of im-
age processing techniques is used to segment the FIS.
Second, a feature extraction technique reliant on the
“Coefficient of Variance” (CV) and “Wavelet Discrete
Transform” (DWT) is used. Lastly, an intelligent soft-
ware application is used to verify the FIS’s effective-
ness, and “Neural Network” (NN) performance is used
in this study. CASIA multi-spectral palm images have
been used to evaluate the FIS patterns for the left and
right hands. This study yielded the following results:
the "False Acceptance Rate" (FAR) was 0.3333%, and
the "False Rejection Rate" (FRR) was 0.8889%. Au-
thentication of individuals based on extracted finger
texture (FT) Proposed by Al-Nima et al. [27], It
involves extracting the lower details of the image,
subtracting this information from the original image,
extracting the upper features from the same image,
and combining these features to the resultant image
(the subtracted image). As an intelligent classifier for
recognition, a Probabilistic Neural Network (PNN) is
used once the resultant feature image has been seg-

mented. The experiment was conducted on the Hong
Kong Polytechnic University database version 1.0,
where the suggested approach performs better. Fur-
thermore, the Equal Error Rate (EER) of 4.07% pro-
duced the most efficient IFE outcomes. Xue et al. [28]
presented an identification system based on a hand in-
ner knuckle pattern (HIKPS). To extract features using
a "Convolution Neural Network" (CNN). The system
achieved a recognition rate of (95.2%) using a fully
connected layer and the softmax, as the system does
not have the diversity of the training and testing sam-
ples determined for CNN which may affect the usage
model for various hand types. Afif [29] proposed a
novel system for individual gender recognition based
on hand images. CNN was used to extract features
to feed SVM for feature classification. The system
achieved a classification rate of (0.942 and 0.973) for
palm and dorsal hand images with 11K hand datasets.
The system suffers from some complexity in training
the model due to the use of CNN with SVM classifiers,
which is a challenge in real-time applications. Most
current deep learning (DL) research utilizing segmen-
tation techniques demands extensive data labeling for
network training, a process that proves difficult with
large datasets. Notably, the literature of inner knuckle
prints in hand images remains underexplored within
biometric systems. One possible explanation for this
oversight is the dynamic nature of IKP. While nu-
merous recognition methods for inner knuckle prints
exist in the literature, none are flawless; each presents
distinct limitations, often stemming from challenges
inherent in computer vision (CV) and machine learn-
ing (ML). Consequently, there remains significant
potential for advancement, particularly in the appli-
cation of DL to IKP recognition.

3. Materials and methods

This work proposes a robust inner-knuckle-print
recognition system depending on two deep learning
(DL) models. The system utilizes pre-training models:
The DenseNet201 and Inception V3 architectures for
inner-knuckle-print (IKP) recognition. These models
were pre-trained on the 11,076K hands dataset; fine-
tuning is required to utilize them with the datasets
used in this work.

3.1. Dataset

The “11-k Hands” dataset is used in this work to
evaluate a convolutional neural networks (CNN) per-
formance. 11076 hand images from 190 individuals
are included in the 11k Hands collection, which con-
tains both palmar and dorsal perspectives. The images
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show hands in a range of positions, including closed,
half-closed, and widely open. With the hands about
at the same distance from the camera, each image in
this dataset was captured utilizing a USB document
camera with a 1600 × 1200-pixel resolution [30].

Moreover, since the subject of this work is inner
knuckle print (IKP), the 2624 left and 2845 right
palmar images have been chosen. For the training
and validation of the fine-tuned model, 55,055 and
49,856 segmented images from the left and right
palmar in the 11k Hands dataset, respectively, were
utilized. For training and validation, the dataset was
split into 70% and 30%, respectively.

3.2. Deep learning models

Deep learning is the subject of recent study and
is mostly utilized in biometrics and computer vision
[31, 32]. Its robustness and higher recognition scores
are the reasons for its success. Two distinct base-
line models are thoroughly evaluated in this work.
A couple of these models include DenseNet201 and
InceptionV3. These models were selected because of
their successful application in computer vision. To
make each model suitable for the number of classes
utilized in the tests, fine-tuning is included. A brief
discussion of each of these different models will be
provided in each subsequent subsection.

3.2.1. DenseNet201 model
One of the more sophisticated designs in the

Dense Convolutional Networks (DenseNet) family is
DenseNet201. The training of neural networks is
made more efficient and effective by its extensive
connection and 201 layers. Utilizing the aggregate
knowledge of all previous levels, DenseNet201 al-
lows each layer to accept input from all preceding
layers. In comparison to conventional architectures,
this dense connection dramatically improves gradient
flow, mitigates the vanishing gradient issue, makes
feature reuse more efficient, and uses fewer param-
eters [33–35]. The enhanced gradient propagation
guarantees that gradient deterioration will not im-
pact the training of increasingly deeper networks.
Furthermore, DenseNet201 reduces overfitting by in-
troducing a regularization effect as a result of the
recurrent use of features [33, 36].

3.2.2. InceptionV3 model
InceptionV3 is an advanced architecture that uses

creative module design to expand the breadth and
depth of neural networks while preserving comput-
ing efficiency. The Inception module, which performs
convolutions of several kernel sizes (1 × 1, 3 × 3,
and 5 × 5) in parallel, is the central component of

InceptionV3. The network is very good at process-
ing complicated images because of its multi-scale
convolution method, which enables it to capture fea-
tures at various spatial resolutions. By breaking down
more complex convolutional operations into smaller
ones, the Inception modules are made to minimize
the computational load while still attaining good
performance with a minimal number of parameters.
InceptionV3 is an effective tool for image classi-
fication problems because it strikes a compromise
between computational efficiency and the capacity to
gather fine-grained spatial information [37].

3.3. Proposed system

In our system, named RIKP-RS, This study employs
two efficient models: The DenseNet201 model and
the InceptionV3 model. Enhanced through the fine-
tuning of feature extraction (FE). The system passes
the primary phases: Preprocessing, Feature Extraction
(FE), Fusion Features for IKP, and Matching. Multiple
steps are employed in each phase to identify every
test sample and determine whether they are all from
the identical individual. Fig. 1 depicts the framework
of the proposed system.

3.3.1. Pre-processing phase
This phase uses the hand image to identify the inner

knuckle patterns (IKP) for five fingers. The method
used in this work to identify the location of a hand
area, such as inner knuckle patterns (IKP), is hand
posture estimate utilizing the hand’s module (Medi-
aPipe Module). This model’s major points are used to
identify the hand’s primary components. Resizing the
original manual image to 224 × 224 produced the
best localization key points result. A variety of pro-
cessing steps are used to implement the IKP detection
method, including:

1. Applying a blurring step to the hand image: By
adding a filter to an image, more noise can be
eliminated and the image becomes blurrier. In
image processing, image blurring is an essential
element [38, 39].

2. Convert to HSV color space step: This step’s goal
is to determine the hand image’s skin region
by first converting the RGB to HSV color space
and then using specific skin area determination
techniques [40–42].

3. Apply morphological operations step: These are
a group of procedures that process images using
shapes. An output image is created when a struc-
tural element has been added to an input image.
Dilation and Erosion are two of the most basic
morphological processes [43–45].
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Fig. 1. Proposed framework for RIKP-RS.
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Fig. 2. Show a sample of sub-images of the key points of the hand.

Table 1. DenseNet201 model and inception V3 model hyper parameters value.

DenseNet201 Model Inception V3 Model

Hyper Parameters Value

Input Size 224 × 224 224 × 224
Batch Size 16 16
Seed 1337 42
Optimizer Adam Adam
Learning-rate 1e-2 1e-3
Epochs 100 100
Loss Function Binary-Cross Entropy Binary-Cross Entropy
Dense 2048 512
Total parameters 26,988,797 (Use 11K Dataset) 22,948,829 (Use 11K Dataset)
Trainable Parameters 8,654,781 (Use 11K Dataset) 13,958,717 (Use 11K Dataset)
Non-Trainable Parameters 18,334,016 (Use 11K Dataset) 8,990,112 (Use 11K Dataset)

4. Utilize the median filtering step: This is a great
step to reduce this type of noise. The entire im-
age is scanned by the filtering approach using a
tiny matrix, like the 3 × 3. It then recalculates
the value of the center pixel using the median of
all the values inside the matrix [46–48].

5. The MediaPipe Module step is used: This tech-
nique is quite accurate in tracking hands and
fingers. Nine 2D hand landmarks are inferred
from a single frame using machine learning (ML)
[49, 50].

By the perform of four processing processes, the
hand’s key points will be cropped into sub-images, as
illustrated in Fig. 2 Each hand has 14 different parts
for both hands, including:

1. (5) for the IKP-Basic
2. (5) for the IKP-Major (as known as IKP-Center)
3. (4) for the IKP-Minor

3.3.2. Feature extraction (FE) phase
In order to achieve high-performing results, feature

extraction (FE) is a prerequisite for every pattern

recognition system. To differentiate between different
patterns, it is essential to obtain characteristics of
unevenness and distinctiveness [51, 52]. Therefore,
the feature vector (FV) of all IKP was extracted in this
study using the suggested fine-tuning of the Dense
Net201 model (refer to Fine-Tuning in Fig. 1) and
the fine-tuning of the InceptionV3 model (refer to
Fine-Tuning in Fig. 1). Table 1 displays the hyper-
parameter and parameter combinations selected for
the DenseNet201 and Inception V3 models. First, the
pre-trained model’s Inception V3 and DenseNet201
were loaded. After that, a convolution was carried
out using a 224 × 224 input image, freezing the Im-
ageNet weights for transfer learning (TL) and feature
extraction (FE). The first 700 levels of the original
DenseNet201 model were frozen. Some of the 48 lay-
ers in Inception V3 should be frozen for this present
work. The Global Average Pooling (GAP), Flatten,
and Fully Connected (Dense) layers are then used
and fine-tuned. For RIKP-RS recognition, this study
utilized an output layer with a softmax activation
function. To avoid overfitting, this work improved the
training process by including a dropout layer and a
batch normalization layer.
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Fig. 3. Shows the proposed feature-level fusion for the IKP’s location.

3.3.3. Fusion features for IKP phase
Combining feature vectors (FV) for all the inner

knuckle prints of the five-finger regions. In order to
improve the RIKP-RS, a feature-level fusion method
for feature extraction (FE) is suggested that uses the
InceptionV3 and DenseNet201 models for distinct
IKP features. In the fusion phase generates three fea-
ture fusions and extracts separately for IKP-Basic,
IKP-Center, and IKP-Minor for per fingers as well as
concatenated fusion inner knuckle print features for
all fingers (little, ring, middle, index, and thumb) for
both hands in 11-k Hands dataset.

• Feature Vector Fusion for IKP-Left-Basic: (IKP-Left
Little-Basic) + (IKP-Left Ring-Basic) + (IKP-Left
Middle-Basic) + (+ IKP-Left Index-Basic) + (IKP-
Left Thumb-Basic)
• Feature Vector Fusion for IKP-Left-Major: (IKP-

Left Little-Center) + (IKP-Left Ring-Center) +
(IKP-Left Middle-Center) + (IKP-Left Index-
Center) + (IKP-Left Thumb-Center)
• Feature Vector Fusion for IKP-Left-Minor:

(IKP-Left Little-Minor) + (IKP-Left Ring-Minor)
+ (IKP-Left Middle-Minor) + (IKP-Left
Index-Minor)
• Concatenated Fusion all: (IKP-Left-Basic) + (IKP-

Left-Major) + (IKP-Left-Minor)

The same concatenated feature vector fusion of (Ba-
sic, Major, and Minor) is performed on the right hand.
Regarding the IKP regions, the results of the suggested
feature-level fusion for the location in the context
of hand-based biometric recognition are presented in
Fig. 3.

3.3.4. Matching and similarity phase
In order to try to address pattern recognition diffi-

culties, similarity, and distance (dissimilarity) metrics
are crucial [53]. To determine the distance or re-
semblance between two items at their respective
positions, a variety of mathematical procedures are
employed [54]. The basic model feature extractor
previously presented is employed in the four-phase
along with a number of metrics. The optimal recog-
nition outcomes are then utilized for the ensuing
fine-tuning stage to further improve performance.
According to the similarity metric, which is the in-
verse of the distance metric between two vectors, the
degree of similarity raises as the distance between
them decreases and vice versa. In this work, these
hand parts are initially mapped onto feature spaces
using feature extractors. The second step involved
matching individuals based on hand components by
utilizing similarity criteria. The Bray-Curtis (BC),
Braun-Blanquet (BB), Jaccard (JaD), and Hamming
(HamD) metrics are used to evaluate the suggested
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Algorithm 1. the Proposed RIKP-RS
Input: Data Set 11-K Hands
Output: Individual Recognition
BEGIN
Step1: Read the original Hand image
Step2: FOR each row (I) from 1 to image height: 224 pixels
Step3: FOR each column (J) from 1 to image width: 224 pixels
Step4: Preprocessing Phases
Step4-1: While Hand image (I) is available do
Step4-2: Segmenting the Inner Knuckle Prints
Step4-3: Convert to HSV color space
Step4-4: Apply morphological operations (dilation and erosion)
Step4-5: Apply median filtering
Step4-6: Use hands Landmark Model (Mediapipe Module)
Step4-7: END FOR (J)
Step4-8: END FOR (I)
Step4-9: return Final Result
Step5: Create a database with sub-images of every component.
Srep6: Feature Extraction Phases
Step6-1: for p← 1 to 14 do
Step6-2: Separate the database into testing, validation, and training classes.
Step6-3: Set the network configuration (DLNN apply Fine-tuning DenseNet201, Fine-tuning InceptionV3)
Step6-4: Create augmentation images
Step6-5: Use specific epochs to train.
Step6-6: Determine the network weight (W) has the highest validation accuracy and F1 Score
Step6-7: Using W, extract the features from the pairings (a) and (b).
Step7: Matching and Similarity Phases
Step7-1: Compute the distances using the respective equations:
Step7-2: if
Hamming Distance (HamD) compute the number of differing bits between features using Eq. (1)
Step7-3: then
Jaccard Distance (JaD) measures the similarity between two sets and is computed using Eq. (2)
Step7-4: END
Step7-5: if
Braun-Blanquet (BB) measures the similarity between two sets using equation Eq. (3)
Step7-6: then
Bray-Curtis (BC) calculate the sum of absolute differences between features relative to their total sum

using Eq. (4)
Step7-7: END
Step8: Return the computed distance values for HamD, JaD, BB, and BC.
Step9: END

RIKP-RS recognition performance. A description of
them can be found in Table 2 Five binary similarities
are explained.

The proposed RIKP-RS is detailed and outlined in
Algorithm 1, which provides a comprehensive step-
by-step breakdown of the preprocessing for the IKP
detection method, the feature extraction based on two
models and the matching and similarity by distance
compute. This algorithm serves as the basis for the
implementation of the RIKP-RS, demonstrating how
to build the database for sub-images of every compo-
nent and configure the network using two models to
achieve the desired results.

4. Experimental results

The presented section covers the evaluation results
of the IKP segmentation method as well as the con-
catenated fusion feature evaluations based on two
Model Deep Learning Neural Networks (DLNN) for
IKP as well as the overall performance evaluation of
the RIKP-RS. The experiments were conducted on a
computer with 11th Gen Intel Core i7-1362OH pro-
cessor, 16 GB of RAM, a 512GB SSD NVME for hard
disk drive (HDD) and Windows 11 which is a good
amount for running Python 3.9 and handles data-
intensive operations. Python libraries like PyTorch
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Table 2. Show list of similarity metric.

Association measure name, ref Symbol Definition Components of the Equation

Hamming Distance [54, 55] HamD HamD(x, y) =
∑n

i=1
1xi 6=yi (1) Where, x & y: The two strings or binary sequences,

n: the length of strings (or sequences),
xi & yi : the elements (bits) at the i-th position in the
strings x and y

Jaccard Distance [55, 56] JaD J(A, B) =
|A ∩ B|
|A ∪ B|

(2) Where: A and B two sets,∣∣A⋂B
∣∣ is the number of common elements in both sets.∣∣A⋃B
∣∣ is the total number of unique elements in both

sets.
Braun–Blanquet Distance
[53, 56]

BB S(A, B) =
|A ∩ B|

max(|A|, |B|)
(3) Where:

∣∣A⋂B
∣∣ is the number of common elements in

both sets.
|A| |B| are the sizes (cardinalities) of sets A and B.
max(|A| , |B|) is the size of the larger set.

Bray-Curtis Distance [57, 58] BC SBC =

(
b+ c

)
2a+ b+ c

(4) Where, a, b, and c: represent the abundance of features

Table 3. A demonstrative the accuracy for 11K hands dataset.

11k hand dataset Actual Predicate Accuracy

IKP left Hand-11k Hand dataset 2624 2624 100%
IKP Right Hand-11k Hand dataset 2845 2845 100%

Fig. 4. Show result accuracy for 11K hands dataset.

and TensorFlow benefit from Nvidia GPUs’ perfor-
mance for deep learning and machine learning.

4.1. Evaluation of the segmentation method

This subsection evaluates the results of the IKP seg-
mentation methods that were suggested during the
pre-processing phase. The accuracy for both the right
and left hands using the hands’ landmark model is
displayed in Table 3.

Our results show that the left-IKP in the 11k Hands
dataset produced better and more excellent results
than the right-IKP in the 11k Hands dataset. The high-
est accuracy was described by the actual and predi-
cate for all samples in the 11K Hands dataset in Fig. 4.

4.2. Evaluation of model deep learning neural
network (DLNN)

Using two basic models in our experiment IKP
features were extracted using “Convolution Neural

Network” (CNN) pretrained. The results of the mul-
timodal deep learning neural network (DLNN) will
be evaluated in this subsection: By adding each
model’s fine-tuning to the extracted features, the
DenseNet201 and Inception V3 models will be evalu-
ated. Evaluating the performance of the IKP involved
using multiple metrics: recall, accuracy (ACC), preci-
sion (PPV), recall (sensitivity), Specificity(SPC), and
F1_score, which were computed using the following
Eqs. (5) to (9) [59–63].

Accuracy(ACC) =
T p+ Tn

T p+ Tn+ F p+ Fn
(5)

Precision(PPV) =
T p

T p+ F p
(6)

Recall(Sensitivity) =
T p

T p+ Fn
(7)

Specificity(SPC) =
Tn

Tn+ F p
(8)

F1_Score =
2 ∗ T p

2 ∗ T p+ F p+ Fn
(9)
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Table 4. Analysis accuracy and F1-score fine-tuning denseNet201 model (IKP Right).

Summarized-Classification-Train Summarized-classification-Testing

Micro% Macro% Weighted% Micro% Macro% Weighted%

Precision 86.23 89.83 90.14 85.71 84.38 89.24
Recall 86.23 85.71 86.23 85.71 81.25 85.71
F1-Score 86.23 85.00 85.63 85.71 81.15 87.86
Accuracy 86.23 86.23 86.23 85.71 85.71 85.71

Table 5. Analysis accuracy and F1-score fine tuning DenseNet201 model (IKP Left).

Summarized-Classification-Train Summarized-classification-Testing

Micro% Macro% Weighted% Micro% Macro% Weighted%

Precision 92.86 88.71 96.43 89.88 86.13 88.39
Recall 92.86 88.17 92.86 89.88 86.43 89.88
F1-Score 92.86 87.63 93.25 89.88 85.02 88.52
Accuracy 92.86 92.86 92.86 89.88 89.88 89.88

Table 6. Analysis accuracy and F1-score fine-tuning Inception V3 model (IKP right).

Summarized-Classification-Train Summarized-classification-Testing

Micro% Macro% Weighted% Micro% Macro% Weighted%

Precision 97.21 97.26 97.34 94.05 95.37 95.31
Recall 97.21 97.13 97.21 94.05 93.61 94.05
F1-Score 97.21 97.09 97.18 94.05 93.59 93.84
Accuracy 97.21 97.21 97.21 94.05 94.05 94.05

Table 7. Analysis accuracy and F1 score-fine-tuning Inception V3 model (IKP Left).

Summarized-Classification-Train Summarized-classification-Testing

Micro% Macro% Weighted% Micro% Macro% Weighted%

Precision 99.92 99.54 99.54 99.54 99.51 99.51
Recall 99.92 99.23 99.21 99.54 99.21 99.21
F1-Score 99.92 99.17 99.19 99.54 99.08 99.19
Accuracy 99.92 99.21 99.21 99.54 99.17 99.15

Where: TP refers to True Positive, TN refers to True
Negative, FP refers to False Positive, FN refers to False
Negative.

4.3. DenseNet201 model’s evaluation

The primary dataset is split into training, valida-
tion, and testing classes. The suggested models are
trained using training data and validated against the
validation set at the end of each training cycle. The
models are then evaluated using the testing dataset,
and the performance of the DenseNet201 is measured
utilizing evaluation metrics. Tables 4 and 5 illustrate
the results of classification metrics for summarized
classification for the DenseNet201 Model (IKP Right)
and (IKP Left).

4.4. Inception V3 model’s evaluation

Utilizing the testing dataset, the models are evalu-
ated, and the performance of the Inception V3 model
is evaluated using evaluation measures. Tables 6

and 7 illustrate the results of classification metrics for
summarized classification for the Inception V3 Model
(IKP Right) and (IKP Left).

In these tables observed result higher and excellent
in Summarized-Classification for every key compo-
nent in both 11k right and left inner hands dataset in
denseNet201 model and Inception V3 model. Fig. 5
presents accuracy and F1-score for every IKP using
the DenseNet201 model and Inception V3 Model.

The DenseNet201 and InceptionsV3 models were
trained to classify right palmar and left palmar hands
are 2845 and 2624 images. Initially, images of size
224 × 224 pixels were utilized as the input to the
models and trained for 100 epochs. The accuracies,
F1_score, loss, recall, and precision obtained on the
training, validation sets are presented in Figs. 6 and 7
The efficiency of each model’s evaluation using the
Confusion matrix is shown in Fig. 8.

4.5. Similarity and matching evaluation

Evaluating the similarity between two sub-images
of the same hand is one step in the matching process.
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Fig. 5. Comparative line chart for training & testing in DenseNet201 and InceptionV3 models (IKP right & IKP left 11k hands) in proposed
system.

During the matching process, one segmented image
from the query can match one or more corresponding
segmented images in the library. A rank-1 recognition
rate was used to evaluate the similarity using the
feature vectors acquired in the preceding phase. The
rank-1 of recognition is defined as follows:

rank− 1 =
Ni

N
× 100 (10)

There were a total of N samples that were consid-
ered for recognition, and Ni samples were correctly
assigned to the right individual. Table 8 displays the
rank-1 recognition rate of an 11k hands database as a
percentage utilizing multiple pre-trained models and
similarity distances.

5. Discussion results

In order to evaluate the effectiveness and robust-
ness of the proposed RIKP-RS, the detection on the
actual and predicate images is first compared, as
displayed in Table 3, to discuss the accuracy of IKP
detection on the 11K Hands dataset. Concerning IKP
detection for both hands, our right IKP and left IKP
performed best for the highest accuracy. The recog-
nition accuracy is evaluated for the IKP detection
method, through many steps affect the feature extrac-
tion and recognition accuracy. Hand image blurring
is the initial step in the preprocessing phase, can be
important, considering that light blurring can help

decrease noise and improve patterns, but exaggerated
blurring may disguise curves of the finger, lines of
the palm, and details of movement, resulting in re-
ducing recognition accuracy. our proposed RIKP-RS
takes considered balancing the level of hand image
blurring to maintain substantial features as well as
reduce irrelevant details to obtain optimal feature
extraction and robust recognition accuracy. Then, uti-
lizing HSV color space to separate skin regions in
hand images affects the improvement of feature ex-
traction and recognition accuracy by improving skin
detection under different illumination conditions. On
the contrary to RGB color space, where HSV uses
the hue component to differentiate skin tones, satu-
ration, and value channels to minimize shadows and
brightness variations. This results in more accurate
to extract the region skin, and improved biometric
recognition accuracy. Next, morphological operations
(Dilation and Erosion) greatly affect the improvement
of extraction features and recognition accuracy, by
improving significant structures by filling gaps and
connecting fractured hand outlines to strengthen es-
sential components for the dilation process. As well
as eliminating noise, and some undesirable details,
and enhancing segmentation for the Erosion process.
After that, utilizing median filtering will decrease
impulse noise while maintaining significant edges
and details and this filter improves the clarity of
hand contours, making it easier to extract important
features for inner knuckle prints for robust recog-
nition accuracy. Finally, in the preprocessing phase
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Fig. 6. Show result for DensNet201 model (Some sample for IKP left): (a) Training accuracy & validation accuracy (b) Training F1-Score &
validation F1-Score (c) Training loss & validation loss (d) Training precision & validation precision (e) Training recall & validation recall.

use MediaPipe Module that works to improve extract
features and recognition accuracy for inner knuckle
prints by providing a robust real-time hand tracking
and landmark detection framework. It precisely iden-
tifies key components of the inner surface of the hand
like inner knuckle prints for little finger, ring finger,
middle finger, index finger, and thumb finger. To han-
dle hand orientation, illumination, and background
noise, MediaPipe Module built-in pose estimation and
multi-hand tracking improve recognition accuracy.
The performance might operate differently depending
on illumination and occlusions.

According to our experiments, multimodal deep
learning is the most effective model for recognizing
individuals among inception V3 and denseNet201
models, independent of fine-tuning models. The
Inception V3 model was found to outperform the
DenseNet201 model in extracting abstract and

high-level features on both the 11k right and left
inner hands dataset in tables (4, 5, 6, and 7) in section
(Inception V3 Model’s Evaluation). The F1_score for
the denseNet201 model on IKP Right is 87.86%, while
the F1_score for the inception V3 model on IKP Left
is 88.52%. In contrast, the F1_score is 93.84% for the
Inception V3 model on IKP Right, and 99.19% for the
inception V3 model on IKP Left. This is because the
denseNet201 model has many advantages, requires
fewer parameters and processing time, and scales to
hundreds of layers automatically without causing any
optimization issues. The most accurate and effective
model for processing input images when compared to
Inception V3 is this one. It is always being improved
and is now more effective at recognizing specific
images, patterns, and features.

During the matching process, the proposed RIKP-RS
uses four distances, where each distance affects on
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Fig. 7. Show result for Inception V3 model (Some sample for IKP right): (a) Training accuracy & validation accuracy (b) Training F1-Score &
validation F1-Score (c) Training loss & validation loss (d) Training precision & validation precision (e) training recall & validation recall.

Fig. 8. Confusion matrix for the proposed system for some samples 11K Hands DenseNet201 model & InceptionV3 model.
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Table 8. Show the rank-1 recognition rate for the 11k hands (IKP right & IKP left) dataset.

11K Hand Dataset

Multimodal DenseNet201-(IKP Right) InceptionV3-(IKP Right) DenseNet201-(IKP Left) InceptionV3-(IKP Left)

Distance Basic-Little (Rank-1) Basic-Little (Rank-1)
HamD 68.59 71.61 69.41 70.48
JaD 85.88 85.53 87.64 90.57
Braun-Blanquet 79.01 82.39 83.50 87.55
Bray-Curtis 85.62 86.20 87.41 90.75

Basic-Ring (Rank-1) Basic-Ring (Rank-1)
HamD 69.59 72.36 70.41 73.41
JaD 83.67 90.02 85.68 93.15
Braun-Blanquet 79.63 87.58 80.32 90.75
Bray-Curtis 83.40 84.39 84.73 86.27

Basic-Middle (Rank-1) Basic-Middle (Rank-1)
HamD 70.37 72.24 71.52 72.07
JaD 73.56 74.45 75.56 85.42
Braun-Blanquet 79.03 82.23 81.63 84.98
Bray-Curtis 84.66 86.28 88.03 90.11

Basic-Index (Rank-1) Basic-Index (Rank-1)
HamD 69.56 70.01 70.87 70.17
JaD 78.53 80.22 81.82 84.04
Braun-Blanquet 82.20 87.53 86.07 90.07
Bray-Curtis 80.83 85.65 86.05 88.73

Basic-Thumb (Rank-1) Basic-Thumb (Rank-1)
HamD 67.37 69.62 70.60 72.05
JaD 83.99 85.49 85.76 86.75
Braun-Blanquet 85.49 86.76 86.77 88.85
Bray-Curtis 82.36 83.15 87.73 87.57

Major-Little (Rank-1) Major-Little (Rank-1)
HamD 70.91 71.27 71.46 74.89
JaD 80.63 84.20 86.91 88.60
Braun-Blanquet 94.20 96.10 85.43 87.51
Bray-Curtis 98 99.14 100 100

Major-Ring (Rank-1) Major-Ring (Rank-1)
HamD 84.91 85.62 89.48 91.39
JaD 89.86 92.96 87.40 89.52
Braun-Blanquet 95.35 96.76 99.14 99.26
Bray-Curtis 100 100 100 100

Major-Middle (Rank-1) Major-Middle (Rank-1)
HamD 74.52 78.19 85.94 87.57
JaD 85.58 88.69 88.87 91.97
Braun-Blanquet 87.75 88.28 80.95 90.19
Bray-Curtis 97.13 98 100 100

Major-Index (Rank-1) Major-Index (Rank-1)
HamD 88.78 99.88 81.58 90.61
JaD 83.67 85.52 92.01 92.49
Braun-Blanquet 75.83 79.85 97.58 80.43
Bray-Curtis 98.38 99.05 99.29 100

Major-Thumb (Rank-1) Major-Thumb (Rank-1)
HamD 71.10 71.34 70.20 71.39
JaD 81.34 84.21 90.42 91.95
Braun-Blanquet 77.84 81.14 83.54 88.23
Bray-Curtis 88.27 90.29 95.76 97.34

Minor-Little (Rank-1) Minor-Little (Rank-1)
HamD 71.87 71.94 70.32 72.52
JaD 79.40 83.48 88.46 89.27
Braun-Blanquet 74.57 77.25 79.75 86.24
Bray-Curtis 87.02 89.97 88.76 90.13

(Continued)
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Table 8. Continued

11K Hand Dataset

Multimodal DenseNet201-(IKP Right) InceptionV3-(IKP Right) DenseNet201-(IKP Left) InceptionV3-(IKP Left)

Minor-Ring (Rank-1) Minor-Ring (Rank-1)
HamD 78.81 71.06 81.70 81.17
JaD 77.58 81.70 83.05 87.92
Braun-Blanquet 77.13 77.28 79.07 85.57
Bray-Curtis 83.18 85.69 84.67 85.58

Minor-Middle (Rank-1) Minor-Middle (Rank-1)
HamD 69.48 72.31 71.22 75.47
JaD 78.92 82.27 85.78 87.93
Braun-Blanquet 74.58 77.24 79.03 80.45
Bray-Curtis 79.16 81.11 95.48 99.86

Minor-Index (Rank-1) Minor-Index (Rank-1)
HamD 70.53 73.18 72.36 74.19
JaD 78.55 81.65 89.78 90.59
Braun-Blanquet 80.97 84.99 84.20 85.95
Bray-Curtis 100 100 100 100

All-Left-IKP All-Right-IKP
HamD 71.34 79.15 80.62 82.96
JaD 84.88 87.52 89.07 88.69
Braun-Blanquet 88.37 90.51 90.10 94.75
Bray-Curtis 96.68 98.32 98.45 99.81

matching process. The first similarity distance HamD
is used to achieve simple, efficient and enhanced
accuracy by quickly identifying subtle mismatches
in the feature vector (FV), although its performance
may degrade when dealing with continuous data
where subtle variations are necessary. The second
similarity distance JaD focuses only absence-presence
of features, efficiency, reduces noise, and irrelevant
differences, resulting in a more robust and precise dis-
cernment among classes. This distance can be a great
improvement in recognition accuracy, especially
when distinguishing between real matches from par-
tial overlaps is essential. The third similarity distance
BB is best suited for enhanced recognition accuracy in
pattern recognition such as inner knuckle prints (IKP)
through distinguishing patterns that may appear
identical when utilizing binary measures. Finally, the
similarity distance BC is used because it efficiently
measures the relative among feature distributions,
and is robust to an imbalanced dataset which is useful
for an IKP recognition system. The rank-1 recognition
accuracy in both IKP hands is acquired by computing
the results of similarity distances (Hamming distance
(HamD), Jaccard distance (JaD), Braun-Blanquet
(BB), and Bray-Curtis (BC)). The highest results were
observed in almost concatenated fusion for the IKP
left hand compared to the IKP right hand, and the
Inception V3 model outperformed the DenseNet201
model in matching measurements. It was also noticed
through experiments with both IKP-Basic, IKP-Major,
and IKP-Minor that the IKP-Major achieved the best

results while ranking second for IKP-minor and third
for IKP-minor, where the rank_1 (100%) for DenseNet
201 model and Inception V3 model in IKP-Major left
for fingers (Little Finger, Ring Finger, and Middle Fin-
ger), the rank_1 (100%) for DenseNet 201 model and
Inception V3 model in IKP-Major right for Ring finger,
and the rank_1 (100%) for DenseNet 201 model and
Inception V3 model in IKP-Minor right for Index fin-
ger as well as rank_1 achieved used Bray-Curtis (BC)
distance on concatenated fusion for IKP, the rank_1
(98.45%) for DenseNet201 Model in IKP-All Left, the
rank_1 (99.81%) for InceptionV3 Model in IKP-All
Left, the rank_1 (96.68%) for DenseNet201 Model
in IKP-All Left, the rank_1 (98.32%) for InceptionV3
Model in IKP-All Left for each finger (Little Finger,
Ring Finger, Middle Finger, Index Finger, and Thumb
Finger) and as has been listed in Table 8. By compar-
ing IKP for Basic, Major, and Minor for DenseNet201
Model and InceptionV3 Model using four distances,
the BC distance achieved the best results while rank-
ing second for BB distance, ranking third for Ham
distance and fourth JaD distance as indicated in
Fig. 9.

The pioneering system of the proposed RIKP-RS is
highlighted in Table 9 by comparing it with vari-
ous previous studies. Compared to other systems, our
system’s results demonstrated a higher recognition
accuracy than those of other previous studies. This
system clearly outperforms existing methods when
compared to key elements including datasets, Clas-
sifier, FE models, and preprocessing.
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Fig. 9. The rank_1 for the proposed (RIKP-RS) and compare between the rank_1 recognition for the DenseNet201 Model & InceptionV3
Model for right and left hands in the 11k Hands.
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Table 9. Comparison of the proposed RIKP-RS with selected previous studies.

Feature Number of fingers and
Ref. Preprocessing Extraction Classifier Modalities Results

[16] ROI extraction, employs a
detection strategy that
ranges from coarse to
fine.

ALLBP Hamming Distance
(HamD)

3 Finger (Basic +
Minor)

FRR = 0%,
FAR = 0.03%

[17] Grayscale image, Noisy
image, and Normalized
image (Use Median filter)

LLBP ANN+SVM 1 Finger (Middle
Finger)

Accuracy = 89%,
and 97%

[20] ROI extraction smooths the
noisy image, normalizes
the brightness of the
image

MMCP Normalized Hamming
Distance (HamD)

3 Finger (Major) EER = 0.36%

[21] ROI extraction, Gray IKPs,
Estimated coarse
reflections, Uniform
Brightness IKPs,
Enhanced IKPs

NDI, and Chi-Square 4 Finger (Center
Knuckle (Major))

EER= 0.92± 0.35
BIR= 98.91± 0.63

[24] ROI extraction, and CLAHE LDP, Diagonal
PCA, and IKP
Geometrical
Features

K-NN classifier 2 Finger (Major) CRR = 96%, and
EER = 3.45%

[25] ROI extraction, Harris
corner detection, and
K-means clustering
algorithm

Geometric
Features for
(12 centroids
and 4
fingertips)

K-NN for Compute
Euclidean Distance
(ED)

- RR = 98.39%

[26] Crop the wrist and other
terminals, Convert to a
binary image, Rotate and
extract the 4 finger
images

CV+DWT NN 4 Finger (Finger Inner
Side (FIS) Pattern)

FAR = 0.3333%,
and
FRR= 0.8889%

[28] Binarization, Morphological
Processing, Contour
Extraction, Corner
Positioning, Finger
Separation, and ROI
extraction

CNN – RR = 95.2%

[29] Guided Filter (Smoothed
version), hand extracted
and normalized

CNN SVM – Avg. Acc = 0.942
and 0.973)

Our
Proposed
RIKP-RS

Blurring Hand Images,
Convert to HSV Color
Space, Morphological
Operations (Dilation and
Erosion), Median
Filtering, and MediaPipe
Module

Concatenated
Fusion IKP
Features
using
Fine-Tuning
DenseNet201
Model +
Fine-Tuning
Inception V3
Model

Hamming
Distance(HamD),
Jaccard Distance
(JaD),
Braun–Blanquet
(BBD), and Bray
Curtis Distance (BCD)

5 Finger (Basic, Minor,
Major)

F1-
Score= 98.45%,
99.81%,
96.68%, and
98.32%

6. Conclusion

In this given work, a robust system for inner
knuckle print recognition named RIKP-RS is proposed
and implemented on the 11K Hands dataset. The pro-
posed system uses the palmer surface of the fourteen
inner knuckle hand components (Basic (5), Major (4),
Minor (4)). The system provides segmentation meth-
ods based on the advanced Mediapipe Module. The

system motivates feature-level inner knuckle print
for all fingers based on fine-tuning multi-model deep
learning, with inner knuckle print (IKP) playing an
important role in individual recognition. The pro-
posed RIKP-RS was evaluated on datasets of hand
images captured with closed, half-closed, and widely
open. Utilizing the proposed system always increases
recognition accuracy, as the biometric procedure uses
the concatenated fusion of all inner knuckle print
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(IKP) or inner knuckle print (IKP) separately. The
RIKP-RS suffers from limitations in some of the key
components (basic and Minor) of the fingers (Ring,
Middle, and thumbs) in the matching distance of the
features vector, where although it achieves good re-
sults, it is weak compared to the other fingers since
the parameter value selection Inappropriate value for
DenseNet201 and Inception V3 Models, in addition,
some samples of the basic hand component in this
11K hand dataset need for perform more preprocess-
ing steps on the hand images, these limitations are a
subject of future research, in addition to researching
more intricate feature extraction models, such as the
resnet50 and mobile Net V3 Large models, and using
of 11K Hand dorsal datasets; attempts are already
being made to develop these proposed datasets. The
main objective of these measures is to increase the
system’s robustness even more.
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