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ABSTRACT

Quantum Learning (QL) has emerged as a promising approach to medical image classification, leveraging the principles
of quantum mechanics to improve the performance and efficiency of machine learning algorithms. This systematic
review provides a comprehensive critical assessment of the current status of QL techniques developed for medical image
classification, with a specific focus on trends, methodologies, and future directions in this rapidly evolving field. A
thorough literature search was conducted across five major databases, resulting in a total of 28 relevant studies published
between 2018 and 2024. The studies were analyzed and classified based on the type of quantum algorithm, the medical
image modality, and the performance metrics used. The analysis revealed a diverse range of QL techniques, including
Quantum Support Vector Machines (QSVM), Quantum Convolutional Neural Networks (QCNN), and various hybrid
quantum-classical approaches. These techniques have been applied to diverse medical image classification tasks, such as
brain tumor classification, skin lesion classification, and COVID-19 detection, demonstrating promising results in terms
of accuracy, sensitivity, and specificity. However, several challenges were identified, including the preprocessing and
encoding of medical images for quantum processing, the limited scalability of current quantum hardware, and the need
for interpretable and explainable QL models. This review underscores the immense potential of QL to revolutionize
medical image classification, while also emphasizing the necessity of multidisciplinary collaborations and further
research to overcome existing challenges and facilitate the integration of QL techniques into clinical practice.

Keywords: Quantum learning, Medical image classification, Quantum machine learning, Quantum deep learning, System-
atic review

1. Introduction

The rapid development of quantum computing
is quickly providing new ways to solve high-level
scale issues in many fields, including machine learn-
ing and medical image analysis. Quantum Learning
(QL) is a recent interdisciplinary scientific field that
uses basic quantum mechanical principles of super-
position and entanglement to enhance traditional
machine learning by increasing performance and ef-
ficiency in executing machine learning algorithms

[1]. QL, through the non-classical properties of quan-
tum systems, will revolutionize the way in which
high-dimensional and complex data, such as medical
images, are processed, analyzed, and classified [2].

Medical image processing has been well estab-
lished as a requisite ingredient in the diagnosis and
treatment of different health anomalies, from the
detection of cancer to neurological disorders [3].
However, the volume and increasing complexity of
medical imaging data present a challenge for clas-
sic machine-learning approaches, which suffer from
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difficulties in capturing subtle patterns and variations
in the images [4]. It is in this space where QL becomes
relevant and offers a novel paradigm that will allow
us to potentially go further than classical methods
have been able to, via the expressive power residing
in quantum systems for discriminative feature extrac-
tion and robust classification models [5].

Recently, with the rise of quantum computing capa-
bilities, several algorithms and QL architectures have
been designed to leverage certain quantum advan-
tages [6], e.g., the Quantum Support Vector Machines
(QSVM), which have outperformed their classical
counterparts in terms of accuracy and efficiency in
the classification of medical images [7]. Similarly,
Quantum Convolutional Neural Networks (QCNN)
have shown their competence in forming hierarchical
features from medical images for more accurate and
reliable diagnosis [8].

One of the crucial issues that arise in applying QL to
medical image analysis is the high dimensionality of
the data [9], which often exceeds the capabilities of
current quantum devices. Researchers have therefore
explored various techniques to compress and encode
medical images in quantum-compatible forms, such
as amplitude encoding and angle encoding. These
encoding schemes enable large-scale image data to
be processed on quantum computers effectively and
thereby open the path to practical QL applications
in medical diagnosis [10]. Hybrid models offer sig-
nificant potential because quantum computing and
classical computing can be combined to leverage
their respective strengths, thereby overcoming the
limitations that a purely quantum or purely classical
approach imposes [11, 12].

Although the results are very encouraging and
promising, several challenges remain for QL in the
domain of medical image analysis [13]. In partic-
ular, the preprocessing and encoding of medical
images for quantum processing must be carefully
designed to obtain data in the right format, res-
olution, and dimensionality. Additionally, current
quantum hardware limitations—including the small
number of available qubits and issues with noise and
decoherence—do not yet allow for the practical im-
plementation and scalability of QL algorithms [14,
15]. Realizing the full potential of QL for medical
image analysis would involve integrating expertise
from three disciplines: quantum physics, computer
science, and medical imaging. This insight motivates
active research into new quantum algorithms, hybrid
architectures, and error mitigation techniques that
promise to overcome the current limitations of QL
performance [16].

This systematic review aims to critically and
comprehensively assess the state of the art of QL

techniques applied to medical image classification.
It examines key methodological advances and high-
lights the most promising applications and results to
provide valuable insights into the current landscape
and future directions of this rapidly evolving field.

This review will synthesize knowledge and progress
in QL for medical image classification in a timely
and informative manner. The contribution should
have great value for researchers, practitioners, and
policymakers in the healthcare and quantum comput-
ing communities. We hope that the insights gained
through this review will guide further research ef-
forts, support the development of more precise and
efficient diagnostic tools, and eventually lead to im-
proved patient care and outcomes.

In this review, we examine recent developments
and potential solutions for the classification of
medical images using various quantum processing
techniques and QL models. This paper provides an
overview of this emerging field, reviews the progress
made recently, and addresses unanswered questions
from previous surveys. Notably, previous reviews, de-
spite their importance, have not focused exclusively
on the classification of medical images. For instance,
the review by Wang et al. [17] offers a comprehen-
sive look at quantum image processing techniques in
general but does not specifically focus on medical ap-
plications. Similarly, the review by Maheshwari et al.
[18] covers QL applications in the biomedical field
but does not provide in-depth coverage of image clas-
sification. In contrast, the review by Zeguendry et al.
[19] covers various case studies on QL applications
but does not give sufficient attention to the classifica-
tion of medical images. The review by Ur Rasool et al.
[20] provides a general view of quantum computing’s
potential in improving healthcare, with limited cov-
erage of image classification applications. The review
by Kharsa et al. [21] focused on image classification
using QL techniques but did not dedicate specific
attention to medical images. In Wei et al. [22], the
use of QL in medical image analysis is explored, but
it does not delve deeply into image classification. Fi-
nally, Ullah and Garcia-Zapirain [1] address quantum
applications in healthcare in general, with limited
references to image classification. Thus, there is a
clear need for a systematic review focused exclusively
on the classification of medical images using QL
techniques, providing a detailed analysis of current
challenges and proposed solutions. This review aims
to fill an important gap in the existing literature and
offers new insights that could contribute to the devel-
opment of more efficient and accurate techniques in
the future. This study offers several key contributions
that enhance the understanding and application of QL
in medical image classification:
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1. This review exclusively targets the application of
QL techniques to medical image classification,
a focus absent in prior reviews. It addresses a
critical gap by presenting a dedicated analysis
of quantum models tailored to this domain.

2. The paper categorizes and evaluates QL models
into pure quantum, hybrid quantum-classical,
and quantum deep learning approaches. It pro-
vides detailed insights into their encoding tech-
niques, preprocessing methods, quantum circuit
architectures, and performance metrics.

3. This review systematically identifies and ana-
lyzes the technical hurdles faced by QL, in-
cluding quantum hardware limitations, noise,
encoding complexities, and the scalability of
quantum algorithms.

4. By highlighting actionable strategies and show-
casing successful applications, the study empha-
sizes the potential of QL in enhancing diagnostic
workflows and supporting the development of
precise, efficient diagnostic tools.

The rest of the paper is organized as follows: Sec-
tion 2 presents the adopted methodology, including
search strategies, inclusion and exclusion criteria, and
analysis techniques. Section 3 discusses automated
medical image classification and the shift towards
quantum learning. Section 4 reviews the fundamental
principles of quantum computing and its practical
applications in medical image analysis, including the
qubit structure, common quantum gates, encoding
techniques, and preprocessing methods. Section 5 ex-
amines the different quantum learning models used,
focusing on quantum machine learning, quantum
deep learning, and hybrid approaches. Section 6 ad-
dresses the technical challenges and limitations of
applying quantum learning techniques to medical im-
age classification. Section 7 discusses the challenges
and future trends in quantum learning for medical
image classification. Finally, Section 8 concludes the
paper by summarizing the key findings and providing
actionable recommendations for future research in
this field.

2. Materials and methods

2.1. Databases & query string

The initial step involves the collection of all rele-
vant articles from the period spanning 2018 to 2024.
The timeframe was selected due to the emergence and
expansion of quantum devices, alongside the prolif-
eration of Noisy Intermediate-Scale Quantum (NISQ)
computers [2]. To undertake this process, the state
of the art was explored through various scholarly
databases, including Web of Science, Scopus, IEEE

Xplore, Science Direct, and PubMed, as depicted in
Fig. 1. The literature search for this systematic review
was conducted using the following query:

((“QML” OR “quantum computing” OR “quantum
machine learning”) AND (“medical” OR “images” OR
“imaging”) AND (“classification”))

This Boolean search strategy was applied to the
titles and abstracts of published studies to identify
relevant research on the application of QL techniques
in medical image classification.

The search was conducted on February 24, 2024,
where researchers utilized a set of keywords and
Boolean operations, focusing on titles and abstracts,
to ensure the identification of studies that align with
the objectives of the scientific review. The systematic
and precisely defined approach facilitated the com-
prehensive collection of study data for the subsequent
phases of eligibility assessment and data extraction.
The search strategy and access date are reported to
enhance the transparency and reproducibility of the
review’s methodology.

2.2. Inclusion and exclusion criteria

This review focused on publications with the fol-
lowing characteristics:
Inclusion Criteria:

• Academic papers published in English.
• Peer-reviewed journal articles.
• Conference proceedings.
• Studies involving quantum machine learning

(QML), or Quantum deep learning (QDL) tech-
niques based on medical image datasets.

Exclusion Criteria:

• Preprints.
• Studies not involving QML or QDL techniques.
• Studies use text or signal datasets instead of med-

ical images.
• Studies without implementation or simulation in

quantum devices.
• Studies conducted on animals, plants, or in vitro.
• Studies evaluating QL applications outside the

medical field.
• Exploratory articles without QML/QDL perfor-

mance details.

The rationale for these criteria was to focus the re-
view on high-quality, peer-reviewed research specif-
ically addressing the application of QML and QDL
techniques to medical imaging problems that could be
practically implemented. By excluding certain study
designs and domains, the aim was to synthesize a
cohesive body of evidence relevant to the research
objectives.
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Fig. 1. Number of articles sourced from key databases on quantum machine learning in medical image classification.

2.3. Eligibility screening process

Two independent reviewers conducted the initial
screening and selection of studies for inclusion in
this review. The screening process consisted of the
following steps:
Title and Abstract Screening: The titles and ab-

stracts of all identified publications were screened by
the three reviewers to assess their potential relevance.
When the initial assessment of the reviewers differed,
a consensus was reached through discussion.
Full-Text Screening: The full-text articles of the

publications selected in the previous step were
obtained and independently assessed by the two re-
viewers. The reviewers evaluated the articles against
the pre-defined inclusion and exclusion criteria, as
well as the overall study objectives. In cases where
the initial assessments of the reviewers diverged, a
final decision was made through consensus.

From the initial pool of 552 records identified
across five open-source databases, 204 articles were
removed as they were likely duplicates. This resulted
in 348 unique papers. During the title and abstract
screening stage, an additional 236 papers were ex-
cluded as they did not meet the specific requirements
of the review. This included articles that utilized clas-
sical machine learning instead of quantum machine
learning, or that used text datasets or signal datasets

rather than medical image datasets. Of the remain-
ing 112 records, 65 were further excluded based
on the full-text screening process, where each study
was carefully examined to ascertain its relevance. In
conclusion, 47 studies that closely aligned with the
goals of our proposed project were initially selected
for analysis, as shown in Fig. 2. This selection fol-
lowed a methodical and stringent review procedure,
ensuring that each included study met the predefined
quality and relevance criteria. However, to focus on
the highest quality peer-reviewed journal articles, 19
conference papers were subsequently excluded from
the final analysis. As a result, the final review includes
28 studies that fully met the established criteria and
objectives.

2.4. Comprehensive analysis of quantum learning
data for medical imaging

The purpose of this paper is to present a detailed
analysis and classification of the contents of 28
eligible research articles addressing the application
of QL techniques to medical image classification. The
analysis was conducted using three different ap-
proaches with the aim of providing a comprehensive
overview of the current state of research in this
growing field.
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Fig. 2. PRISMA flowchart illustrating the publication selection process for studies on quantum machine learning in medical imaging.

2.4.1. Temporal trends in QL research
Based on the publication year, review of selected

papers indicated that the QL-based classification of
medical images is a field of increased scholarly in-
terest and contributions. Fig. 3 depicts a progressive
increase since 2018, with a peak of 24 publica-
tions in 2023. This signals an increasing number
of researchers who are focusing on QL and its ap-
plications in medical imaging. The increase in QL
research output over recent years reflects the medical
imaging community’s recognition of QL techniques
for addressing the complexity of classification prob-
lems. This increased interest aligns with the general
progress of quantum computing and growing aware-
ness of the benefits that quantum methods could have

in extracting useful information from medical image
data.

2.4.2. Geographical distribution of QL research
The analysis of the selected papers by country, as

shown in Fig. 4, offered additional insights into the
geographical spread of research in this field. India
was identified as the leading contributor, with 11
publications, while Saudi Arabia was the second high-
est with 7 articles. This assessment considered only
articles published in journals.

2.4.3. Publication channels for QL research
The publication type of the chosen articles in this

analysis is presented in Fig. 5. From the 47 relevant
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Fig. 3. Annual distribution of articles on quantum learning applications in medical image classification from 2018 to 2024.

Fig. 4. Geographic distribution of journal publications by country.
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Fig. 5. Breakdown of selected publications by type, showing the
proportion of journal articles and conference papers.

papers identified, 28 articles were published in in-
ternational peer-reviewed journals, accounting for
approximately 60%. As journal articles typically con-
tribute to raising the level of rigor and reliability in
a systematic review, the final sample was limited to
journal articles only, while the remaining 40% com-
prised 19 conference papers. This selection approach
justifies the scholarly importance and impact of the
research on applying QL techniques to the classifica-
tion of medical images. Journal articles are usually of
higher quality and better at ensuring originality and
methodological soundness due to their more rigorous
review process. Focusing the analysis on higher qual-
ity peer-reviewed research provides this review with
an elevated level of authority and trustworthiness for
readers in determining the current state of the art for
quantum solutions in medical imaging applications.

2.5. Research questions

This systematic review provides a detailed ex-
amination of the latest research on employing QL
techniques for classifying medical images. The study
focuses on several critical research questions:

1. What quantum algorithms have been utilized in
medical image classification tasks?

2. Which specific applications of medical imaging
have QL been implemented in?

3. What medical image datasets are commonly
used in QL modeling research?

4. What metrics are used to assess the effectiveness
of QL solutions, and what values have been re-
ported for these metrics?

5. What image preprocessing and encoding meth-
ods have been utilized in the reviewed studies?

6. What are the key challenges and hurdles when
classifying images with QML and QDL?

This systematic review contributes comprehensive
insight into the current trends, methodologies, and
performance related to QL techniques applied within
the field of medical image classification. The find-
ings will inform future research directions and guide
innovative quantum-based solution development in
advanced medical imaging applications.

3. Automated medical image classification:
The shift towards quantum learning

Medical image classification has become a funda-
mental part of modern medical systems, aiming to
automatically classify images based on their visual
content into predefined categories [23, 24]. This field
plays a crucial role in supporting medical diagno-
sis, treatment planning, and contributing to medical
research [25]. Various techniques, from traditional
machine learning to deep learning, find their ap-
plications in medical image classification tasks. As
medical imaging technologies continue to improve,
these models are growing increasingly accurate and
much faster [26, 27]. The most striking deep learning
concept of Convolutional Neural Networks (CNNs)
has transformed medical image classification in re-
cent years [28]. These models automatically extract
features from raw data, which may be very com-
plicated, and hence allow for very accurate image
classification [9]. These models require huge and
diverse well-annotated datasets, which remains a
challenge in the medical field [29, 30].

While classical machine learning and deep learn-
ing have seen much progress in image classification,
traditional computing still puts some limits on the
extent to which huge datasets can be leveraged [31].
This is where QL, based on the principles of quan-
tum mechanics, aims to overcome such challenges.
QL models enable data processing much faster and
more accurately, allowing doctors and researchers to
improve medical diagnosis and develop better treat-
ment plans [22]. Today, large and complex datasets
cover various medical domains, making them ideal
for QL applications [32]. Among these fields, neu-
rological disorders stand out, with datasets such
as the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) and the Parkinson’s Progression Markers Ini-
tiative (PPMI) offering detailed insights into the
neurological changes that occur over time. These
datasets contribute to the early detection of diseases
and the development of innovative treatments [33].
Ophthalmic conditions have also benefited from ad-
vanced classification techniques, where datasets such
as APTOS 2019 and Retina-MNIST supported detailed
analyses of minute changes in the retina. Such tools
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Fig. 6. Examples of medical imaging modalities, including ultrasound, X-ray, axial CT, and MRI, highlighting differences in contrast and
quality across datasets [39].

help in early detection of diseases related to diabetic
retinopathy and macular degeneration. QL tech-
niques help identify subtle changes that traditional
models may miss or overlook [34]. Another very im-
portant area in which medical imaging has helped
significantly in recent times is the COVID-19 pan-
demic. Datasets such as the COVID-19 Radiography
Database have contributed to developing models ca-
pable of identifying whether a person has COVID-19
or pneumonia from their chest Computed Tomogra-
phy (CT) scans and X-rays. QL models accelerated the
diagnostic processes, relieving pressure on healthcare
systems during critically distressed periods [35]. Mus-
culoskeletal diseases and cancers have also benefited
from advancements in medical image classification.
For example, datasets like the Osteoarthritis Initiative
(OAI) [36] and the Mammographic Image Analysis
Society (MIAS) [37] have contributed to the devel-
opment of diagnostic models that assess joint health
and detect early-stage cancers, improving diagnostic
accuracy and personalized treatment plans [5].

The integration of QL with massive medical
datasets has opened new horizons for improving
medical image classification. These models not only
accelerate diagnostic processes but also offer high
accuracy, which can lead to significant improvements
in patient outcomes and customized treatment plans
[38]. Fig. 6 shows sample datasets for medical diag-
nostics, illustrating the differentiation of contrast and
quality among several different imaging modalities.

4. Quantum learning

4.1. Quantum computing

The rapid development of quantum computing is
quickly providing new ways to solve high-level scale
issues in many fields, including machine learning

and medical image analysis. Quantum Learning
(QL) is a recent interdisciplinary scientific field
that uses basic quantum mechanical principles to
enhance traditional machine learning by increasing
performance and efficiency in executing machine
learning algorithms [20].

Unlike classical computers that rely on binary infor-
mation, quantum computing processes utilize quan-
tum bits or qubits that can exist in more than one state
simultaneously through the principle of superposi-
tion. This property, along with quantum phenomena
such as entanglement and quantum parallelism, en-
ables quantum computing to process information
exponentially faster and offer tremendous potential
for analyzing complex medical images [40, 41].

In the field of medical imaging, these capabilities
can lead to significant improvements in the efficiency
and speed of image classification, supporting early
and accurate diagnosis of various medical conditions
[42].

4.2. Quantum learning in practice

Quantum Learning (QL) merges the laws of quan-
tum mechanics with prevailing methods of conven-
tional machine learning, extending the limits of com-
puting speed and power. In practice, quantum learn-
ing systems can be categorized into four main classes
based on the nature of the data and models used [4]:

• Classical Data with Classical Models (CC): Tradi-
tional machine learning systems.

• Classical Data with Quantum Models (CQ): Using
quantum computing to process traditional data,
which is the most commonly used approach in
medical image analysis.

• Quantum Data with Classical Models (QC): Pro-
cessing intrinsic quantum data using classical
computational models.
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Fig. 7. Categorization of classical and quantum data and
models in quantum learning: Classical-classical (CC), classical-
quantum (CQ), Quantum-classical (QC), and quantum-quantum
(QQ).

• Quantum Data with Quantum Models (QQ): A full
quantum strategy.

In the medical imaging domain, the CQ approach
is most prevalent, where quantum techniques are
used to enhance the processing and classification
of traditional medical images [1], as illustrated in
Fig. 7.

4.2.1. Encoding techniques and preprocessing in
quantum learning for medical images

Data encoding and preparation for quantum pro-
cessing represent significant challenges in applying
quantum learning algorithms to medical images. Sev-
eral main encoding methods exist [7]:

• Basis Encoding: Suitable for simple arithmetic op-
erations within a quantum context, but limited by
quantum bit (qubit) availability [19].

• Amplitude Encoding: Translates classical data vec-
tors into the amplitudes of quantum state vectors,
offering greater efficiency in qubit usage and suit-
able for high-dimensional medical image data
[43].

• Angle Encoding: Uses rotational quantum gates
for embedding information, helping to capture
complex nonlinear relationships in medical im-
ages [44].

In the context of medical images, preprocessing
includes techniques such as background intensity nor-
malization, noise reduction, and feature extraction
[45]. Different normalization methods, such as min-
max scaling and z-score normalization, work to make
the intensity of medical images uniform for easier
encoding into quantum states [22].

4.2.2. Variational quantum circuits: A core component
of quantum learning

Variational Quantum Circuits (VQCs) are a central
component in quantum learning and especially in
medical imaging [22]. They are highly adaptable and
utilize parameterized quantum gates that are opti-
mized based on task-dependent cost functions such
as image classification or segmentation [46].

Gates in quantum computation are fundamental
building blocks that control states of qubits in
a manner similar to classical gates in classical
computation with the ability to harness quantum
properties [47]. These circuits rely on a repertoire
of diverse gates (such as rotation gates that control
qubit states on different axes and entangling gates
that create quantum correlations between qubits)
that control qubits to process medical image data
in ways that would be computationally costly in
classical systems [17]. These circuits have been used
successfully in a variety of medical applications
to analyze images for skin lesion detection, brain
tumor segmentation, and chest X-ray pneumonia
diagnosis. With their abilities, QL algorithms can
learn high-dimensional medical imagery with
intricate patterns better than with classical machine
learning methods [48], as presented in Fig. 8.

5. Quantum learning models

Quantum Learning is revolutionizing medical im-
age analysis through a concerted effort and successful
collaboration between quantum computation and
classical advanced learning approaches. We group
QL algorithms into three types: Quantum Machine
Learning (QML), Quantum Deep Learning (QDL), and
Hybrid Approach. QML is a design with a focus
on maximum acceleration in computation and QDL
with a focus on maximum improvement in pattern
recognition. The hybrid approach is a fusion of both
machine learning and deep learning with quantum
approaches.

5.1. Quantum machine learning

5.1.1. Quantum support vector machine
Quantum Support Vector Machines (QSVMs) com-

bine quantum computation with Support Vector
Machine (SVM) theory in order to facilitate more so-
phisticated classification on medical images. QSVMs
utilize quantum phenomena such as entanglement
and superposition in order to enhance computation
and classification performance [50].

While classical SVMs determine optimal hyper-
planes in feature spaces to separate classes of data,
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Fig. 8. Structure of a variational quantum classifier, illustrating the encoding layer, circuit layer, and measurement stage [49].

Fig. 9. Basic structure of a quantum support vector machine (QSVM), illustrating the feature map, variational circuit, measurement, and
label assignment [55].

QSVMs generalize this to quantum feature spaces
through the use of quantum kernels. These kernels
express data point similarity in higher-dimensional
quantum spaces and potentially uncover relations not
attainable with classical methods [51]. QSVMs em-
ploys such kernels by means of quantum circuits that
prepare states of data, process information with quan-
tum gates, and make measurements in order to obtain
results. With quantum computation, these models are
superior in dealing with complex medical image data
compared to classical approaches when dealing with
large numbers of features common in medical imag-
ing [52]. QSVMs have been reported to be promising
in medical imaging. A study employed quantum an-
nealing with SVM to classify between pneumonia
from chest X-ray and reported enhanced efficiency in
classification [53]. Another study employed QSVMs
for thermal hand image classification in rheumatoid
arthritis cases and reported enhanced classification
accuracy by transforming classical features into quan-
tum space [54]. The basic structure of a QSVMs is
given in Fig. 9.

5.1.2. Quantum fuzzy C-means
The Quantum Fuzzy C-Means technique is a

fuzzy clustering technique that is a combination of
fuzzy and quantum and possesses enhanced medical

image classification performance. Compared to
classical fuzzy C-means that classify points based on
their degree of membership, QFCM incorporates
quantum-inspired optimization approaches in
optimizing feature selection and increasing clustering
efficiency and accuracy [56].

Such a study employed the Quantum Grasshopper
Optimization Algorithm (QGH) with FCM for classi-
fying Pap smear test images of cervical cancer. Such
integration verified that combining quantum compu-
tation methods like QGH with fuzzy methods greatly
enhances performance in medical image classifica-
tion schemes. The introduced hybrid model not only
achieved better accuracy but also feature space reduc-
tion [57]. So, a combination of fuzzy and quantum
computing methods is a viable solution for accuracy
and efficiency improvement in medical image analy-
sis with intricate data like medical imaging.

5.2. Quantum deep learning

5.2.1. Quantum neural network
Quantum Neural Networks (QNNs) combine quan-

tum mechanical rules with the structure of classi-
cal neural networks, creating potentially powerful
paradigms for machine learning. QNNs extend classi-
cal neural networks by introducing quantum circuits,
which perform operations on qubits to effect the
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Fig. 10. General structure of a quantum neural network (QNN), depicting input, hidden, and output layers, with quantum operations applied
in the hidden layers [60].

encoding of data, its processing, and the training of
the network, thus realizing fundamentally different
computational principles compared to classical sys-
tems [14].

The primary advantage of QNNs is their capa-
bility to perform matrix multiplications efficiently
during the training process. This is made possi-
ble through quantum parallelism, which accelerates
learning. More specifically, quantum-assisted neural
networks, a subset of QNNs, use quantum comput-
ers for calculating inner products during the training
and inference phases to reduce processing time and
increase computational efficiency. Another variant is
the Quantum Orthogonal Neural Network (QONN),
in which the weight matrix remains orthogonal dur-
ing training. Orthogonality is a property of unitary
matrices used in quantum operations. Maintaining
orthogonality during training stabilizes the learning
process and reduces problems like vanishing or ex-
ploding gradients [58].

The advantages of using QNNs in medical imag-
ing include the compact representation of high-
dimensional data, allowing for more intricate fea-
ture extraction in medical images and potentially
increasing accuracy in tumor detection or tissue
segmentation. Furthermore, quantum algorithms are
inherently robust to noise and effective in process-
ing large datasets, both of which are important for
medical image analysis [59]. Fig. 10 shows the main
architectures of QNNs.

In the integration of quantum computing with
classical neural networks, a study on COVID-19 CT
scan classification used a shallow quantum circuit
with 4 qubits. Hadamard gates initialized quantum
states, while rotation gates (RY, RX, RZ) encoded im-
age data, and Controlled-NOT (CNOT) gates enabled

quantum entanglement, allowing high-dimensional
processing [61]. Another study applied quantum-
assisted neural networks on Pneumonia-MNIST and
Retina-MNIST datasets, using Principal Component
Analysis (PCA) for dimension reduction and quan-
tum circuits on IBM’s NISQ devices for inner product
estimation. This approach demonstrated quantum
methods’ capability to match classical accuracy in
binary classification [58]. In malaria detection, a
Variational Quantum Circuit (VQC) was employed
with a 4-qubit quantum circuit and a ZZ feature
map for encoding. This setup improved diagnostic
accuracy, though it faced challenges with quantum
circuit complexity and reliance on simulations [62].
For respiratory disease detection, a hybrid quantum-
classical framework (HQF-CC) used 4 qubits with
Hadamard and rotational gates within a quantum cir-
cuit of 4-6 layers, showcasing superior accuracy over
classical models [63]. In cardiac pathology classifica-
tion, the HQMC-CPC model utilized a 30-qubit circuit
with a ZZFeatureMap and a series of controlled-
Z gates, with a modified hardware-efficient ansatz
(MHEA) to improve accuracy and reduce complexity
[64]. Lastly, a study in quantum pre-training used a
Restricted Boltzmann Machine (RBM) in a D-Wave
quantum annealer. Quantum pre-training provided
classical neural networks with initial weights, illus-
trating the scalability of quantum techniques in the
face of limitations in devices [65].

5.2.2. Quantum convolutional neural network
Quantum Convolutional Neural Networks (QCNNs)

form a new combination of classical neural networks’
popular architecture and techniques in quantum
information processing, opening new avenues for ef-
fectively processing complex patterns in data. QCNNs
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Fig. 11. Schematic representation of a quantum convolutional neural network (QCNN), illustrating the encoding, convolution, pooling, and
measurement stages [68].

use quantum information processors to efficiently
carry out complex tasks in different applications [66].
The difference in design between a QCNN and a
Classical Convolutional Neural Network (CCNN) in
feature detection strategy is that CCNNs use a com-
bination of a convolutional and a pooling layer to
carry out feature detection in images, whereas QC-
NNs transform a pixelated image into a quantum
circuit through a feature map, e.g., a ZFeatureMap.
In QCNNs, the Quantum Convolutional Layer consists
of two-qubit unitary operators that determine rela-
tionships between qubits. The quantum pooling layer
then lowers circuit dimensions, and classification ul-
timately results from one or more qubits, subject to a
particular quantum circuit’s design [19].

Another significant advantage of QCNNs is that
they efficiently handle an input size of N qubits
with variational parameters O(log(N)), thus offering
good training performance on near-term quantum
hardware [56]. Recent works have demonstrated
this efficiency, showing that QCNNs outperformed
classical CNNs and Artificial Neural Network (ANN)
models in accuracy and efficiency under virtually
all scenarios [67]. Fig. 11 demonstrates the process
through which classical CNNs are embedded within
QCNNs by incorporating quantum layers.

QCNNs and hybrid quantum-classical models rep-
resent a promising frontier in medical image clas-
sification, blending quantum computing’s potential
with the well-established strengths of classical neural
networks. The studies summarized below explore var-
ious implementations of these advanced techniques,
each addressing unique challenges in the medical
imaging domain.

The development of the RANet model, paired with
a Quanvolutional Neural Network (QNN), marks a
significant effort in leveraging quantum computing
to detect rheumatoid arthritis from thermal hand

images. Here, quantum filters played a crucial role
in enhancing image processing capabilities, showcas-
ing the potential of quantum-classical integration,
even within the constraints of simulated environ-
ments [69]. Expanding on this integration, a hybrid
quantum-classical CNN was tailored for the detection
of COVID-19 through chest X-ray analysis. The quan-
tum layer, with the use of Random Quantum Circuits,
enhanced the feature extraction process by showing
how quantum circuits can be effectively embedded
into traditional neural networks to enhance diagnos-
tic accuracy [70]. The same principle was followed in
brain tumor classification, where a revised HQC-CNN
adopted a Parameterized Quantum Circuit (PQC) for
early feature extraction. This method illustrated the
capability of quantum preprocessing in simplifying
complicated image classification tasks, particularly
under quantum hardware constraints [71]. Another
model, the adaptive HQCNN, was designed for the
classification of brain MRI images using quantum
convolutional layers. The rotation gates in the quan-
tum layer, optimized by a Genetic Algorithm, have
demonstrated how quantum techniques can acceler-
ate convergence and improve the overall performance
of models in medical imaging [72]. Another exam-
ple is the classification of diabetic retinopathy using
a quantum-enhanced deep CNN employing multi-
qubit gates to extract features. This approach was
tested in a simulated quantum environment and
allowed quantum circuits to solve multiclass clas-
sification problems with high precision [73]. The
contribution of quantum computing to securing im-
age classifiers has been demonstrated by generating
universal adversarial perturbations. A QCNN archi-
tecture, with a 12-qubit, 20-layer quantum circuit,
has been tested to identify vulnerabilities that indi-
cate a need for more robust quantum algorithms in
practical scenarios [74]. In classifying child obesity



IRAQI JOURNAL FOR COMPUTER SCIENCE AND MATHEMATICS 2025;6:107–138 119

using thermal imaging, a variational quantum clas-
sifier has been incorporated into the process. This
work showed how even shallow quantum circuits
can provide advantages in image classification when
quantum resources are limited [75]. Quantum opti-
mization merged with deep learning in the diagnosis
of dystrophinopathies using muscle MRI images. The
integration of the Multi-Objective Quantum Tunicate
Swarm Optimization (MOQTSO) algorithm within a
Capsule Network (CapsNet) framework showed how
effectively quantum principles might be applied to
enhance not only the efficacy of feature selection
processes but also to improve accuracy [76]. A hybrid
neural network was proposed for Alzheimer’s dis-
ease diagnosis, embedding a QVC into the ResNet34
architecture. This demonstrated how feature dimen-
sions can be effectively reduced by quantum circuits
and, in return, improve classification performance
[77]. Building further on the hybrid model con-
cept, a transfer learning approach with a quantum
method was implemented in detection in diabetic
retinopathy. Combining a 4-qubit VQC with a clas-
sical Inception-V3 model highlighted the potential
of collaboration between quantum and classical in
achieving high accuracy, especially in binary classi-
fication tasks [78]. Osteoarthritis classification in the
knee was carried out using a QCNN in which classical
deep learning methods were combined with quantum
convolutional layers. This paper showed how feature
extraction can be improved by angular encoding and
application using quantum circuits and thereby clas-
sification performance [6]. Combining the classical
method with the quantum method, a brain disor-
der classification model like Parkinson’s Disease and
Alzheimer’s Disease has been suggested. Combining a
QVC with AlexNet showed how performance in diag-
nostic models can be improved with upgrades using
quantum [79]. Combining the classical approach with
the quantum one, a model has been proposed for the
classification of brain disorders such as Parkinson’s
Disease and Alzheimer’s Disease. The integration of
a QVC within the AlexNet framework showed how
quantum enhancements can improve the accuracy of
diagnostic models [80]. A novel approach for detect-
ing respiratory lung diseases, including COVID-19,
was explored through a hybrid CNN-quantum clas-
sifier framework. The use of several qubit settings
in quantum classifiers demonstrated the versatility
of quantum computation in multiclass classification
in a medical context [81]. The concept of collab-
orative QL gained prominence with the Federated
Quanvolutional Neural Network that used quantum
convolutional layers in a federated learning setup.

Quantum-enhanced models have the potential to
retain high accuracy when handling medical data

while reducing data exchange demands [82]. In a
bid to counter insufficient labeled medical data, sci-
entists have merged supervised contrastive learning
with variational quantum classifiers. In a basic quan-
tum implementation, scientists used the VQC in a
contrastive learning model. The results indicated that
model performance could be improved by quantum
computing on a wide range of datasets [83]. Re-
searchers used quantum adaptive machine learning
to classify brain tumors into several categories. They
were able to integrate quantum convolution and pool-
ing layers into a working hybrid model. The process
enhanced model training and classification accuracy,
demonstrating the potential of medical imaging with
quantum computation [10]. Generally, this research
is a demonstration that quantum computation and
classical neural networks are malleable and have
a lot of potential. The methods are both purely
quantum convolutional neural networks and hybrid
quantum-classical. This is a demonstration that hu-
mans never stop experimenting with ways of making
use of quantum technology in enhancing medical
image classification in spite of having hardware
constraints.

5.3. Hybrid approach

Hybrid Approach refers to a developing endeavor
to unify computational power in quantum algorithms
with advanced pattern recognition capability in deep
learning architectures. It endeavors to reconcile in
a balanced manner both efficiency and accuracy
in classifying medical images using complementary
powers in Quantum Machine Learning (QML) and
Quantum Deep Learning (QDL). Researchers con-
tinue to search for optimal ways to connect quantum
technologies with classical deep learning methods
to provide improved performance in sophisticated
diagnostic applications in medicine. In a detection
research paper in Retinopathy of Prematurity (ROP),
a Quantum Support Vector Machine (QSVM) was
applied after segmentation of retinal images using
SegNet. The QSVM applied a 10-qubit quantum cir-
cuit implemented with IBM Qiskit using quantum
kernels to transform selected features into quantum
space for classification [84]. Another study integrated
quantum computing into the Inception-ResNet-V1
model for multi-class skin image classification.
This approach involved a quantum convolutional
layer using quantum gates like CNOT and rotation
gates to enhance feature extraction, with classi-
fication handled by an SVM, improving accuracy
through quantum-enhanced processing [85]. The
findings from the reviewed studies are summarized in
Table 1.
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6. Discussion

Quantum Learning (QL) combines quantum com-
puting principles with classical learning techniques
to revolutionize medical image classification, offering
solutions for the high dimensionality and complex-
ity of medical imaging data. This systematic review
explored the rapidly evolving landscape of Quan-
tum Machine Learning (QML) and Quantum Deep
Learning (QDL) techniques that are transforming
medical image analysis. Different quantum algo-
rithms leverage the unique characteristics of quantum
systems to enhance efficiency and accuracy in image
classification.

6.1. Quantum algorithms utilized in medical image
classification

Our analysis reveals a diverse range of quan-
tum learning (QL) techniques applied to medical
image classification, categorized into three major ap-
proaches based on the technology utilized.

One approach focuses on enhancing classical
machine learning algorithms with quantum com-
puting techniques. This includes methods such as
the Quantum Support Vector Machine (QSVM) and
Quantum Grasshopper Optimization using Fuzzy C-
Means, which improve classification efficiency for
simpler data. The second and most prevalent cate-
gory is Quantum Deep Learning, representing roughly
over 70% of the studies. This approach integrates
quantum neural networks with classical techniques—
such as Quantum Neural Networks (QNN) and
Quantum-Classical Convolutional Neural Networks
(Q-CCNN)—and demonstrates notable effectiveness
in analyzing complex patterns in medical data for
feature extraction. It leverages deep learning’s abil-
ity to handle multidimensional data while boosting
accuracy and speed through quantum enhancements.
The third category involves hybrid methodologies
that combine machine learning and deep learning
with quantum techniques. These methods integrate
the strengths of both approaches, enhancing overall
classification accuracy by effectively analyzing both
simple and complex patterns.

Hybrid models, which combine quantum and clas-
sical components, emerge as a practical pathway
to exploit quantum advantages without abandoning
proven deep learning techniques. Many reviewed
studies adopted a hybrid design to address the limita-
tions of purely quantum models. A common pattern
is using classical deep networks for pre-processing or
feature extraction, then a quantum circuit for classifi-
cation (or vice versa). For example, in one approach
a quantum CNN was first trained on a brain MRI

dataset, and its learned weights were then transferred
and fine-tuned classically on a knee X-ray dataset -
a QCTL pipeline [6]. This hybrid transfer learning
improved accuracy slightly (as noted, ∼1% boost)
over training a classical model alone, indicating the
quantum initialization introduced a beneficial rep-
resentation. Another study extracted deep features
with a custom CNN (RANet) and then fed them to a
classical SVM, achieving higher accuracy (97%) than
either the CNN or a standalone quantum network
[69]. This showcases a useful trade-off: the quan-
tum component (quanvolutional layer) provided an
alternate representation of the data, but the classi-
cal machine learning ultimately decided the class –
leveraging the strength of both. Hybrid models can
mitigate the input size problem of quantum classi-
fiers. Rather than encoding an entire high-resolution
image into qubits (which is infeasible for current
hardware), a classical CNN can compress the image
into a manageable feature vector, which a quantum
classifier (e.g., a variational circuit or quantum ker-
nel SVM) then processes [63]. This approach was
effective in the HQF-CC framework, where a custom
quantum feature extractor (MMS algorithm) distilled
chest X-rays into quantum-friendly features, and a
classical network achieved nearly 99% accuracy on
diagnosis. Another advantage is robustness and gen-
eralization: by combining modalities, models can
avoid some pitfalls of either method alone. Quan-
tum circuits might find global data patterns through
entanglement, while classical nets capture local tex-
tures; together, they can improve overall detection
rates. There is also a potential computational benefit –
if the quantum part reduces dimensionality signifi-
cantly, the classical part has less data to crunch. In
a hybrid SVM example for pneumonia, the quantum-
inspired feature mapping led to fewer errors with
faster prediction times than a deep CNN approach.
The flipside is increased complexity. Hybrid systems
must orchestrate two different computing paradigms.
Data must be transformed from pixel values to quan-
tum states (e.g., via amplitude or angle encoding)
and back, which introduces overhead and poten-
tial information loss during encoding. Moreover, the
quantum component itself might be a bottleneck – if
the quantum model underperforms or is too small,
the overall system may not justify its complexity.
For instance, in the RA classification case, the quan-
tum layer (quanvolution) alone was weaker than the
classical model, so only by adding classical feature se-
lection did the hybrid approach excel. This indicates
a trade-off: hybrids only help if the quantum part
adds unique value; otherwise, they could complicate
an already working classical solution. Another limita-
tion is that current hybrid demonstrations are largely
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experimental – integrating them into real clinical
pipelines would require stable quantum hardware or
fast simulators, which are still in development. There
is also a maintenance trade-off classical ML engineers
and quantum specialists must collaborate, as tuning
a hybrid model means tuning classical hyperparame-
ters (learning rates, CNN architecture) and quantum
hyperparameters (circuit depth, type of ansatz, num-
ber of qubits). Despite these challenges, the case
studies so far illustrate real-world effectiveness. The
hybrid chest X-ray model (HQF-CC) effectively de-
tected COVID-19 and pneumonia from radiographs,
and a hybrid quantum SVM has been piloted for
a common diagnostic task (pneumonia vs normal)
with success. These examples build confidence that
even with today’s hardware, quantum-classical hy-
brids can tackle practical medical imaging problems.
The key trade-off is complexity vs. payoff: hybrids are
worthwhile when the quantum component addresses
a specific weakness of the classical approach (such as
feature dimensionality or linear separability), thereby
improving accuracy or efficiency modestly. As quan-
tum hardware improves, we expect the cost-benefit
balance of hybrid models to further tilt in their favor,
unlocking greater performance gains.

The diversity in quantum and classical technolo-
gies for medical image classification spans these
three categories. While Quantum Deep Learning dom-
inates the research landscape, the integration of
quantum with classical techniques in all categories
demonstrates flexibility and significant potential for
improving performance and classification accuracy in
medical imaging applications, as detailed in Tables 1
and 2.

6.2. Medical imaging applications of quantum
learning

The review of 28 studies shows that QL applications
span a wide range of diseases and offer innovative
solutions for rapid diagnosis.

The most significant application involves using QL
for diagnosing brain diseases such as Alzheimer’s and
Parkinson’s, or brain tumors, using MRI images. Hy-
brid models that combine quantum approaches with
traditional models can identify subtle patterns in im-
ages, improving classification accuracy and enabling
faster analysis for better treatment decisions. For
cardiac diseases, the classification of conditions like
cardiomegaly and cardiomyopathy using cardiac MRI
has been enhanced through hybrid models combining
deep learning and quantum technologies, improving
classification accuracy and reducing analysis time for
large datasets.

Quantum approaches have been utilized to clas-
sify chest X-rays during the COVID-19 pandemic,
facilitating rapid and accurate identification and di-
agnosis of COVID-19 and pneumonia to enhance
healthcare responses and crisis management. Quan-
tum models have demonstrated superior performance
in ophthalmology by analyzing fundus images for
diabetic retinopathy, efficiently identifying disease
instances and enabling early detection to prevent
vision complications. One important application is
in thermal imaging for rheumatoid arthritis diag-
nosis, with quantum models aiding in quantifying
thermal fluctuations in inflamed joints to improve
diagnostic performance at various stages of the dis-
ease. Quantum models perform complex thermal data
better compared to conventional methods. Quantum
Learning (QL) has proved to be useful in MRI imag-
ing of pathologic muscles, e.g., muscles affected by
Duchenne muscular dystrophy, to improve detection
of common patterns with shorter processing time.
Quantum transfer learning has been utilized to clas-
sify mammography images as benign or malignant, a
very critical application in breast cancer detection.
These quantum models have improved diagnostic
performance with a reduction in computational com-
plexity and have proved effective in early detection
of breast cancer. These applications indicate that QL
methods offer improved diagnostic performance, im-
prove processing times for medical images, and result
in faster and improved medical decision-making for
severe diseases, as evident in Table 3.

6.3. Medical image datasets used in quantum
learning research

An examination of datasets used in Quantum Learn-
ing (QL) research highlights critical variations in their
size, availability, and complexity. These factors have
a significant influence on both performance outcomes
and on the generalizability of quantum models to
medical image classification.

Large open-access repositories like the COVID-19
Radiography database (15,153 images) and the ACDC
2017 collection (more than 15,000 MRI scans) enable
researchers to thoroughly analyze intricate patterns
in high-dimensional medical data. The sheer volume
of information in these large repositories has been
particularly valuable in studying intricate patholo-
gies; it has greatly improved diagnosis capability in
cardiovascular and respiratory diseases by providing
researchers with rich, heterogeneous input data.

The Brain Tumor MRI dataset is another abundant
source with 7,023 high-quality images that
researchers have employed to detect fine-grained
morphological features essential in tumor detection at
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Table 2. Comprehensive overview of QL algorithms for medical image classification applications.

Technology Category Models/Algorithms Reference

Quantum Machine Learning Quantum Support Vector Machine [53, 54]
Quantum Grasshopper Optimization with Fuzzy C-Means [57]

Quantum Deep Learning Quantum Neural Network [61, 69]
Quantum-Classical Convolutional Neural Network [70, 71, 72, 73]
Quantum-Assisted Classical Neural Networks [58]
Quantum Orthogonal Neural Network [58]
Quantum Continual Learning with Universal Perturbation [74]
Variational Quantum Circuit [62]
Variational Quantum Classifier with Customized Convolutional Neural Network [75]
Quantum Variational Circuit with ResNet34 [77]
Hybrid Quantum-Classical Transfer Learning with 4-Qubit Variational Classifier [78]
Hybrid Quantum-Classical Convolutional Neural Network with Quantum Transfer Learning [6]
Hybrid Quantum Feature Extraction and Custom Classification Model [63]
Hybrid AlexNet-Quantum Variational Circuit [79]
Hybrid Classical-Quantum Neural Networks with Transfer Learning [80]
Hybrid Classical Convolution and Quantum Variational Classification Framework [81]
Federated Learning with Variational Quantum Convolutional Neural Network [82]
Supervised Contrastive Learning with Quantum Variational Classification [83]
Quantum Adaptive Machine Learning [10]
VQC with Hybrid Evolutionary Algorithm [64]
Autoencoder with RBM Pre-trained on D-Wave Quantum Device [65]
Multi-Objective Quantum Tunicate Swarm Optimization with Deep Learning [76]

Hybrid Approach SegNet-SURF-QSVM [84]
Quantum Inception-ResNet-V1 with SVM Classifier [85]

an early stage. In contrast, researchers are faced with
severe methodological challenges when working with
small collections. MIAS and DDSM mammography
databases with a mere 322 and 2,750 images,
respectively, suffer from a lack of sample diversity
and cannot be used to extract fine-textured features
that are essential in analyzing abnormalities in breast
tissue in cancer screening protocols [93]. In these
cases, quantum transfer learning is often employed,
where models are first trained on larger datasets
and then fine-tuned on smaller ones to enhance
performance.

In addition to differences in size, many datasets
used in both quantum machine learning and deep
learning have inherent limitations. For instance,
the Osteoarthritis Initiative (OAI) dataset comprises
9,516 knee X-ray images but suffers from class
imbalance-with severe cases (Grade 4) making up
only about 3%—and potential inconsistencies in
grading. Similarly, the Brain Tumor MRI dataset
from Kaggle, with 3,264 images from 233 patients,
is limited by its moderate size and single-source

origin, which raises concerns about distribution
shifts and bias. The IDRiD dataset, offering 516
retinal fundus images, is divided into a very small
split (approximately 80% for training and 20%
for testing), increasing the risk of overfitting and
limiting demographic diversity. Even the COVID-19
Radiography Database, despite its large volume,
faces class provenance bias due to images being
sourced from different institutions, requiring
rigorous validation to prevent overestimation of
performance.

Specialized datasets further illustrate these
challenges. Datasets for Retinopathy of Prematurity
(ROP), which may include around 6,000 retinal
images from 188 infants, often suffer from
limited access, small size, class imbalance, and
high variability-complicating quantum encoding.
Likewise, the RA Hand Thermogram dataset, which
contains 600 thermal images from only 100 subjects
(later augmented to 1,440 images), is prone to selec-
tion bias, limiting the generalizability of its findings.
Even large multi-center datasets like ADNI, despite
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Table 3. Classification based on dataset usage.

Dataset
Category

Disease Dataset Name Image Type Number of
Images

Data
availability

Link to available dataset Ref.

Neurological
Imaging

Alzheimer’s Alzheimer’s
Dataset

MRI 6400 PV Alzheimer’s Dataset (4 class of
Images) (kaggle.com)

[77]

Alzheimer’s ADNI MRI 787 PV ADNI | Alzheimer’s Disease
Neuroimaging Initiative
(usc.edu)

[79]

Parkinson’s PPMI MRI 621 PV Home | Parkinson’s Progression
Markers Initiative
(ppmi-info.org)

[79]

Ophthalmic
Imaging

Blindness Detection APTOS 2019
Blindness
Detection
Dataset

Fundus
photography

3,662 PV APTOS 2019 Blindness Detection |
Kaggle

[78]

Diabetic
retinopathy

Retina-MNIST Fundus Camera 1480 PV MedMNIST [58]

Retinopathy of
Prematurity

Fundus Camera 200 NPV _ [84]

Diabetic
Retinopathy

IDRID Fundus
Photography

516 PV Indian Diabetic Retinopathy Image
Dataset (IDRiD) | IEEE DataPort
(ieee-dataport.org)

[73]

Pneumological
Imaging

COVID-19 CT scans for
COVID-19

CT scans 10,000 PV GitHub - UCSD-AI4H/COVID-CT:
COVID-CT-Dataset: A CT Scan
Dataset about COVID-19

[61]

COVID-19 COVID-19
Radiography
Database

X-ray 5,445 PV COVID-19 Radiography Database
(kaggle.com)

[70]

Pneumonia-infected Pneumonia-
MNIST

X-Ray 5332 PV MedMNIST [58]

COVID-19 CC-19 CT scan 34,006 PV https://paperswithcode.com/
dataset/cc-19

[82]

ChestMNIST X-Ray 58,954 PV MedMNIST [82]
Pneumonia Pneumonia

X-Ray
Images

X-Ray 3267 PV Pneumonia X-Ray Images
(kaggle.com)

[53]

COVID-19 COVID-19
Radiography

X-Ray 15,153 PV GitHub - rgbnihal2/COVID-19-X-
ray-Dataset

[63, 81]

Musculoskeletal
Imaging

Rheumatoid
Arthritis

_ Hand Thermal
Images

240 NPV _ [54]

Osteoarthritis OAI X-ray 9,516 PV Knee Osteoarthritis Dataset with
KL Grading - 2018 (kaggle.com)

[6]

Dystrophinopathies _ MRI _ NPV _ [76]
Rheumatoid

Arthritis
_ Hand Thermal

Images
600 NPV _ [69]

Cancer cells
Imaging

Breast Cancer MIAS Mammography 322 PV https://www.kaggle.com/datasets/
kmader/mias-mammography

[80]

Breast Cancer DDSM Mammography 2750 PV http://www.eng.usf.edu/cvprg/
mammography/database.html

[80]

Brain Tumor Brain Tumor
MRI

MRI 7,023 PV Brain Tumor MRI Dataset
(kaggle.com)

[71, 72, 10]

Brain Tumor REMBRANDT MRI 110,020 PV The REMBRANDT study, a large
collection of genomic data from
brain cancer patients - PubMed
(nih.gov)

[10]

Cervical DTU/HERLEV Pap smear 2600 PV https://mde-lab.aegean.gr/index.
php/downloads/

[57]

Skin Damage Dermoscopic ISIC 2019 25,331 PV https://challenge.isic-archive.com/
landing/2019/

[85]

Miscellaneous Child Obesity _ Thermal
Images

150 NPV _ [75]

fluoroscopic
venogram

Taken from 10
patients.

X-ray 650 NPV _ [65]

Taken from 12
patients

Malaria RBC images Microscopic
RBC images

27,558 PV https://www.kaggle.com/
iarunava/cell

[62]

Various MedMNIST Various 120
samples
per
dataset

PV MedMNIST [83]

Various MedMNIST MRI 1200 PV MedMNIST [74]
Cardiac Pathologies ACDC 2017 MRI 15,153 PV https://www.creatis.insa-lyon.fr/

Challenge/acdc/databases.html
[64]

*PV: Publicly Available.

*NPV: Not Publicly Available.

https://paperswithcode.com/dataset/cc-19
https://paperswithcode.com/dataset/cc-19
https://www.kaggle.com/datasets/kmader/mias-mammography
https://www.kaggle.com/datasets/kmader/mias-mammography
http://www.eng.usf.edu/cvprg/mammography/database.html
http://www.eng.usf.edu/cvprg/mammography/database.html
https://mde-lab.aegean.gr/index.php/downloads/
https://mde-lab.aegean.gr/index.php/downloads/
https://challenge.isic-archive.com/landing/2019/
https://challenge.isic-archive.com/landing/2019/
https://www.kaggle.com/iarunava/cell
https://www.kaggle.com/iarunava/cell
https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
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offering thousands of brain scans for Alzheimer’s
Disease and related conditions, encounter issues with
subtle class differences, heterogeneous data from
multiple scanners, and persistent class imbalance-
especially with fewer advanced Alzheimer’s cases.

Overall, while classical deep learning thrives on
large, diverse datasets, current QML approaches
are often constrained to smaller or more structured
datasets due to hardware and encoding limitations.
The seemingly perfect performance observed on
small datasets like IDRiD may reflect overfitting
rather than true model advantage, whereas larger
datasets such as the COVID-19 chest X-ray collection
have enabled hybrid quantum-classical models to
achieve accuracies as high as 98.8%. Therefore,
meticulous data curation—through stratified
sampling, augmentation, and cross-site validation-is
essential to ensure balanced and normalized input
distributions before any claims of quantum advantage
in medical image classification can be substantiated.
The impact of dataset size and complexity
on model performance is further detailed in
Table 1.

6.4. Performance metrics and evaluation of quantum
learning models

Empirical results across the 28 studies show that
quantum-enhanced models can achieve competitive
accuracy to state-of-the-art classical models, but
improvements are often modest. For example, Dong
et al. report that a Quantum-to-Classical Transfer
Learning (QCTL) approach improved knee os-
teoarthritis X-ray classification accuracy to 98.36%,
about a 1.08% gain over a purely classical deep CNN
baseline [6]. Similarly, a hybrid quantum feature
extractor reached 98.8% accuracy in COVID-19 pneu-
monia detection, slightly outperforming conventional
CNNs on the same data [71]. These gains, while note-
worthy, are relatively small-highlighting that classi-
cal deep learning models remain very strong perform-
ers in vision tasks. In some cases, classical models still
outperform quantum ones: a quanvolutional network
for rheumatoid arthritis achieved 93.3% accuracy,
trailing a custom CNN (95%) and even a CNN+SVM
ensemble (97%) on the same thermal image test [76].
This underscores that current quantum models are
not yet universally superior; their success can be task-
dependent. That said, certain quantum approaches
have matched classical performance with far fewer
trainable parameters. A quantum SVM classifier
for pneumonia was “pretty competitive” with deep
learning and “makes fewer mistakes, and it takes less
time” in inference, hinting at potential efficiency
gains.

Classical deep learning enjoys mature frameworks
and hardware (GPUs/TPUs) that scale to millions
of parameters and large inputs (e.g., 224 × 224
or higher resolution images). In contrast, quantum
models are currently limited by qubit counts and cir-
cuit depth on quantum hardware. This means QML
experiments often use downscaled images or focus
on small regions of interest to fit data into a quan-
tum circuit. For instance, many QML studies encode
only a few dozen features or small image patches
as qubit states, whereas a CNN can ingest the full
image. Consequently, classical models can leverage
the full richness of high-resolution medical images,
while quantum models might miss some detail unless
hybrid techniques are applied. Moreover, training
a classical CNN on a large dataset can be time-
consuming but is straightforward, whereas training a
quantum model may involve significant overhead in
data encoding and is presently restricted to simulated
environments or very small quantum processors. As
hardware advances (more qubits, lower noise), the
scalability gap is expected to close, but for now clas-
sical DL has an edge in handling large-scale data.

When considering resources and speed, there are
trade-offs. Classical deep networks require substantial
memory and compute power; for example, a ResNet
or EfficientNet model demands GPUs and can take
hours to train on thousands of images. Some hybrid
quantum models have shown advantages in memory
efficiency – the HQF-CC model (quantum feature ex-
tractor + classical classifier) was reported as more
memory-efficient than a purely deep model for chest
X-ray classification. Quantum algorithms also hold
the promise of faster computation for certain oper-
ations (like kernel evaluations in SVM) once true
quantum hardware is used. In the pneumonia SVM
study, the quantum-inspired SVM ran faster in in-
ference than a deep learning approach. However,
currently most QML models are tested via quantum
simulators running on classical hardware, incurring
extra overhead. Thus, training times can actually be
longer for QML in practice today. In summary, classi-
cal DL is more mature and scalable for large datasets,
while quantum-enhanced models can be competitive
in accuracy and hint at efficiency gains in specific
scenarios. A balanced evaluation needs to consider
that pure performance metrics (accuracy, AUC, etc.)
are often comparable within a few percentage points,
so factors like model size, inference speed, and re-
source usage become distinguishing factors between
quantum and classical approaches.

Various performance metrics are employed to
evaluate QL solutions in medical image classification,
as accuracy alone may be misleading, especially with
unbalanced datasets where high accuracy might
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indicate that the model excels at classifying majority
classes but fails to detect rare positive cases. In
such contexts, metrics like precision and recall are
emphasized.

Precision is necessary to avoid false positives in
critical diagnoses like cancer and recall to avoid
missing real positives and thereby missing critical
disease diagnoses. F1 score provides a balanced score
between recall and precision, particularly with unbal-
anced data, and reflects how a model’s performance
varies in different scenarios. Other critical metrics
in measuring quantum models are sensitivity and
specificity, with high sensitivity to avoid missing
disease cases and high specificity to reduce false
positives and enhance diagnostic performance. Com-
parison in terms of performance can be made between
different QL models in terms of numbers of parame-
ters, circuit depths, and types of gates, as shown in
Table 1. High numbers of parameters in models refer
to complex systems with advanced architectures that
enhance the capacity of quantum circuits to extract
more detailed and accurate features. The model in
[88], with a parameter number of 1.4 million and a
circuit depth of 6 and with a combination of gates
like RY, RX, RZ, and CNOT, shows high complex-
ity in feature extraction and classification processes.
This multi-class classification model has better perfor-
mance in handling complex health-related data but
has limitations in terms of computational complexity
and added quantum noise that has to be tackled with
caution. Models with fewer parameters, such as that
in [87], with a parameter count of 2,070 and a depth
of 1, may be less effective in complex feature extrac-
tion but have a low computational complexity and
therefore less noise and thus can be operated faster
and more stably, particularly in binary classification.
Such models may be limited in handling very com-
plex or high-dimensional data and therefore can be
comparatively less effective in comparison to more
parameterized models. This difference in parameter
counts and circuit depth goes hand in hand with
performance metrics such as accuracy and F1 score
in Table 4. More complex models have better scores
in challenging tasks with high resource utilization
and error rates due to quantum circuit noise. The
challenge lies in balancing these metrics to achieve
effectiveness in quantum models in medical image
classification. Deep analysis using a combined set of
metrics is needed to assess stability and effectiveness
in quantum models.

6.5. Image preprocessing and encoding methods

Image preprocessing and encoding in QL’s domain
have a very significant role and a strong influence

on model performance. Success in achieving correct
results greatly depends on visual data preprocessing
to accommodate the limitations and computational
power of a quantum model. Advanced preprocess-
ing has to be carried out in complex data like
those in medical images in order to preserve de-
tails that may be very critical to model performance
and correctness. Out of standard image preprocessing
techniques, resizing has been extensively utilized to
reduce the size of images to be able to exist in a finite
number of qubits in a quantum system. This helps in
reducing computational complexity by reducing data
to a manageable, easier-to-process level, albeit with
a possibility of losing valuable details which may be
critical to ultimate model accuracy. Another standard
technique utilized is normalization, whereby pixel
intensities are normalized to a specific value range,
e.g., [0,1], to aid encoding in a quantum system. This
enhances processing time and eliminates distortions
during encoding.

Principal Component Analysis (PCA) is applied to
reduce high-resolution images like MRI scans to a
lower dimension to handle more complex scenarios.
It makes processing easier and reduces the use of
quantum resources at the risk of losing some crit-
ical details. At encoding level, Angle Encoding has
been predominantly used in most studies. It encodes
pixel values into angle in quantum space to facil-
itate effective processing. It has a disadvantage in
being vulnerable to quantum noise; interference with
a system can reduce result accuracy. Amplitude En-
coding is another encoding technique for complex
data whereby a single quantum state contains all
information, particularly for complex and high-level
data. It has a disadvantage in terms of high compu-
tational cost and challenges in minimizing noise and
maintaining accuracy.

Overall, a balance between preprocessing and
encoding has to be established to have good per-
formance with quantum models. Preprocessing sim-
plifies processing, and encoding must keep essential
details in images. While some advances have been
made in using quantum models in medical image pro-
cessing, the limitation in terms of accessible qubits,
depth in quantum circuitry, and challenges in manag-
ing quantum noise severely limit such models. These
encoding and preprocessing methods have been ex-
plained in Table 1.

6.6. Key challenges and hurdles in quantum
learning for medical image classification

The challenges facing quantum and hybrid models
in medical image classification stem from several key
areas, including technical constraints, computational
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Table 4. Performance metrics for quantum models.

Ref Model Training Acc Testing Acc Acc Precision Recall F1 Score Sensitivity Specificity
(%) (%) (%) (%) (%) (%) (%) (%)

[65] A-RBM-DWave - - 99.8 - - - - -
[62] VQC 99.12 98.93 99.06 99.08 99.05 - - 99.07
[61] QNN - - 96.92 97.11 97.8 - - -
[85] QIRV1-SVM - - 98.76 98.26 - - 98.4 99.81
[57] QGH-FCM - - - 98.8 94 95 - -
[77] QVC-ResNet34 99 93 97.2 90 88 87 - -
[78] QCTL-VQC - - 93-96 95.59 92.10 93.80 - 92.81
[70] HQ-CNN - 98.6 98.6 98.2 99 98.6 - 98.2
[58] QANN 93 85 - - - - - -

QONN 86 81 - - - - - -
[80] HQC-NN-TL - - 81 83 80 81 - 84
[71] HQC-CNN - - 97.85 98 98 98 - -
[84] QSVM - - 95.5 - - - 93 98
[54] QSVM - - 92.7 93 96 94 - -
[6] HQCNN-QTL - - 98.36 99.2 98.10 98.60 - -
[75] VQC-CNN - - 84.4 - - - - -
[82] FL-VQC-CNN - - 97 - - - - -
[79] AlexNet-QVC - 97 - 93 92 93 - -
[72] HQ-CNN - - - 97.74 97.33 97.53 - -
[76] MOQTSO-DL - - 96.45 88.18 - 92.99 98.46 95.83
[53] QSVM - - 92.5 97.6 92.7 95 - -
[73] QCNN - - 100 100 100 100 - 100
[69] QNN - 91.6 93.33 96 92 93 - -
[74] QCL-UP - - 89.7 - - - - -
[83] SCL-QVC - - 90 - - - - -
[10] QAML - - - 96.37 96.10 96.49 - -
[63] HQFE-CCM 97.2 98.8 87 91.4 N/R 90.1 88.7 97.8
[64] VQC-HEA - - - - - - - -
[81] HCC-QVCF 98.9 98.1 98.9 98.7 - 97.6 96.5 99.6

complexity, and effective model training manage-
ment. The most significant among these are instabil-
ity in quantum systems and the emergence of noise.
Quantum systems rely on sensitive properties such as
entanglement and superposition, making them highly
vulnerable to noise and external disturbances. Since
pure quantum models, such as variational quantum
circuits (VQC), depend entirely on quantum com-
puting for feature extraction and classification, noise
significantly contributes to accuracy variability. Sta-
bilization and noise reduction are two of the biggest
obstacles to more extensive application of quantum
models.

Another significant limitation is that only a limited
number of qubits are available. Most of the models
require many qubits in order to effectively process
large-scale multidimensional medical data. Even with
improved devices, current hardware constraints make
it unfeasible to process complex classification on
large-scale medical data. Depth in a quantum circuit
is a major problem as more operations are performed
in deeper circuits and more noise is introduced with
more error accumulation. Hybrid quantum-classical
approaches add an additional layer of complexity.

Optimal balance between classical and quantum com-
putation is critical due to medical data’s nature.
Careful balancing is required so that advantages of
quantum computation are not offset by additional
complexity.

Recent studies have attempted to address these
challenges by implementing error mitigation strate-
gies. For instance, study [66] shows that employing
shallow variational circuits combined with adaptive
optimization techniques can significantly reduce
error accumulation during training, leading to
improved convergence and stability. Similarly, study
[70] demonstrates that using noise-aware encoding
methods-particularly angle encoding-helps preserve
model accuracy despite hardware imperfections.
Moreover, study [81] provides precise quantitative
evidence of the impact of noise: when a universal
adversarial perturbation with a strength of 0.02
is applied, the classifier’s average accuracy drops
from 93.3% to 28.5% (with fidelity of 0.79); when
analyzed by task, the accuracy declines from 94.5%
to 24.5% (fidelity 0.84) for the previously trained
task and from 92.0% to 32.5% (fidelity 0.76) for
the later trained task. These results underscore the
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severe impact that noise has on quantum learning
(QL) models and provide a benchmark for assessing
the effectiveness of mitigation strategies.

While these error mitigations approaches-such as
shallow circuit design, adaptive optimization, and
noise-aware encoding-offer promising improvements,
they only partially counteract the detrimental effects
of quantum noise. This highlights the urgent need
for future research to integrate robust quantum error
correction (QEC) techniques with current error miti-
gation methods to fully realize the potential of QL in
practical medical image classification applications.

Although only a subset of the 28 reviewed studies
offer detailed quantitative evidence regarding noise
mitigation, these examples underscore the potential
of current strategies-such as shallow circuit design,
adaptive optimization, and noise-aware encoding-in
partially offsetting the detrimental effects of quan-
tum noise. Nevertheless, the persistent challenge of
noise and the limited scalability of current devices
emphasize the need for future research to integrate
full quantum error correction techniques with these
mitigation approaches. Such advancements will be es-
sential to fully realize the potential of QL in practical
medical image classification scenarios.

Another challenge that is confronted by quantum
models is that they are reliant on simulators. Since
most research is conducted on quantum computing
simulations and not on actual quantum devices, out-
comes might not be representative of challenges that
would be confronted by models when implemented
on true quantum systems. Creating a quantum circuit
is not easy and is a lot of design and development
effort. Any increase in the number of qubits or in
quantum layers increases model complexity and train
times and consumes a lot of computation resources.

In terms of medical data size, most medical im-
ages are large and complex and must be processed
with precision and a lot of computation. Data im-
balance also affects classification accuracy because
rare cases are likely to be misclassified when classes
are unbalanced. Other models, such as QCNN, re-
quire a large number of parameters in order to be
very accurate. With each increase in parameters, the
model is more complex and more difficult to train
because certain quantum systems may not be well-
suited to process structures with such a large amount
of information. These challenges are summarized in
Table 1. Currently, the major obstacles to large-scale
implementation of quantum models in medical image
classification are technical and practical. Novel ap-
proaches that can overcome these challenges remain
essential for effectively leveraging quantum comput-
ing in this field.

7. Feasibility and real-world data challenges
in quantum learning for medical imaging

Quantum learning (QL) has demonstrated promis-
ing potential in medical imaging, achieving compet-
itive accuracies in tasks such as brain tumor, retinal
disease, and COVID-19 classification. However, the
practical implementation of QL models is currently
hindered by both technical limitations and the nature
of the available datasets. Below, we present two key
dimensions of these challenges.

7.1. Key technical constraints

QL models offer theoretical speedups through
quantum parallelism, yet they are largely confined
to experimental settings due to several hardware
and algorithmic constraints. Preparing and encod-
ing high-dimensional medical images into quantum
states often incurs significant computational over-
head. The preprocessing and quantum-state encoding
steps are non-trivial and can be computationally
expensive, especially as the data size grows. For
instance, even with small images, converting them
to quantum format and managing quantum error-
correction protocols is challenging and costly in terms
of computation. This overhead can offset QL’s speed
advantages, making it difficult to scale up medical
image analyses. Current quantum hardware provides
only a limited number of qubits, severely restricting
the size of data and complexity of models that can be
run. This limited scalability of NISQ devices means
QL methods often must use drastically reduced input
sizes or hybrid approaches. In fact, basic encoding
schemes are directly capped by qubit availability, as
each pixel or feature may require a qubit; today’s
devices simply do not have enough qubits to encode
high-resolution images without downsampling. As a
result, most QL experiments in imaging are confined
to small-scale problems, since it remains difficult to
operate quantum computers with a sufficient qubit
count and low error rates for large datasets. Besides
qubit count, the depth of quantum circuits (number
of sequential gate operations) is sharply limited by
noise and decoherence in current hardware. As circuit
depth increases, computational complexity and error
rates escalate, undermining the reliability of the re-
sults. In practice, quantum neural networks must be
kept shallow; deeper circuits on NISQ machines accu-
mulate noise faster than error-correction can handle.
This constraint means QL models cannot yet match
the layer depth of classical deep networks, potentially
limiting the representational power unless combined
with classical layers (as done in hybrid models).
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In summary, while early studies underline the fea-
sibility and potential of QL in medical imaging-
even reporting high accuracy gains under certain
conditions these advantages come with significant
hardware and algorithmic limitations. Overcoming
the computational overhead of quantum data encod-
ing, the qubit scarcity, and the circuit depth (noise)
constraints is essential before QL can be widely inte-
grated into clinical image analysis workflows. Each
of these challenges is an active research area, and ad-
dressing them will be crucial to fully realize quantum
learning’s promise in healthcare imaging.

7.2. Bridging the gap between curated and
real-world data

While the publicly available datasets used in QL
research-such as MedMNIST, MNIST, and other cu-
rated medical image benchmarks-are indeed derived
from genuine clinical data, they are typically curated
and preprocessed to facilitate controlled experiments
and benchmarking. This means that although the
data are “real” in origin, they often do not capture
the full complexity, variability, and heterogeneity
inherent in raw clinical data. For example, these
datasets are usually standardized to a fixed resolu-
tion (e.g., 28 × 28 or 64 × 64 pixels) and may
have undergone noise reduction, cropping, and nor-
malization, which, while useful for research, may
oversimplify the challenges encountered in a hos-
pital setting. In contrast, real-world clinical data
collected from hospitals tend to be more diverse, with
variations stemming from different imaging devices,
patient demographics, and clinical protocols. These
factors introduce additional noise and complexity
that curated datasets may not reflect. Consequently,
while the available datasets are genuine, their con-
trolled nature may limit the external validity of QL
model evaluations. To bridge this gap, future research
should emphasize the following: Conduct extensive
model validation on heterogeneous datasets sourced
directly from clinical environments or through multi-
center collaborations, ensuring that QL models can
handle the variability encountered in practice. En-
gage in partnerships between institutions to gather
diverse, high-quality clinical data that better repre-
sent real-world scenarios, thus Assess clinician trust
and acceptance of quantum-assisted diagnostic tools
through both qualitative and quantitative studies,
which will be essential for the clinical adoption of
these models. These measures will help ensure that
QL models are not only technically advanced but
also clinically relevant and robust when deployed in
actual healthcare settings.

8. Challenges and future trends

Quantum learning (QL) has garnered significant
attention for its potential to revolutionize medical
image classification, leveraging quantum mechan-
ical principles to address limitations inherent in
classical approaches. However, while its theoretical
advantages are well-documented, the practical imple-
mentation of QL in healthcare remains fraught with
challenges. These challenges stem not only from the
nascent stage of quantum hardware but also from
technical, computational, and integration complexi-
ties. Addressing these obstacles is crucial to transi-
tioning QL from a research focus to a practical tool in
clinical settings. In parallel, advancements in method-
ologies and collaborative initiatives are paving the
way for overcoming these barriers. Below, we explore
the key challenges and identify future trends that can
shape the trajectory of QL in medical imaging.

8.1. Challenges

• At the core of QL’s challenges lies the limited
capability of current quantum hardware. Devices
are constrained by a small number of qubits,
which directly impacts the size and complexity
of problems they can handle. Furthermore, issues
such as noise, decoherence, and high error rates
compound these limitations, making it difficult to
execute robust quantum algorithms for medical
imaging tasks. These constraints hinder QL’s scal-
ability and its ability to process large and intricate
medical datasets effectively.

• Medical imaging datasets are inherently high-
dimensional and complex, posing a significant
challenge in their preparation for quantum pro-
cessing. Encoding these datasets into quantum-
compatible formats, such as amplitude or angle
encoding, requires significant computational re-
sources and precision. Current techniques, while
theoretically effective, often struggle with effi-
ciency and accuracy when applied to large-scale
datasets, making this a critical bottleneck in QL
applications.

• The adoption of QL in clinical settings depends
heavily on the interpretability of its models. While
QL models often demonstrate promising accuracy,
their “black-box” nature limits their transparency.
Clinicians need to understand the reasoning be-
hind model outputs to trust and effectively utilize
these tools in decision-making processes. This lack
of interpretability presents a significant hurdle to
the clinical adoption of QL-based systems.

• Hybrid quantum-classical systems represent a
practical approach to leveraging QL’s capabilities
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alongside classical computing’s strengths.
However, integrating these paradigms is not
without challenges. Effective task allocation
between quantum and classical components
requires careful optimization, algorithm design,
and resource management. The immature state of
quantum software ecosystems further complicates
this integration, creating a significant technical
challenge for researchers and developers.

8.2. Future trends

• To navigate the current limitations of quantum
hardware, hybrid quantum-classical models are
poised to play a central role in QL’s advancement.
These models strategically allocate tasks, using
quantum systems for computationally intensive
processes such as feature extraction or classifica-
tion, while relying on classical systems for data
preprocessing and augmentation. This approach
not only enhances the feasibility of QL but also
allows researchers to exploit the strengths of both
paradigms effectively.

• As encoding complexities remain a major
bottleneck, developing more efficient and
adaptive encoding schemes is critical. Research
efforts should prioritize lightweight techniques
that reduce computational demands without
compromising the fidelity of encoded data.
Simplified and scalable encoding methods tailored
to the unique requirements of medical imaging
will significantly expand the practical applications
of QL.

• The absence of standardized benchmarks for
evaluating QL models in medical imaging has
hindered consistent comparisons and slowed
progress. Establishing benchmark datasets and
protocols specific to quantum applications will
provide a unified framework for assessing model
performance, enabling researchers to validate
and refine their approaches more effectively.

• The integration of explainable AI (XAI) techniques
into QL frameworks is essential for bridging the
gap between advanced quantum computations
and clinical usability. Transparent models with
built-in interpretability tools can help clinicians
trust and adopt QL systems, ensuring their
outputs are actionable and aligned with clinical
requirements.

• Collaboration between academia and industry is
crucial for accelerating the practical implemen-
tation of QL. Joint efforts can lead to the devel-
opment of application-specific quantum devices
optimized for tasks such as tumor classification
or anomaly detection, fostering a more targeted

and impactful approach to medical imaging
applications.

By addressing these challenges and focusing on
these future trends, QL can evolve into a transfor-
mative tool in medical image classification, bridging
the gap between theoretical innovation and practical
application in healthcare.

9. Conclusion and recommendations

Quantum computing shows significant potential in
enhancing medical image classification, especially
in hybrid models where quantum elements are
used to enhance classical processing. However, the
field remains in its early stages, with many of the
theoretical advantages of quantum computing yet to
be fully realized due to current hardware limitations.
At present, classical models continue to dominate
the field, with quantum models serving primarily
as enhancements rather than full replacements.
The ongoing reliance on classical preprocessing
and feature extraction underscores the importance
of hybrid approaches in the current landscape. To
fully harness the potential of quantum computing,
continued investment in quantum hardware develop-
ment is crucial. This includes increasing the number
of qubits, reducing noise, and improving error
correction techniques. Furthermore, advancements
in quantum circuit optimization are necessary to
develop more efficient architectures tailored for
medical image processing. Reducing quantum circuit
depth and exploring novel error mitigation strategies
will be essential for improving quantum model
stability and scalability. Given the current state of
quantum computing, hybrid models offer the most
effective way forward, allowing quantum computing
to leverage its strengths while compensating for
its weaknesses through classical preprocessing.
Additionally, larger and more diverse datasets should
be used to test quantum models to ensure their ability
to generalize across different types of medical images
and conditions, which is vital in proving the
effectiveness of quantum models in real-world
applications. Integrating quantum learning with
federated learning frameworks could provide a
path toward more scalable and privacy-preserving
applications, enabling decentralized training on
multi-institutional medical datasets. Establishing
standardized metrics for evaluating quantum models
is essential to ensure consistent and fair comparisons
across studies. These metrics should include, besides
accuracy, other measures such as precision, recall,
F1-score, and computational efficiency. Furthermore,
developing advanced preprocessing techniques
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tailored for quantum computing can help maximize
the effectiveness of quantum models, including
advanced dimensionality reduction methods and
optimized data encoding techniques. Research
should focus on refining encoding schemes,
such as adaptive quantum embeddings, to better
align with medical imaging features and reduce
information loss during quantum state preparation.
Multidisciplinary collaboration between quantum
computing experts, medical imaging specialists, data
scientists, physicists, and healthcare professionals are
critical for advancing the field. Such collaboration
will ensure that quantum models are not only
technically advanced but also clinically relevant
and applicable in healthcare settings. Expanding
interdisciplinary research initiatives and establishing
dedicated research consortia could accelerate the
translation of quantum medical imaging from
experimental models to real-world applications.
There is a need to explore and develop new quantum
algorithms capable of efficiently handling large
datasets and complex image features, potentially
leading to more significant quantum advantages
in the future. Beyond classification tasks, the
exploration of quantum models for segmentation,
anomaly detection, and multi-modal imaging analysis
represents a promising research direction.

While this review primarily focuses on the techno-
logical feasibility of QL models in medical imaging, it
is important to acknowledge that their clinical adop-
tion will require careful consideration of regulatory
and ethical challenges. Ensuring compliance with
healthcare privacy standards (e.g., HIPAA, GDPR)
and developing interpretable quantum AI models will
be essential for responsible deployment in real-world
healthcare settings. Future research should explore
secure quantum computing frameworks and fairness-
aware quantum algorithms to address these concerns.

Adopting these recommendations will contribute to
the evolution of the quantum medical imaging field,
offering improved diagnostic tools and advancing the
capabilities of medical technology.
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