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ABSTRACT

In this paper, a new lightweight U-Net deep learning-based neural network designed for the segmentation of skin
lesions is proposed. Segmentation of skin lesions is the most critical step in computer-aided dermatology diagnosis for
the early detection of melanoma and other diseases. However, we address the difficulty related to the precise definition
of the lesion margins with an eye on the computation cost. We have demonstrated the state-of-the-art performance of
DeepSkinSeg in most metrics on dermoscopic images using the PH2 and Human Against Machine (HAM10000) datasets.
The metrics of the DeepSkinSeg model were robustness measured as the Intersection over Union (IoU) at 91.49, Dice
coefficient at 95.56, precision at 97.97, sensitivity at 96.84, and accuracy at 96.71 for the PH2 dataset. Other standard
generalization capabilities for the HAM10000 dataset could be an IoU of 92.97, a Dice coefficient of 96.36, precision
at 97.64, sensitivity at 95.10, and an accuracy of 94.59. DeepSkinSeg has a very efficient inference because the model
itself is lightweight, proving to be very helpful for real-time dermatological analysis. This work further advanced the
computer-aided diagnosis in the task of skin lesion classification, guaranteeing even more promising clinical applications.

Keywords: Skin cancer, Skin lesion segmentation, DeepSkinSeg, PH2, HAM10000

1. Introduction

Most of the diseases affect people of all age groups,
including infectious and non-infectious, chronic, or
acute diseases [1]. Cancers belong to non-infectious
conditions that prevail in human bodies because of
uncontrolled cell division [2]. Cancer can occur in
any organ of the body or at any stage of life, and in
general, it takes the name of the organ or part from
which it emanates. Of course, the most common types
are breast, lung, prostate, skin, and intestine cancer.
These factors include genetics, environmental expo-
sures, and unhealthy practices such as smoking and
making poor dietary choices. Lifestyle changes in-
clude quitting smoking, adopting a healthy diet, and

limiting exposure to the sun, all ways through which
an individual might reduce his chance of getting some
types of cancer [3]. Treatment modalities often used
for cancer may include surgery, chemotherapy, ra-
diation therapy, or a combination of several of the
approaches described, all tailored to the cancer type
and its stage, as well as general health [4, 5]. Skin
cancer is one of the most common human malig-
nancies, usually diagnosed by physical examination
[6]. Skin diagnostic imaging techniques include ultra-
sonography, dermatoscopy, and reflectance confocal
microscopy. Though these modalities have recently
undergone improved changes and development [7],
Skin cancer basically includes three main types:
melanoma, squamous cell cancer, and basal cell
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cancer. The primary differentiation of the non-benign
from the benign category is made through the tex-
ture and color of lesions combined with the cellular
features [8]. Thus, the use of only visual imaging of
skin cancer to identify it could be tricky with the
type of variation that exists with the various types of
skin cancer tumors [9]. In addition to its diagnostic
complexity, different kinds of cues, such as patient
information or whole imaging results, are necessary
for reaching a proper diagnosis. Besides, medical im-
ages have had a much-welcoming influence in the
field of medicine regarding diagnosis and planning
treatment. The crux of medical images lies in the
analysis to meet specified objectives. For example,
the processing of skin cancer images has been found
to be instrumental in regard to the process of image
segmentation and has direct effects on the results of
fusion [10]. In the context of planning treatment for
skin cancer, accurate segmentation in medical im-
ages plays a pivotal role in the contouring process
[2]. Automated image segmentation automatically
facilitates the process of extracting object boundary
features in an image [11]. Therefore, there is a need
to be aware of image content for the very purpose of
searching medical images. Therefore, medical image
segmentation poses a complex and challenging prob-
lem marked by boundary deficiencies and a lack of
texture contrast between regions of interest and the
background [1, 3, 12]. However, its significant contri-
butions can be listed as follows: i. to designing a new
lightweight UNet model, DeepSkinSeg, for skin lesion
segmentation. It simplifies the original UNet archi-
tecture while maintaining the strength of efficiency
by reducing the number of layers without affecting
the accuracy of skin lesion segmentation. ii. The per-
formance of DeepSkinSeg shall be evaluated with a
wide range of experiments conducted over popular
databases like PH2 and HAM10000. iii. Numerical
results on the PH2 and HAM10000 datasets show
that the DeepSkinSeg gives a notable improvement
over existing state-of-the-art methods in terms of the
IoU, Dice coefficient, precision, recall, and accuracy
metrics.

2. Related works

This section describes the theory needed to under-
stand recent work on skin cancer segmentation in
the literature. Tang et al. [13] used a separable-Unet
model with the addition of stochastic weight averag-
ing and proposed a model to segment skin lesions.
Herein, we exploit the U-Net structure and point-
wise separable convolution to effectively capture the
context features’ correlations and high-level seman-
tic information with discriminative power advanced

from pixel to pixel for fully convolutional networks
(FCNs), which helps in a great way to alleviate
the problem of overfitting in essence, being trapped
within local or suboptimal solutions via stochastic
weight averaging. This technique helps gain a more
enlarged optimum, which further aids in better model
generalization. Nevertheless, the approach of the au-
thors is local, and the only limitation is related to
the operation of filling binary holes to enhance the
segmentation results.

Qiu et al. [14] introduced a skin lesion segmen-
tation technique using an ensemble of deep models:
the convolutional neural network (DCNN) with fully
connected conditional random fields (CRFs). Ensem-
ble learning, on the other hand, with more than one
DCNN model ensemble in combination with the CRF
inference, handles the probabilistic inferences using
random fields across dermoscopy images. The main
disadvantage of their approach is that it is condi-
tioned by the quality of the lesion segmentation given
by the DCNN models. If the initial segmentations
given by the DCNN models are of a low-quality pro-
file, the general performance of this method may be
degraded.

Tang et al. [15] proposed a Multi-Scale Context-
Guided Network (MSCGnet) for accurate skin lesion
segmentation, which aggregates multi-scale context
information to improve feature encoding. Thus, with
the information lost by spatial downsampling, we
propose a context-aware attention structure (CAs) to
rediscover and employ the important context features
at the decoding end. Thus, they build an iterative
version, iMSCGnet, by going through many iterations
in order to make this version refine its accuracy. The
authors trained iMSCGnet using a new deep supervi-
sion objective function, which encourages end-to-end
training and integrates contributions from encoding
layers and outputs of each iteration of iMSCGnet.
However, iMSCGnet can only evaluate the process-
ing of the low-level context information, hence its
drawback. The other challenge in this regard is that
ambiguous lesions are sometimes tricky to localize
accurately within the area.

Dayananda et al. [16] also introduced an encoder-
decoder structured lesion segmentation strategy in
the skin. They build their method using Spatial Group
Convolutions (SGC) for the first time in an encoder-
decoder structure. They used 1 × 1, 3 × 3, 5 × 5, and
7× 7. A series of k× 1, 1× k convolutions go through
each k × k kernel operation. This use of large kernels
through two 1-D convolutions builds up the receptive
field of the model so that it is able to increase the po-
tential to pull features, yet at the same time, does not
have an over-increase in the number of parameters
it has to learn. The use of several kernel sizes helps
capture all the discriminative features used. However,
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their performance outcomes in terms of segmentation
accuracy were actually not high.

Hu et al. [17] proposed a novel and robust At-
tention Synergy Network (AS-Net) for enhanced
discrimination ability for skin lesion segmentation
by the combination of spatial and channel attention
mechanisms. It will identify lesion-specific features
by tapping the abilities of the channel attention mech-
anism to focus attention on that specific dimension
and, at the same time, exploit the synergy of these
spatial and channel insights. They also introduced an
enhanced weighted binary cross-entropy loss function
to enhance the foreground lesion attention. The in-
clusion of the pre-trained VGG model does help in
performing better for the given task but adds up the
computation and time required to train the model.

Deepa and Madhavan [18] presented an advanced
deep-learning model to enhance the process of seg-
menting skin lesions in medical images. The method-
ology involves two main phases: pre-processing
images and applying the Adaptive Boundary-aware
Transformer with a Gated Attention Mechanism
(ABT-GAMNet). However, one limitation is the chal-
lenging nature of lesion image segmentation due to
significant similarities in lesion morphology, such as
occluding hair, structure size, shape, and intrinsic
image attributes like contrast and skin pigmentation.

A transformer-based, multi-attention hybrid net-
work called TMAHU-Net is presented by Dong et al.
[19] and designed for learning the delicate and intri-
cate patterns within skin lesion areas. It features an
innovative hybrid module that perfectly combines the
advantages of CNN (Convolutional Neural Networks)
and transformer technology, making it possible to
bring both wide-ranging global detail and localized
feature information. The network is comprised of
deep separable convolutional attention mechanisms
that adaptively set the attention weight smartly and
greatly enhance the quality of the learned representa-
tion of features in both channel and space dimensions.
On the other hand, TMAHU-Net is designed to cater to
skin lesion segmentation, yet it suffers from localiza-
tion difficulty for exact detection in positive instances
within some selected datasets.

Li et al. [20] put forward a new approach, the Un-
certainty Self-Learning Network (USL-Net), to delve
into the existing gap in handling segmentation tasks
without reliance on the ground truth of labels. It
first applies contrastive learning in feature extraction,
which helps guide the creation of Class Activation
Maps (CAMs) to serve as saliency maps. Regions of
high saliency within these maps are picked and used
as pseudo-labels of the regions matching the lesion,
while areas of low saliency are considered to belong
to the background. In this example, intermediate re-

gions would be those that are hard to classify, usually
located on the border of lesions, or have artifacts such
as hair or blisters. These are excluded from pseudo-
labeling so that they are not confused by mistakes
and confusion from learning about the network itself.
The authors also proposed connectivity and centrality
detection techniques to ensure the truthfulness of the
foreground pseudo-labels further and, hence, reduce
errors due to noise. While these advances have gone
a long way toward improving the performance of
unsupervised segmentation, USL-Net fails to reach
the performance level that many of the supervised
methods achieve. These challenges and limitations
are further evidently present in regions with purple
iodophor or hair artifacts, and it is hard for USL-Net
to capture these features for pseudo-labeling.

Srikanteswara and Ramachandra [21] proposed an
approach to the early detection of skin melanoma
using the Adaptive Contour Model (ACM), in which
they took into consideration noise in an image, ob-
taining quality segmentation and considering most of
the contour features. However, the method also has a
scope in the results within which it is circumscribed.

3. Methodology

The methodology for our proposed DeepSkinSeg
network follows a structured approach to skin lesion
segmentation, employing an encoder-decoder archi-
tecture widely recognized for its efficacy in medical
image processing. The detailed methodology is as fol-
lows: The encoder section of DeepSkinSeg is designed
to progressively condense the spatial dimensions
while enhancing the depth of the input image fea-
tures. It includes a collection of convolutional layers
with batch normalization and ReLU functions in each
of its blocks. In order to capture the different types
of intricate spatial features within the image, the
convolutional layers are applied with different filters.
Subsequent batch normalization ensures the output
normalizes, thereby mitigating the internal covariate
shifts and, therefore, stabilizing the learning progress.
ReLU activation functions ensure that non-linearity
is introduced into the model so that the network can
capture even more complex data relationships.

Max-pooling operations are utilized to achieve
downscaling within the encoder. This process effec-
tively reduces the spatial resolution of the feature
maps, simultaneously enhancing the network’s ro-
bustness against minor translational variations in the
input. Such downscaling also enlarges the recep-
tive field for the subsequent layers, permitting the
network to encapsulate more global and relevant
features for segmentation tasks. At the core of the
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Fig. 1. A single block of DeepSkinSeg encoder.

network resides the bottleneck layer, which occupies
a strategic position between the encoder and decoder
modules.

Fig. 2. DeepSkinSeg Bottleneck block.

This layer is characterized by the lowest spatial res-
olution within the network architecture, compelling
the compression of essential information into a highly
abstract form. It is in this region that the network
distills the most pivotal features needed for accurate
segmentation map reconstruction.

Fig. 3. A single block of DeepSkinSeg decoder.

The decoder, on the other hand, serves as a re-
flective counterpart to the encoder. The decoder
progressively reinstates the feature maps to their
original spatial dimensions. It employs up-sampling

layers to escalate the feature map resolution and con-
catenation operations that synergize these up-scaled
features with the corresponding feature maps from
the encoder. This integration is facilitated through the
application of skip connections, ensuring that both
high-level and low-level feature details are harmo-
niously fused to refine the segmentation outcome.

The method is based on encoding and decoding in
the input image, which results in an accurate map of
segmentation. With very high accuracy, it segments
and gives an output where all the pixels are delim-
ited, making clear the lesion from the surrounding
skin tissue. Care is taken for the structure of each
block inside the encoder and decoder, performing
either feature abstraction or spatial reconstruction so
that the network learns and interprets complex pat-
terns required for effective skin lesion segmentation
throughout the network. This design methodology
focuses on the architecture for DeepSkinSeg and, in
a way, its application in medical images, which has
great potential and high significance in enhancing
segmentation accuracy compared to existing meth-
ods. These skip connections are essential in that they
allow the recovery of spatial information lost during
downscaling so that fine detail for the segmentation
of the image is produced in the decoder.

On top of that, DeepSkinSeg adds one more layer: a
1 × 1 convolutional layer with the objective of map-
ping the high-dimensional feature maps to the output
channels, which have one channel per each class of
the segmentation task. A sigmoid activation function
is applied to obtain a probability map for the lesion
appearance at that pixel. Training of DeepSkinSeg
was end-to-end, training and validating with respect
to the PH2 dataset and the pairs of images and their
corresponding ground truth masks pertaining to the
HAM10000 dataset. For the training of DeepSkinSeg,
we meticulously chose a set of hyperparameters to
optimize the model’s performance for skin lesion seg-
mentation tasks. The hyperparameters were selected
based on preliminary experiments and literature on
best practices for training deep convolutional net-
works for medical image analysis.

4. Experimental results

We have used the dataset for both training and val-
idation provided in PH2 and HAM10000, as both are
considered benchmark databases that contain very
high-quality images of dermoscopic lesions in the
skin. It provides diversity in the type of skin lesions
for the generalization of the model. Moreover, the
two datasets were split into training, validation, and
testing in order to make a robust model evaluation.
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Fig. 4. DeepSkinSeg architecture.

We used an 80-10-10 split ratio, which led to 80% for
training data, 10% for validation data, and the same
for testing.

4.1. Data pre-processing

We apply different pre-processing techniques to
data that can help improve the performance and
robustness of the model. First, all the images were
resized in such a way that they had a uniform reso-
lution of 256 × 256 pixels. Then, the pixel values of
the images and masks were normalized to the [0, 1]
range for stability during training.

4.2. Loss function, optimizer, and evaluation
metrics

For segmentation as a binary task, the network was
trained with binary cross-entropy as a loss function
and Adam as an optimizer with a learning rate of 1e-
5. During the training and evaluation, the following
focus was given over the key metrics that would be
used in order to present the work performance of
DeepSkinSeg.

IoU =
2 × TP

2 × TP+ FP+ FN
(1)
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Dice =
TP

TP+ FP+ FN
(2)

Precision =
TP

TP+ FP
(3)

Sensit ivity = Recall =
TP

TP+ FN
(4)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(5)

Speci f icity =
TN

TN + FP
(6)

F1 Score = 2 ×
Precision× Sensit ivity
Precision+ Sensit ivity

(7)

With these metrics, we aimed to comprehensively
evaluate DeepSkinSeg’s performance in capturing
lesion boundaries and accurately segmenting skin
lesions.

5. Hyperparameters and results

Table 1 provides an overview of the hyperparam-
eters used in DeepSkinSeg. However, following 50
training epochs, the DeepSkinSeg model gave a mean
loss of 0.2496. Remarkably, the IoU score amounted
to 0.9170, which revealed a high overlap between
the predicted and ground truth lesion masks. A dice
coefficient of 0.9564 further shows the ability of the
model to conduct accurate skin lesion segmentation.
The values of these two parameters are in the range
of 0.9789 for specificity and 0.9792 for sensitivity,
which shows their ability to identify skin lesion re-
gions precisely. Additionally, the model exhibited an
outstanding accuracy of 0.9857 during the training
phase.

Table 1. Summarizing the hyperparam-
eters of DeepSkinSeg.

Hyperparameter Value

Batch Size 10
Number of Epochs 50
Learning Rate 0.00001
Optimizer Adam
Loss function Cross-Entropy
Total params 4,842,497
Trainable params 4,837,889
Non-trainable params 4,608

On the other hand, validation performance was
thoroughly tested, and all those images were never
seen during training. In this part, the DeepSkinSeg
architecture achieved a mean loss of 0.3596 and,
therefore, had good generalization power. More im-
portantly, the model was able to secure an IoU score
of 0.7672, signifying that there is quite an overlap
between the predicted masks and the ground truth.
The high value of the Dice coefficient, estimated
at 0.8682, ascertains that the model is accurate in
the delineation of skin lesions. Besides, the model
upheld a recall value of 0.9312, which is accept-
able, thus showing that the identified skin lesion
regions are reliable. However, the value of the recall
for this phase was observed at 0.8548, an indica-
tion of reduced sensitivity from the training phase.
The model, however, showed excellent accuracy at
0.9481, meaning it can classify pixels well in skin
lesion segmentation. These results point out the ef-
ficacy of DeepSkinSeg architecture in the precise
segmentation of skin lesions, which is significant
for medical diagnosis and treatment planning. It
performs with a competitive spirit, i.e., for train-
ing and generalization, and highly recommends its
candidacy as a resourceful utility in dermatological
applications.

The model’s high IoU and Dice Coefficient values
during both training and validation times have solidi-
fied consistent and accurate skin lesion segmentation.
Very high values for precision and recall illustrate the
remarkable ability of the model to identify bound-
aries and regions of the skin lesion faithfully. The very
high accuracy scores show the effectiveness of the
model in classifying skin lesion pixels. These findings
certify the adequacy of the proposed DeepSkinSeg
architecture in providing a light but powerful solution
for the accomplishment of skin lesion segmentation
tasks. These findings place DeepSkinSeg as an up-and-
coming field within the world of dermatology, which
could optimize the process of skin lesion analysis and
be useful for healthcare personnel to make clinical
decisions accurately and promptly. We present the
performance evaluation of DeepSkinSeg on the PH2
dataset in Table 1. In addition, Figs. 1 to 3 illustrate
insights into the performance of the network based
on loss with accuracy, recall with precision, and IoU
with Dice Coefficient metrics.

Fig. 5 illustrates the loss curves and accuracy for
training and validation over 50 epochs for both PH2
and HAM10000 datasets, respectively. The training
loss is monotonically decreased, which means that
the network learns to minimize segmentation errors.
Also, from the validation loss curve, one can see that
it is decreasing, which means that DeepSkinSeg gen-
eralizes well with unseen data. Similarly, from the
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Fig. 5. Training and validation loss and accuracy for PH2 (left) and HAM10000 (right) datasets.

Fig. 6. Training and validation recall and precision for PH2 (left) and HAM10000 (right) datasets.

training and validation accuracy curves, the network
can give an accurate prediction of the boundary of
the lesion.

Fig. 6 depicts the trend of the network’s perfor-
mance in terms of recall and precision for both PH2
and HAM10000 datasets, respectively. High recall
indicates the capture of a more significant number
of true-positive cases by DeepSkinSeg, whereas pre-
cision indicates the network’s ability to keep the
number of false positives low. The ideal trade-off
between recall and precision is needed to get perfect
skin lesion area segmentation.

Fig. 7 presents the IoU and Dice Coefficient metrics
for both PH2 and HAM10000 datasets, respectively,
which define the most common metrics of the seg-
mentation accuracy of the models. IoU and Dice’s
coefficients are statistical techniques employed to

measure the level of similarity between the predicted
image masks and the ground truth image masks. Both
large IoU and large Dice values imply high agree-
ments between the predicted masks and actual masks,
showing that the network outlines the skin lesions
well.

Fig. 8 presents the performance evaluation of
our DeepSkinSeg model regarding the PH2 and
HAM10000 datasets, respectively. Furthermore,
Table 2 illustrates the rapid progression and en-
hancement in the domain of skin lesion segmentation
models. Among the key takeaways is the consistent
improvement across various metrics such as accuracy,
sensitivity, and the Dice coefficient, showcasing the
advancements in computational methods and the
increasing sophistication of deep learning algorithms
applied in dermatological research.

Fig. 7. Training and validation recall and precision for PH2 (left) and HAM10000 (right) datasets.
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Fig. 8. Confusion matrix for the testing set regarding the PH2 (left) and HAM10000 (right) datasets.

Table 2. Different methods performance regarding the Ph2 dataset.

Authors Year Accuracy Sensitivity Precision Dice IoU Specificity F1-Score

Tang et al. [13] 2019 96.69 96.51 N/A 94.13 89.40 95.26 N/A
Qiu et al. [14] 2020 95.58 N/A N/A 93.48 88.50 N/A N/A
Tang et al. [15] 2020 95.71 N/A N/A 93.36 88.21 N/A N/A
Dayananda et al. [16] 2021 97.00 N/A N/A 94.00 89.00 N/A N/A
Hu et al. [17] 2022 95.20 96.24 N/A 93.05 87.60 94.31 N/A
Deepa and Madhavan [18] 2023 96.29 96.27 96.30 94.53 89.63 N/A N/A
Dong et al. [19] 2024 N/A 94.11 95.97 N/A 90.53 N/A 95.03
Li et al. [20] 2024 92.40 93.60 N/A 88.90 80.10 93.10 N/A
Srikanteswara and Ramachandra [21] 2024 96.95 N/A N/A 93.98 89.14 N/A N/A
DeepSkinSeg 2024 96.72 96.84 97.97 95.56 91.49 96.51 97.40

DeepSkinSeg marks a pinnacle in this evolving
landscape, demonstrating exceptional performance
across nearly all evaluated metrics. The notable
achievements in precision (97.97%), Dice coefficient
(95.56%), and IoU (91.49%) underscore DeepSkin-
Seg’s ability to precisely delineate lesion boundaries,
which is critical for accurate diagnosis and treatment
planning.

Table 2 also highlights the varied focus and re-
porting standards among different studies, with some
prioritizing metrics like specificity and others em-
phasizing the balance between recall and precision,
as evidenced by F1 scores. The presence of Not
Available “N/A” entries suggests a selective emphasis
or possible challenges in measuring specific met-
rics, indicating an area for future standardization
in reporting. Moreover, DeepSkinSeg’s superiority in
balancing sensitivity and precision, along with its
high F1 score, points to its robustness and reliability,
making it a potentially invaluable tool for clinicians.

Table 3 displays the performance of the differ-
ent segmentation methods applied to the HAM10000
benchmark dataset in dermatology for skin lesion
analysis. DeepSkinSeg model presents several advan-
tages in skin lesion segmentation. First, it prudently
discards the number of layers to ensure that the
segmentation is powerful and keeps the model rel-

atively light in computation. While, more often,
such characteristics are missed by more complex
and up-to-date architectures, this allows for cater-
ing to the ever-increasing demand for real-time and
resource-conscious applications in the field of medi-
cal imaging.

DeepSkinSeg is oriented to the fine details in the
lesion. It allows for a better diagnosis and medi-
cal planning. We fully validate DeepSkinSeg in the
datasets PH2 and HAM10000 to guarantee consis-
tency with the benchmark of skin lesion analysis.
Again, this result was consistent with high IoU, Dice
Coeff., and accuracy, confirming the superiority and
efficacy of the DeepSkinSeg model for accurate lesion
contouring.

Our DeepSkinSeg scores entirely high in metrics,
with accuracy at 94.60%, precision at 97.65%, sen-
sitivity at 95.11%, F1 at 96.36, highest Dice at
96.36, Jaccard at 92.98% coefficients, and speci-
ficity at 93.04%. Our proposed DeepSkinSeg model
demonstrates balanced and superior performance in
identifying both the lesion and non-lesion area rightly
with high precision and efficiency. The boundaries by
DeepSkinSeg are more aligned with the ground truth,
both in terms of smoothness and accuracy. Especially
for more complex and irregular lesions, DeepSkinSeg
outperforms UNet.
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Fig. 9. Segmentation comparison for the PH2 test set: (a) Original image, (b) Ground truth, (c) UNet, (d) DeepSkinSeg, and (e) Boundary.

Table 3. Different methods performance regarding the Ham10000 dataset.

Authors Year Accuracy Sensitivity Precision Dice IoU Specificity F1-Score

Basak et al. [22] 2022 N/A 99.99 N/A 90.60 90.20 99.99 90.30
Tomar et al. [23] 2022 92.35 86.50 96.11 N/A 80.23 N/A 87.31
Namburu et al. [24] 2023 90.50 95.20 N/A 83.00 85.60 86.20 N/A
Yang et al. [25] 2023 96.46 N/A N/A 93.59 88.81 N/A N/A
Zhang et al. [26] 2024 N/A N/A N/A 83.10 74.33 N/A N/A
DeepSkinSeg 2024 94.60 95.11 97.65 96.36 92.98 93.04 96.36

It is clear from Fig. 11 that both models demon-
strate reasonable segmentation performance, but
DeepSkinSeg frequently delivers results that more
closely align with the ground truth. Additionally,
DeepSkinSeg tends to produce smoother and more
accurate boundaries compared to UNet, especially
for more oversized and irregular lesions. In con-
trast, UNet’s boundaries occasionally over-segment or
under-segment the lesion, resulting in discrepancies.

6. Conclusions

In this paper, we propose a new architecture based
on UNet to solve the task of skin lesion segmentation.
The main contribution of this work is the develop-

ment of a lightweight network that can still retain
the efficacy of UNet but with a fewer number of
layers, making the model computationally more ef-
ficient and not adversely affecting the segmentation
accuracy. DeepSkinSeg provides a dedicated solution
to the problem of skin lesion segmentation. We have
adopted a model that focuses attention on acquiring
fine details of the lesion and delineates the boundary
of the lesion very accurately by optimizing the archi-
tecture of UNet. This network reconciles the accuracy
of computation and segmentation, and therefore, it
becomes a good tool for dermatological analysis. We
evaluate the efficiency of DeepSkinSeg, using the
widely known PH2 dataset as benchmark data in
skin lesion studies. The results were quite effective
in showing that our network was able to produce
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Fig. 10. Segmentation comparison for the HAM10000 test set: (a) Original image, (b) Ground truth, (c) UNet, (d) DeepSkinSeg, and (e)
Boundary.

high IoU, good Dice coefficient, and high accuracy,
which brings out the capability of our network in
segmenting skin lesions accurately. This is clinically
of immense value for the early diagnosis of the disease
entity and the planning of treatment, as many require
intricate details and some superficially subtle. During
our evaluation, we report the visual segmentation
results of 20 test images drawn from the PH2 dataset
and 1001 test images from the HAM10000 dataset,
along with the performance metrics on a large scale.
In the overall analysis, DeepSkinSeg exhibited the
utmost precision and reliability in skin lesion segmen-
tation, which further puts an emphasis on its potential
to be put into clinical use.
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