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ARTICLE

On Kolmogorove Space by Using Semi Feebly Open
Set and its Closure and Boundary

Ameer A.A. Al-fatlaw*, Raad A.H. Al-Abdull

University of Al-Qadisiyah, College of Science, Department of Mathematics, Iraq

Abstract

In this paper, we introduce some new types of separation axioms called sf -T0-space and sf -T0
0-space and sf -T0

00
-space,

which have been studied and some of their properties and relationships with each other and T0-space which identified
and we find some results that will be useful by using the set of type (sf-open).

Keywords: sf-T0-space, sf-T0
0
-space, T0-space, sf-open, sf-closed

1. Introduction

W e have studied in this work some new types
in topological spaces namely sf -T0- space

and sf -T0
0- space and sf -T0

00
- space and T0- space

and their relation with each other. In 1963 N. Levine
[4] and Cameron [2] introduced the idea of a semi-
open set. In Ref. [3] Crossly, S. G. and S. K. Hilde-
brand (1971) defined the meaning of semi closure.
For this path S.N. Maheshwari and Tapi (1978) [6]
introduced the conception of feebly open sets in
Topological space which are closely related to semi-
open sets in topological spaces in general. The
complement of feebly open set is feebly closed set.
We considered semi-feebly open sets with separa-
tion axioms in topological spaces [5]. Othman. R in
(2020) the semi feebly simplification is given a semi
feebly open set (sf-open set), semi feebly closed set
(sf-closed set.), and we have to teach about their
topological features. We will use U

�sf , U
sf
, bsf ðAÞ to

the sf -interior of U and sf -closure of U and
sf -boundary of A, respectively.

2. Basics concepts

Definition (2.1). [4] Let (X;T) is space where B⊆X is
semi-open(s-open) if there is exists open set U in X
which U ⊆ B ⊆ U.

Definition (2.2). [2] Let A ⊆X which is topological
space, we said that set A feebly open if there is open
set U and U 3 A 3 U

s
.

A called feebly closed if the complement of A is
feebly open, intersection of all feebly closed sets
contain A is the feebly closure of A, symbolized (A

f
).

Remark (2.3). [2] Each open set a feebly open.

Remark (2.4). [3] Each feebly open set a semi-open.

Proposition (2.5). [1] Let B ⊆X which is topological

space, B is feebly open iff B 3B��.

Lemma (2.6). [1] Let A be a subset of topological
space (X, T), then A

s ¼ A ∪ðAÞc.
Definition (2.7). [5] Let B ⊆X which is topological
space, B is said to be semi feebly open set; if for each

semi open set U contain B we have B
f ⊆U, semi

feebly closed set (sf-closed) is the complement of
semi feebly open and U⊆ B� in which U semi closed
set in X. Collection of all sf-open set symbolized sf
O(X ) and collection of sf-closed subsets of X sym-
bolized sfcl (X ).

Remark (2.8). [5]

i. Every f- closed set is sf-open set the opposite
does not hold.
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ii. Each closed set is sf-open set the opposite does
not hold.

Note (2.9). [5]

i. Each subset of discrete or indiscrete ðX;TÞ
space is sf- open.

ii. Each closed interval in usual topology is sf-
open.

Definition (2.10). [6] Let B⊆X which is topological
space, union of sf-open sets of X contains in B are
called sf-Interior of B and symbolized B

�sf

Bsf ¼S
{A: A is sf�open in X and A⊆B}.

Definition (2.11). [5] Let B ⊆X which is topological
space, intersection of sf-closed sets of X which con-

tained B is called sf-closure of B and symbolized B
sf
,

this means B
sf ¼ ∩ {F:F is sf-closed in X, B⊆F}.

Remark (2.12). [4]

1. Does not each open set is sf-open set.
2. Does not each s-open set is sf-open set.
3. Does not each s-closed set is sf-open set.
4. Does not each f-open set is sf-open set.

Definition (2.13). [5] Let B⊆X which is topological
space, the sf-neighborhood of B is any subset in X
that contain sf-open set containing B. The sf-neigh-
borhood of a subset {x} is called sf-neighborhood of
the point x.

Definition (2.14). [7] The space (X; T) is called
T0-space iff each pair of points x, y 2 X, x sy, there
is an open set containing x but not containing y or
open set containing y but not containing x. i.e.,
X is T0 e space ⇔c x, y 2 X; x s y d U 2 T; (x 2 U
∧ y ; U ) ∨ (x ; U ∧ y 2 U )

Definition (2.15). [5] Let f:X⟶Y a mapping of X
which is a topological space into a topological space
(Y,T`) then f called sf*-continuous mapping if f�1 (B)
is a sf-open set in X to each sf-open set B in Y.

Definition (2.16). [3] Let f: X⟶Y be a mapping of a
space (X, T) into a space (Y,T`), f called a (sf-open)
mapping if f(B) a sf-open in Y for each sf-open set B
in X.

Definition (2.17). [5] Let f: X⟶Y a mapping of (X, T)
which is topological space into a topological space
(Y,T`), f called a (sf-closed) mapping if f(E) is sf-
closed in Y to each sf-open set E in X.

Definition (2.18). [5] Let f: X⟶Y a mapping of a
topological space (X, T) in to a topological space
(Y,T`), f called sf-homeomorphism if :

i f a bijective.
ii f a sf*-continuous.

iii f a sf-closed (sf -open).

Definition: (2.19). [5] Let ðX;TÞ be a space and to be
achieve conduct union if the union of sf-open sets of
X is sf -open set.

Proposition: (2.20). [5] Let X a topological space, B
⊆A ⊆ X

i. B
sf
is f-closed set.

ii. B ⊆ B
sf
.

iii. B is sf-closed set iff B ⊆ B
sf
.

iv. If B⊆A then B
sf ⊆Asf

.

Proposition: (2.21). [5] Let (X,T) a conduct union
space and B⊆A⊆X, then:

1. B
�sf a sf -open set.

2. B is a sf -open set iff B ¼ B
�sf .

3. B
�sf ¼ B

�sf
�sf
.

4. If B⊆A then B
�sf ⊆A�sf .

Proposition: (3.22). [5] Let (X,T) a space, B⊆A⊆X:

1. B
sf ¼ B

S
B0sf .

2. B is a sf-closed set iff B0sf ⊆B.
3. B0sf ⊆ A0sf

3. Main results

We discus in this section definitions, theorems
and examples about sf -T0-space and sf -T0

0-space
and sf -T0

00
-space.

Definition: (3.1). The space (X, T) called sf -T0-space
iff every pair of points x; y2X, xsy there is a
sf -open set containing x but not containing y or
containing y but not containing x. i.e.
X a sf -T0-space ⇔ c x; y2 X; x s y d V sf -open set
in X; (x 2 V ∧ y ;V) ∨ (x ;V ∧ y 2V).

Lemma (3.2). [5] Let ðX;TÞ a space and B ⊆X, x2 B
sf

iff for all sf -open sets U and 2U;U∩Bs∅.

Theorem: (3.3). Let (X, T) a space is sf -T0-space iff

fxgsf s fygsf c x, y 2X; x s y.

Proof. (0) Suppose that X is sf -T0-space, c x; y 2
X; xsy
Thend U a sf -open set in X; (x 2 U ∧ y ; U) ∨ (x
;U ∧ y 2 U)
If (x 2 U ∧ y ; U) ∧ (x 2 U ∧ y 2 Uc)
Since U sf -open set 0 Uc sf -closed set and {y} ⊆ Uc

0 fygsf ⊆ Ucsf ¼ Uc 0 {x}? Uc 0 fxgsf ? Uc ∧ x2

U 0 fxgsf s fygsf
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If (x ; U ∧ y 2 U ) ∧ (x 2 Uc ∧ y 2 U ).
Since U sf -open set 0 Uc sf -closed set and {x} ⊆ Uc

0 fxgsf ⊆ Ucsf ¼ Uc

Then {y} ? Uc0 fygsf? Uc∧ y 2 U 0 fygsf s fxgsf

(*) Assume that fygsf s fxgsf then let x,y2X, xs y
Let X is not sf -T0-space
Then (d x;y 2 X; c U sf -open set of X; x 2 U ∧ y 2
U)
Let z2X∧z2fxgsf (1)
Then c U sf -open set; z 2 U ∧ U ∩ {x} s ∅ [lemma
(3.2)]
But, U ∩ {x} s∅ 0 x 2 U
Then every set contain z must contains x. So, every
sf -open set contain z must contain x and each
sf -open set contain x must contains y.
Then every sf -open set contain z must contains y.
0 c U sf -open set; z 2 U ∧ U ∩ {y} s ∅
0 z 2 fygsf (2)
0 c z 2 fxgsf 0 z 2 fygsf 0 fxgsf ⊆ fygsf

Let z 2X; z ; fygsf (1)
c U sf -open set; z 2 U ∧ U ∩{y} s ∅.But, U ∩ {y}
s∅ 0 y 2 U

Then every set contains z must contains y. So,
every sf -open set contain z must containing y for
each sf -open set containing y must containing x.
Then every sf -open set contains z must contains
x.0 c U sf -open set; z 2 U ∧ U ∩{x} s ∅
Then z 2 fxgsf————————(2)

c z 2 fygsf 0 z 2fxgsf 0 fygsf⊆ fxgsfThen fxgsf ¼
fygsf which is contradiction
Therefore, X is sf -T0-space.

Theorem: (3.4). The clopen subspace of sf -T0-space
is also sf -T0-space.

Proof. Let (X, T) sf -T0-space, (Y, T*) be clopen
subspace of X
Let a; b 2Y, asb 0 a; b 2X
Since X is sf -T0-space0d U sf -open set in X; (a2U
and b ; U) ∨(a ; U and b 2 U)
SinceY a clopen set in X then Y is sf -open set in X0
U ∩Y is sf -open set in X
Then U∩Y is sf -open set in Y, and (a 2 U ∩Y ∧ b ;
U ∩Y) ∨ (a ; U ∩Y ∧ b 2 U ∩Y)
Therefore, (Y, T*) is sf -T0-space.

Theorem: (3.5). The property of sf -T0-space a to-
pological property.

Proof. Lets (X, T) y (Y, T 0) and assume that X is
sf -T0-space
⸪ (X, T)y (Y, T 0), thend sf*-continuous mapping f :
X / Y H f 1-1, f onto,
Let y1, y2 2Y H y1 s y2 0 f�1 (y1), f�1 (y2) 2 X
Since f onto function 0 f�1 (y1) s ∅, f�1 (y2) s∅

Since f 1-1 function 0 d x1 2 X H f�1 (y1) ¼ x1 and
d x2 2 X H f�1 (y2) ¼ x2 and x1 s x2 and x1 ∧ x2 XX
Since X is sf -T0-space0 d Usf -open set in X H (x1
2 U ∧ x2 ; U) ∨ (x1 ; U ∧ x2 2U)
Since f sf -open then f (U) is sf -open in Y H(f (x1)2 f
(U) ∧ f(x2) ; f (U)) ∨ (f (x1) ; f (U) ∧ f (x2) 2 f (U))
Therefore Y is sf -T0-space.

Theorem: (3.6). Let (X ;T), (Y, T 0) be two spaces. The
product space X � Y is a sf -T0-space iff each X and Y
are sf -T0-space.

Proof. (0) Assume that X � Y is sf -T0-space, let a1,
a2 2 X; a1 s a2 and b1, b2 2Y; b1 s b2 then (x1, y1),
(x2, y2) 2 X � Y; (a1, b1) s (a2, b2)
Since X � Y is a sf -T0-space then d a sf -open set
U � V in X � Y; ((a1, b1) 2 U � V ∧ (a2, b2) ; U� V)
or ((a1, b1) ; U � V ∧ (a2, b2) 2 U� V) 0d U
sf -open set in X; (a1 2 U ∧ a2 ; U) ∨ (a1 ; U ∧ a2 2
U) 0X is a sf -T0-space and d V sf -open set in Y; (b1
2 V and b2 ; V) ∨ (b1 ; V and b2 2 V) 0Y is a
sf -T0-space
(*) Suppose that X, Y sf -T0-space, let (a1, b1), (a2,
b2) 2X � Y; (a1, b1) s (a2, b2) 0 (a1, a2 2 X ∧ a1 s
a2) and (b1, b2 2 Y ∧ b1 s b2)
Since X is a sf -T0-space 0d U sf -open set; (a1 2 U
and a2 ; U) ∨ (a1 ; U and a2 2 U)
Since Y is a sf -T0-space0d V sf -open set; (b1 2 V ∧
b2 ; V) ∨ (b1 ; V ∧ b2 2 V) thend U � V is a
sf -open set; ((a1, b1) 2 U � V ∧ (a2, b2) ; U� V) ∨
((a1, b1) ; U � V ∧ (a2, b2) 2 U� V)
Then X � Y is a sf -T0-space.

Definition: (3.7). The topological space (X, T) called
sf -T0

0-space iff for each pair of points x; y 2 X and x
s y, then either the closure of a sf -open set con-
taining x but not containing y or containing y but not
containing x. i.e.
X a sf -T0

0-space ⇔ c x; y2 X; xsy d U sf -open set
in X; (x2U

sf ∧ y; U
sf
) ∨ (x ; U

sf∧ y 2 U
sf
).

Remark: (3.8). Every T0-space is sf -T0-space. The
converse does not hold.

Proof. Let X a T0-space 0 ;y2X; xsy d U open set
in X; (x 2U ∧ y ;U) ∨ (x ;U ∧ y 2U)
If (x 2 U ∧ y ; U) 0 x 2 U ∧ y 2 Uc 0 x ; Uc ∧ y
2 Uc

Since U is open set then Uc is closed set in X, then Uc

is sf -open set in X and x ; Uc ∧ y 2 Uc

Then X is sf -T0-space.
If (x ;U ∧ y 2 U) (similar way).
The following example proof the converse

Example (3.9). let X ¼ {a, b, c}, T ¼ {X, ∅, {a, b}}.
Closed set ¼{X, ∅, {c}}
s-open set ¼ { X, ∅, {a,b}}
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s-closed set ¼ { X, ∅,{c}}
f-open set ¼ {X, ∅, {a,b}}
f-closed set ¼ {X, ∅,{c}}
sf -open sets¼{X, ∅, {c}}
a s b 0 e sf -open set containing a but not b or b
but not a
⸫(X, T) is not sf -T0-space.

Remark (3.10). Not every sf -T0-space. is sf -T0
0-space.

Example (3.11). Let X ¼ {1,2,3} and T ¼ {X, ∅ ,
{1},{2},{1,2},{2,3}}
Closed sets ¼{X, ∅, {2,3},{1,3},{3},{1}}
s-open sets ¼ {X, ∅,{1},{2}, {1, 2}, {2,3}}
s-closed sets ¼ {X, ∅, {2,3},{1,3},{3},{1}}
f -open sets ¼{X, ∅,{1},{2}, {1, 2}, {2,3}}
f -closed sets¼{X, ∅, {2,3},{1,3},{3},{1}}
sf -open sets¼{X, ∅, {2,3},{1,3},{3},{1}}
Sf -closed sets ¼{X, ∅, {1}, ,{2},{1,2},{2,3}}
1 s 2 0 d sf -open set {1} in X; 1 2 {1} ∧ 2 ; {1}
1 s 3 0 d sf -open set {1} in X; 1 2 {1} ∧ 3 ; {1}
2 s 3 0 d sf -open set {2} in X; 2 2 {2} ∧ 3 ; {2}
⸫ (X, T) is sf -T0-space.
f1gsf ¼ {1}, f3gsf ¼ {2, 3}, f1; 3gsf ¼ X, f2; 3gsf ¼ {2, 3}
2s3 e sf -open set in X such that the closure of this
set containing 2 but not 3 or 3 but not 2.
⸫(X, T) is not sf -T0

0-space.

Definition: (3.12). [7] Let A ⊆ X which is topological
space. For each a 2X, a is to be sf-boundary point of
A if every sf-neighborhood Ua of a, we have Ua

T
A

s∅ and Ua
T
Ac s ∅. The set of all sf-boundary

point of A is symbolized bsf (A).

Definition (3.13). The topological space (X, T) called
sf -T0

00
-space iff for every pair of points x; y 2 X, x

sy there exist a sf -open sets U;V such that U
contain x and the sf -boundary of V contain x but not
y or contain y but not x.i.e.
X is a sf -T0

00
-space⇔c x; y2 X; xsyd U;V sf -open

sets; U containing x in X and (x 2 bsf (V) ∧ y ; bsf
(V)) ∨ (x ; bsf (V) ∧ y 2 bsf (V)).

Remark (3.14). Not every sf -T0
00
-space is sf -T0

0-space.

Example (3.15). X ¼ {1, 2}, T¼{X, ∅, {1}}
Closed sets ¼{X, ∅, {2}}
s-open sets ¼ {X,∅,{1}}
s-closed sets ¼ { X ,∅,{2}}
f -open sets ¼{X, ∅, {1}}
f -closed sets ¼{X, ∅,{2}}
sf -open sets ¼{X, ∅, {2}}
sf -closed set ¼ {X, ∅, {1}}
f2gsf ¼ X
1s2 e sf -open set; the closure of this set containing
1 but not 2 or 2 but not 1.

⸫ X is not sf -T0
0-space

Take U ¼ {2} sf -open set 0bsf ({2}) ¼ f2gsf -
f2g�sf ¼ X-{2} ¼ {1}
1s2 and (1 2 bsf ({2}) ∧ 2 ; bsf ({2}))
⸫ X is sf -T0

00
-space.

Remark (3.16). Not every sf -T0-space is sf -T0
00
-space.

Example (3.17). Let X ¼{1, 2, 3}, T ¼ {X, ∅, {2}}
Closed set ¼{X, ∅, {1,3}}
s-open set ¼ {X, ∅, {2}, {1,2},{2,3}}
s-closed set ¼ {X, ∅, {1,3}, {3},{1}}
f -open set ¼{X, ∅, {2}, {1,2},{2,3}}
f -closed set¼{X, ∅, {1,3}, {3},{1}}
sf -open set¼{X, ∅, {1, 3}, {3},{1}}
1 s 2 0 d sf -open set {1} in X; 1 2 {1} ∧ 2 ; {1}
1 s 3 0 d sf -open set {1} in X; 1 2 {1} ∧ 3 ; {1}
2 s 3 0 d sf -open set {3} in X; 2 ; {3} ∧ 3 2 {3}
⸫(X, T) is sf -T0-space.
Take {1, 3} sf -open set
bsf ({1, 3}) ¼ f1; 3gsf - f1; 3g�sf ¼ X-{1, 3} ¼ {2}
1s3 e sf -open sets; 1 containing in sf-boundary of
{1, 3} but not 3 or 3 but not 1
⸫ X is not sf -T0

00
-space.

Remark (3.18). Not every sf -T0
0-space is

sf -T0
00
-space. By example (3.17): where X is not

sf -T0
00
-space

f1; 3gsf ¼ X, f3gsf ¼ {2, 3} f1gsf ¼ {1, 2}
1s 20d sf -open {3} in X; f3gsf ¼ {2, 3}H 22 {2, 3}
∧ 1; {2, 3}
1s 30d sf -open {3} in X; f3gsf ¼ {2, 3}H 32 {2, 3}
∧ 1; {2, 3}
2s 30d sf -open {1} in X; f1gsf ¼ {1, 2}H 22 {1, 2}
∧ 3; {1, 2}
Then (X, T) is sf -T0

0-space.

Remark (3.19). Not every T0-space is sf -T0
0-space.

By example (3.15) where X is T0-space but not
sf -T0

0-space.

3.1. Conclusions

The fourth separation axioms have the following
relationships in diagram.
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