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ARTICLE

Fixed Point Theorems in Generalized Banach Spaces
With Various Contraction Conditions and Weakly
a� Contraction

Wesam N. Khuen

Department of Mathematics, University of Al-Qadisiyah, Diwaniyah, Iraq

Abstract

In this paper we introduce some fixed point theorems type contractions on generalized Banach space and we introduce
a class of weakly a� contraction mappings. And we showed that these mappings must have unique fixed points in
generalized Banach space.

Keywords: Fixed point, Generalized banach space

1. Introduction

B anach's contraction mapping theorem is well-
known as one of the most important conclu-

sions of functional analysis.
A mapping F : H / H where ðH; dÞ is a metric

space, is said to be a contraction if there exists 0 �
k < 1 such that, for all x; y2H;

dðFx;FyÞ � kdðx;yÞ ð1:1Þ
The mapping fulfilling (1) has a unique fixed point

if the metric space ðH; dÞ is complete. F is continuity
is implied by inequality (1). A natural question is
whether contractive conditions can be found that
imply the existence of a fixed point in a complete
metric space but not continuity.
See [1e3,6,8,9] Many researchers have proven the

oneness and uniqueness of the fixed point in many
conditions.
Kannan [4,5] Concluded the following conclusion,

in which the positive response to the following
question was provided.
If F : H / H where ðH; dÞ is a complete metric

space, satisfies the inequality

dðFx;FyÞ � k ½dðx;FxÞþdðy;FyÞ� ð1:2Þ

where k2
�
0; 1

2 )

In 1972, Chatterjea [9] introduced the dual of the
Kannan contraction condition.

dðFx;FyÞ�b½dðx;FyÞþdðy;FxÞ�; for all x;y2H; ð1:3Þ

where b 2 [0, 1
2

�
For shortcut we put the following code in place of

the names:

1.1. U.F.P.: unique fixed point

Definition 1.1. [7]If M nonempty is a linear
spacehaving s � 1, letk: kdnotes a functon from linear
space M into R that satisfies the following axioms:

1. for all x2М kx k � 0; kx k ¼ 0 if and only if x ¼
0;

2. for all x; y2М ; kx þ y k � s ½kx k þ ky k�;
3. for all x2М ;a2R; kax k ¼ jaj kx k;

ðM; k: k Þ is called generalized normed linear space. If
for s ¼ 1; it reduces to standard normed linear space.

Definition 1.2. [7]A Banach space ðM; k: k Þ is a
normed vector space such that M is complete under
the metric induced by the k: k.
Definition 1.3. [7]A linear generalized normed
space in which every Cauchy sequence is conver-
gent is called generalized Banach space.
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Definition 1.4. [7]Let (H; k: k) be a generalized
normed space then the sequence fung in H is called,

1. Cauchy sequence iff for each 3 〉 0, there exist
nð3Þ 2 N such that for all m; n � nð3Þ we have
kun � umk〈3.

2. Convergent sequence iff there exist u2 H such
that for all 3 > 0, there exist n(3) 2 N such that
for every n � n(3) we have kun�u k 〈3.

Definition 1.5. [10]A mapping F : H / H where
ðH; k:kÞ is generalized Banach space is said to be
weakly contractive if

kFx�Fyk�kx�yk�jð kx�ykÞ; ð1:4Þ

where ; y2H , j : ½ 0;∞Þ / ½ 0;∞Þ is continuous and
nondecreasing, jðxÞ ¼ 0 if and only if x ¼ 0 and
lim
x/∞

j ¼ ∞:

If we take jðxÞ ¼ z x where 0 < z < 1 then (4) re-
duces to (3).

Lemma 1.1. .[6]Let ðH; k:kÞ be a generalized Banach
space with a real number s � 1, and F self-mapping
on H, assume that fung is a sequence in H defined
by unþ1 ¼ Fun if,

kun�unþ1k�a kun�1�unk; for all n2N ð1:5Þ

where a2½ 0; 1 Þ, 0 � sa< 1. Then fung is a Cauchy
sequence and is a converges to some u* 2 Н as n/
þ ∞.

2. Main result

Theorem 2.1. Let ðН ; k:kÞ be a generalized Banach
space with a real number s � 1 and F : Н/Н such
that,

kFu�Fvk�a½ ku�Fukþkv�Fvk� þ b½ku�Fvk
þkv�Fvk�; ð2:1Þ

where a; b > 0 such that aþ bs< 1
2 for all u;v2 Н .

Then F has a U.F.P.
Proof: Let u0 arbitrary in Н and we'll show that
fung∞n¼0 is Cauchy sequence, such that,

un¼Fun�1 ¼ Fnu0; for all n2N; ð2:2Þ

kun�unþ1k¼kFun�1�Funk

� a½ kun�1�Fun�1kþkun�Funk� þ b½kun�1�Funk
þkun�Fun�1k�

¼ a½ kun�1�unkþkun�unþ1k� þ b½kun�1�unþ1k
þkun�unk�

kun�unþ1k�akun�1�unkþ akun�unþ1kþ bkun�1

�unþ1k

� akun�1�unkþakun�unþ1kþ bs½kun�1�unk
þkun�unþ1k�

� akun�1�unkþ akun�unþ1kþ bskun�1�unk
þ bskun�unþ1k

ð1e ðaþbsÞÞ kun�unþ1k � ðaþbsÞ kun�1�unk

kun�unþ1k�k kun�1�unk; in which k

¼ aþ bs
1e ðaþ bsÞ <1 ð2:3Þ

By lemma (1.1) we can draw the conclusion that
fung is a Cauchy sequence in (Н, k:k). As (Н, k:k) is a
generalized Banach space, fung is a converges to
some u* 2Н as n/∞.

We show that, u* is the fixed point of F.

ku*�Fu*k � s ½ ku*�unþ1kþkunþ1�Fu*k �

� s ½ ku*�unþ1kþkFun�Fu*k �

ku*�Fu*k� s ku*�unþ1kþ s a½ kun�Funkþku*�Fu*k�

þs b½kun�Fu*kþku*�Funk�

¼ s ku*�unþ1kþ s a½ kun�unþ1kþku*�Fu*k�

þs2b ½kun�u*kþku*�Fu*k� þ sb ku*�unþ1k

¼ s ku*�unþ1kþ s2 akun�u*kþ s2 aku*�unþ1k
þ s a ku*�Fu*k

þs2b kun�u*kþ s2b ku*�Fu*kþ sb ku*�unþ1k
�
1� s2b� s a

� ku*�Fu*k � sð1þ s aþbÞ ku*�unþ1k

þs2ðaþbÞkun�u*k

ku*�Fu*k� sð1þ s aþ bÞ
ð 1� s2b� s a Þ ku

*�unþ1k

þ s2ð aþ b Þ
ð 1� s2b� s a Þ kun�u*k ð2:4Þ

In (2.4) taking lim
n/∞

we get lim
n/∞

ku* � Fu*k ¼
0Fu* ¼ u*.

We proved u* is the fixed point of F.
Now, we have to show that, u* is U.F.P. of F.
Suppose that v* is another fixed point of F then,
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Fv*¼v* and ku*�v*k¼kFu*�Fv*k
� a½ ku*�Fu*kþ*kv*�Fvk�

þb½*ku*�Fv*kþkv*�Fuk�

¼ a½ku*�u*kþ*kv*�vk� þ b½ku*�v*kþkv*�u*k�

ku* �v*k � 2 bku* �v*k, which is a contradiction.
There fore ku* � v*k ¼ 0 u* ¼ v*,
hence u* is the U.F.P.

Example 2.1.1. Let ¼ f i; j; k g, and let,
k:k : H�H/½ 0;þ∞Þ be a mapping that fulfills, the
business condition (2.1), for all x;y2H;kx � y k ¼ 0,
where x ¼ y,

ki� j k¼kj� i k ¼ 1
3
;ki�k k ¼ kk� i k ¼ 1

6
;kk� j k

¼ kj�k k ¼ 5
6
:

Then ðH; k:kÞ be a generalized Banach space with
a coefficient s ¼ 5

4 > 1. Consider mapping F : H /
H, define by FðiÞ ¼ i; FðjÞ ¼ i; FðkÞ ¼ j
Let a ¼ 1

4 and ¼ 1
6 ; þ s b〈12 , now we will verify

the condition (2.1).
It have the following case to, kFu�Fvk ¼ 0 the

condition (2.1) holds.
kFu � Fvks0, we have the following there cases,

kFu�Fvk�a½ku�Fukþv kv�Fk� þ b½ku�Fvk
þkv�Fvk�

Case 1. u ¼ i;v ¼ j, we can get kFu � Fvk ¼ 0, then

kFu�Fvk�a½ ku�Fukþkv�Fvk� þ b½ku�Fvk
þkv�Fvk�

0� 1
4

�
0þ1

3

�
þ 1

6

�
0þ1

3

�
¼ 1

12
þ 1
18

¼ 5
36

therefore, the condition (2.1) holds.

Case 2. u ¼ i;v ¼ k, we can get kFu � Fvk ¼ 1
3 , then

kFu�Fvk�a½ ku�Fukþkv�Fvk� þ b½ku�Fvk
þkv�Fvk�

1
3
� 1

4

�
0þ5

6

�
þ 1

6

�
1
6
þ5

6

�
¼ 5

24
þ1

6
¼ 9
24

therefore, the condition (2.1) is holds.

Case 3. u ¼ j;v ¼ k, we can get kFu � Fvk ¼ 1
3 , then

kFu�Fvk�a½ ku�Fukþkv�Fvk� þ b½ku�Fvk
þkv�Fvk�

1
3
� 1

4

�
1
3
þ5

6

�
þ 1

6

�
0þ5

6

�
¼ 7

24
þ 5
36

¼ :;43

thus, the condition (2.1) holds.
We proved that condition (2.1) is fulfilled in all

case.
Then F has a U.F.P., u* ¼ i such that ðFðiÞ ¼ iÞ:

2.1. The following are the corollaries of Theorem 2.1

Corollary 2.1. Let ðН ; k:kÞ be a generalized Banach
space with a real number s � 1, and F : Н/Н , such
that,

kFu�Fvk�amax½ku�Fuk;kv�Fvk� þ bmin
½ku�Fvk;kv�Fvk� ð2:5Þ

where a; b > 0 such that 0 � a;b< 1, for all u;v2Н ,
then F has a U.F.P.

Definition 2.2. (weak a� contraction)
Let ðН ; k:kÞ be a G.B.S. with a rail number s � 1, and
F : Н/Н is said to weakly a� contraction, for all x;
y2Н ,

kFx�Fyk� a

s
½kx�Fykþx ky�Fk�

�jðkx�Fyk;ky�FxkÞ; ð2:9Þ

and 0 � a < 1
2 .

Where j : (Rþ �Rþ Þ/Rþ is a continuous mapping
in order for jðx; yÞ ¼ 0 if and only if x ¼ y ¼ 0:
If we take j (x; y) ¼ 0, where 0 � a < 1

2 then (2.9)
reduces to (2.8).

Theorem 2.2. Let F : Н/Н where ðН ; k:kÞ is a G.B.S.
be a weak a� contraction. Then F has a U.F.P.

Proof. Let u arbitrary in Н and we will show that
fung∞n¼0 is Cauchy sequence, such that

un¼Fun� 1¼ Fnu0; for all n2N;

we assume unsunþ1 for all n2N,
putting x ¼ un�1 and y ¼ un in (2.9), for all n ¼ 0; 1;
2 …:

kun�unþ1k¼kFun�1�Funk

� a

s
½1kun�1�Funkþkun�Fun�k� �j ðkun�1

�Funk;kun�Fun�1 kÞ
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¼ a

s
½ kun�1�unþ1kþkun�unk � �j ðkun�1�unþ1k;
kun�unk Þ

¼ a

s
kun�1�unþ1k�j ðkun�1�unþ1k;0 Þ

kun�unþ1k � sa
s

½kun�1�unkþ1kun�unþk�

kun�unþ1k � a ½kun�1�unkþ1kun�unþk�

ða 1�Þkun�unþ1k � a kun�1�unk

kun�unþ1k � a

1� a
kun�1�unk;where

a

1�a
〈 1

From By lemma (1.1) we can draw the conclusion
that fung is a Cauchy sequence in (Н, k:k). As (Н, k:k)
is a G.B.S., {un} is a converges to some u*2 Н as n/
∞.
We'll prove that Fu* ¼ u*.

ku*�Fu*k � s½ ku*�unþ1kþ*kunþ1�Fuk�

ku*�Fu*k� s½ ku*�unþ1kþ kFun�Fu*k �

� s
h
ku*�unþ1kþ a

s
½kun�Fu*kþku*�Funk�

�jðkun�Fu*k;ku*�FunkÞ
i ð2:10Þ

by taking the limit as n /þ ∞, using (2.10) and
continuity of j we obtain that,

ku*�Fu*k� sa
s

ku*�Fu*k�j ð0;ku*�Fu*k Þ
� a ku*�Fu*k

which is a contradiction (0 � a < 1
2

�
, ku* �Fu*k ¼

0, hence Fu* ¼ u*.
Now show that u* is U.F.P., suppose that, u* and

v*are different fixed points of F.

ku*�v*k¼kFu*�Fvk

� a

s
½ ku*�Fv*kþkv*�Fu*k � �j ðku*�Fv*k;
kv*�Fu*kÞ

¼ a

s
½ku*�v*kþkv*�u*k� �j ðku*�v*k;kv*�u*kÞ

ku*�v*k� 2a
s

ku*�v*k�jðku*�v*k;*kv*�ukÞ:

Which by property of j ¼ 0, which is a
contradiction.

On him ku* �v*k ¼ 0, that is u* ¼ v*.
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