Al-Qadisiyah Journal of Pure Science

Volume 29 | Number 2

Article 13

12-20-2024

Fixed point theorems in generalized Banach spaces with various contraction conditions and weakly α - contraction

Wesam Nafia Khuen Department of Mathematics, University of Al-Qadisiyah, Diwaniyah, Iraq., ma20.post23@qu.edu.iq

Follow this and additional works at: https://gjps.researchcommons.org/home

Part of the Biology Commons, Chemistry Commons, Computer Sciences Commons, Environmental Sciences Commons, Geology Commons, Mathematics Commons, and the Nanotechnology Commons

Recommended Citation

Khuen, Wesam Nafia (2024) "Fixed point theorems in generalized Banach spaces with various contraction conditions and weakly α - contraction," *Al-Qadisiyah Journal of Pure Science*: Vol. 29 : No. 2, Article 13. Available at: https://doi.org/10.29350/2411-3514.1291

This Original Study is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science.

ARTICLE

Fixed Point Theorems in Generalized Banach Spaces With Various Contraction Conditions and Weakly α - Contraction

Wesam N. Khuen

Department of Mathematics, University of Al-Qadisiyah, Diwaniyah, Iraq

Abstract

In this paper we introduce some fixed point theorems type contractions on generalized Banach space and we introduce a class of weakly α - contraction mappings. And we showed that these mappings must have unique fixed points in generalized Banach space.

Keywords: Fixed point, Generalized banach space

1. Introduction

B anach's contraction mapping theorem is wellknown as one of the most important conclusions of functional analysis.

A mapping $F: H \to H$ where (H, d) is a metric space, is said to be a contraction if there exists $0 \le k < 1$ such that, for all $x, y \in H$,

$$d(Fx, Fy) \le kd(x, y) \tag{1.1}$$

The mapping fulfilling (1) has a unique fixed point if the metric space (H, d) is complete. F is continuity is implied by inequality (1). A natural question is whether contractive conditions can be found that imply the existence of a fixed point in a complete metric space but not continuity.

See [1-3,6,8,9] Many researchers have proven the oneness and uniqueness of the fixed point in many conditions.

Kannan [4,5] Concluded the following conclusion, in which the positive response to the following question was provided.

If $F: H \rightarrow H$ where (H, d) is a complete metric space, satisfies the inequality

$$d(Fx, Fy) \le k \left[d(x, Fx) + d(y, Fy) \right]$$
(1.2)

where $k \in \left[0, \frac{1}{2}\right]$

In 1972, Chatterjea [9] introduced the dual of the Kannan contraction condition.

$$d(Fx,Fy) \le b[d(x,Fy) + d(y,Fx)], \text{ for all } x, y \in H, \qquad (1.3)$$

where $b \in [0, \frac{1}{2})$

For shortcut we put the following code in place of the names:

1.1. U.F.P.: unique fixed point

Definition 1.1. [7] If *M* nonempty is a linear space having $s \ge 1$, let ||.|| dnotes a functon from linear space M into R that satisfies the following axioms:

- 1. for all $x \in M$ $||x|| \ge 0$, ||x|| = 0 if and only if x = 0;
- 2. for all $x, y \in M$, $||x + y|| \le s [||x|| + ||y||]$;
- 3. for all $x \in M$, $\alpha \in R$, $\|\alpha x\| = |\alpha| \|x\|$;

 $(M, \|.\|)$ is called generalized normed linear space. If for s = 1, it reduces to standard normed linear space.

Definition 1.2. [7]A Banach space $(M, \|.\|)$ is a normed vector space such that M is complete under the metric induced by the $\|.\|$.

Definition 1.3. [7]A linear generalized normed space in which every Cauchy sequence is convergent is called generalized Banach space.

E-mail address: ma20.post23@qu.edu.iq.

Received 12 September 2022; accepted 17 October 2022. Available online 18 April 2025

Definition 1.4. [7]Let $(H, \|.\|)$ be a generalized normed space then the sequence $\{u_n\}$ in *H* is called,

- 1. Cauchy sequence iff for each ε \rangle 0, there exist $n(\varepsilon) \in \mathbb{N}$ such that for all $m, n \ge n(\varepsilon)$ we have $||u_n - u_m|| \langle \varepsilon.$
- 2. Convergent sequence iff there exist $u \in H$ such that for all $\varepsilon > 0$, there exist $n(\varepsilon) \in \mathbb{N}$ such that for every $n \ge n(\varepsilon)$ we have $||u_n - u|| \langle \varepsilon$.

Definition 1.5. [10] A mapping $F: H \to H$ where $(H, \|.\|)$ is generalized Banach space is said to be weakly contractive if

$$\|Fx - Fy\| \le \|x - y\| - \psi(\|x - y\|), \tag{1.4}$$

where $y \in H$, $\psi : [0, \infty) \rightarrow [0, \infty)$ is continuous and nondecreasing, $\psi(x) = 0$ if and only if x = 0 and $\lim \psi = \infty.$

If we take $\psi(x) = z x$ where 0 < z < 1 then (4) reduces to (3).

Lemma 1.1. .[6]Let $(H, \|.\|)$ be a generalized Banach space with a real number $s \ge 1$, and *F* self-mapping on H, assume that $\{u_n\}$ is a sequence in H defined by $u_{n+1} = Fu_n$ if,

$$||u_{n-}u_{n+1}|| \le \alpha ||u_{n-1} - u_n||, \text{ for all } n \in \mathbb{N}$$
 (1.5)

where $\alpha \in [0, 1)$, $0 \le s\alpha < 1$. Then $\{u_n\}$ is a Cauchy sequence and is a converges to some $u^* \in H$ as $n \rightarrow$ $+\infty$.

2. Main result

1141

Theorem 2.1. Let $(H, \|.\|)$ be a generalized Banach space with a real number $s \ge 1$ and $F : H \rightarrow H$ such that,

$$\frac{\|Fu - Fv\| \le \alpha [\|u - Fu\| + \|v - Fv\|] + \beta [\|u - Fv\|]}{+ \|v - Fv\|]},$$
(2.1)

where $\alpha, \beta > 0$ such that $\alpha + \beta s < \frac{1}{2}$ for all $u, v \in H$. Then F has a U.F.P.

Proof: Let u_0 arbitrary in *H* and we'll show that $\{u_n\}_{n=0}^{\infty}$ is Cauchy sequence, such that,

$$u_n = F u_{n-1} = F^n u_0, \text{ for all } n \in \mathbb{N},$$
(2.2)

$$\begin{aligned} \|u_n - u_{n+1}\| &= \|Fu_{n-1} - Fu_n\| \\ &\leq \alpha [\|u_{n-1} - Fu_{n-1}\| + \|u_n - Fu_n\|] + \beta [\|u_{n-1} - Fu_n\|] \\ &+ \|u_n - Fu_{n-1}\|] \end{aligned}$$
$$= \alpha [\|u_{n-1} - u_n\| + \|u_n - u_{n+1}\|] + \beta [\|u_{n-1} - u_{n+1}\|] \\ &+ \|u_n - u_n\|] \end{aligned}$$

En II

$$\begin{aligned} \|u_n - u_{n+1}\| &\leq \alpha \|u_{n-1} - u_n\| + \alpha \|u_n - u_{n+1}\| + \beta \|u_{n-1} \\ &- u_{n+1}\| \end{aligned}$$

$$\leq \alpha \|u_{n-1} - u_n\| + \alpha \|u_n - u_{n+1}\| + \beta s [\|u_{n-1} - u_n\| \\ &+ \|u_n - u_{n+1}\|] \end{aligned}$$

$$\leq \alpha \|u_{n-1} - u_n\| + \alpha \|u_n - u_{n+1}\| + \beta s \|u_{n-1} - u_n\| \\ &+ \beta s \|u_n - u_{n+1}\| \end{aligned}$$

$$(1 - (\alpha + \beta s)) \|u_n - u_{n+1}\| \leq (\alpha + \beta s) \|u_{n-1} - u_n\| \\ \|u_n - u_{n+1}\| \leq k \|u_{n-1} - u_n\|, \text{ in which } k \end{aligned}$$

$$=\frac{\alpha+\beta s}{1-(\alpha+\beta s)} < 1$$
(2.3)

By lemma (1.1) we can draw the conclusion that $\{u_n\}$ is a Cauchy sequence in (H, $\|.\|$). As (H, $\|.\|$) is a generalized Banach space, $\{u_n\}$ is a converges to some $u^* \in H$ as $n \to \infty$.

We show that, u^* is the fixed point of *F*.

$$\begin{split} \|u^{*} - Fu^{*}\| &\leq s \left[\|u^{*} - u_{n+1}\| + \|u_{n+1} - Fu^{*}\| \right] \\ &\leq s \left[\|u^{*} - u_{n+1}\| + \|Fu_{n} - Fu^{*}\| \right] \\ \|u^{*} - Fu^{*}\| &\leq s \|u^{*} - u_{n+1}\| + s \alpha \left[\|u_{n} - Fu_{n}\| + \|u^{*} - Fu^{*}\| \right] \\ &+ s \beta \left[\|u_{n} - Fu^{*}\| + \|u^{*} - Fu_{n}\| \right] \\ &= s \|u^{*} - u_{n+1}\| + s \alpha \left[\|u_{n} - u_{n+1}\| + \|u^{*} - Fu^{*}\| \right] \\ &+ s^{2} \beta \left[\|u_{n} - u^{*}\| + \|u^{*} - Fu^{*}\| \right] + s \beta \|u^{*} - u_{n+1}\| \\ &= s \|u^{*} - u_{n+1}\| + s^{2} \alpha \|u_{n} - u^{*}\| + s^{2} \alpha \|u^{*} - u_{n+1}\| \\ &+ s \alpha \|u^{*} - Fu^{*}\| \\ &+ s^{2} \beta \|u_{n} - u^{*}\| + s^{2} \beta \|u^{*} - Fu^{*}\| + s \beta \|u^{*} - u_{n+1}\| \\ &\left(1 - s^{2} \beta - s \alpha\right) \|u^{*} - Fu^{*}\| \leq s(1 + s \alpha + \beta) \|u^{*} - u_{n+1}\| \\ &+ s^{2} (\alpha + \beta) \|u_{n} - u^{*}\| \end{split}$$

$$\|u^{*} - Fu^{*}\| \leq \frac{s(1 + s\alpha + \beta)}{(1 - s^{2}\beta - s\alpha)} \|u^{*} - u_{n+1}\| + \frac{s^{2}(\alpha + \beta)}{(1 - s^{2}\beta - s\alpha)} \|u_{n} - u^{*}\|$$
(2.4)

In (2.4) taking $\lim_{n\to\infty}$ we get $\lim_{n\to\infty} ||u^* - Fu^*|| =$ $0Fu^* = u^*$.

We proved u^* is the fixed point of *F*.

Now, we have to show that, u^* is U.F.P. of *F*. Suppose that *v*^{*} is another fixed point of *F* then,

$$Fv^* = v^* \text{ and } \|u^* - v^*\| = \|Fu^* - Fv^*\|$$

$$\leq \alpha [\|u^* - Fu^*\| + \|v^* - Fv\|]$$

$$+\beta [*\|u^* - Fv^*\| + \|v^* - Fu\|]$$

$$= \alpha [\|u^* - u^*\| + \|v^* - v\|] + \beta [\|u^* - v^*\| + \|v^* - u^*\|]$$

 $||u^* - v^*|| \le 2 \beta ||u^* - v^*||$, which is a contradiction. There fore $||u^* - v^*|| = 0$ $u^* = v^*$, hence u^* is the U.F.P.

Example 2.1.1. Let = { i, j, k }, and let, $\|.\|: H \times H \rightarrow [0, +\infty)$ be a mapping that fulfills, the business condition (2.1), for all $x, y \in H$, ||x - y|| = 0, where x = y,

$$\begin{aligned} \|i - j\| &= \|j - i\| = \frac{1}{3}, \|i - k\| = \|k - i\| = \frac{1}{6}, \|k - j\| \\ &= \|j - k\| = \frac{5}{6}. \end{aligned}$$

Then $(H, \|.\|)$ be a generalized Banach space with a coefficient $s = \frac{5}{4} > 1$. Consider mapping $F : H \rightarrow$ H, define by F(i) = i, F(j) = i, F(k) = j

Let $\alpha = \frac{1}{4}$ and $= \frac{1}{6}$, $+ s \beta \langle \frac{1}{2} \rangle$, now we will verify the condition (2.1).

It have the following case to, $\|Fu - Fv\| = 0$ the condition (2.1) holds.

 $||Fu - Fv|| \neq 0$, we have the following there cases,

$$\begin{aligned} \|Fu - Fv\| &\leq \alpha [\|u - Fu\| + v \|v - F\|] + \beta [\|u - Fv\| \\ &+ \|v - Fv\|] \end{aligned}$$

Case 1. u = i, v = j, we can get ||Fu - Fv|| = 0, then

$$\|Fu - Fv\| \le \alpha [\|u - Fu\| + \|v - Fv\|] + \beta [\|u - Fv\|] + \|v - Fv\|]$$

$$0 \le \frac{1}{4} \left[0 + \frac{1}{3} \right] + \frac{1}{6} \left[0 + \frac{1}{3} \right] = \frac{1}{12} + \frac{1}{18} = \frac{5}{36}$$

therefore, the condition (2.1) holds.

Case 2.
$$u = i, v = k$$
, we can get $||Fu - Fv|| = \frac{1}{3}$, then

$$||Fu - Fv|| \le \alpha [||u - Fu|| + ||v - Fv||] + \beta [||u - Fv|| + ||v - Fv||]$$

$$\frac{1}{3} \le \frac{1}{4} \left[0 + \frac{5}{6} \right] + \frac{1}{6} \left[\frac{1}{6} + \frac{5}{6} \right] = \frac{5}{24} + \frac{1}{6} = \frac{9}{24}$$

therefore, the condition (2.1) is holds.

Case 3.
$$u = j, v = k$$
, we can get $||Fu - Fv|| = \frac{1}{3}$, then
 $||Fu - Fv|| \le \alpha [||u - Fu|| + ||v - Fv||] + \beta [||u - Fv|| + ||v - Fv||]$

$$\frac{1}{3} \le \frac{1}{4} \left[\frac{1}{3} + \frac{5}{6} \right] + \frac{1}{6} \left[0 + \frac{5}{6} \right] = \frac{7}{24} + \frac{5}{36} = .,43$$

thus, the condition (2.1) holds.

We proved that condition (2.1) is fulfilled in all case.

Then F has a U.F.P., $u^* = i$ such that (F(i) = i).

2.1. The following are the corollaries of Theorem 2.1

Corollary 2.1. Let (H, ||.||) be a generalized Banach space with a real number $s \ge 1$, and $F : H \rightarrow H$, such that,

$$\|Fu - Fv\| \le \alpha \max[\|u - Fu\|, \|v - Fv\|] + \beta \min \\ [\|u - Fv\|, \|v - Fv\|]$$
(2.5)

where α , $\beta > 0$ such that $0 \le \alpha, \beta < 1$, for all $u, v \in H$, then *F* has a U.F.P.

Definition 2.2. (weak α - contraction)

Let $(H, \|.\|)$ be a G.B.S. with a rail number $s \ge 1$, and $F: H \rightarrow H$ is said to weakly α - contraction, for all x, $y \in H$,

$$\|Fx - Fy\| \le \frac{\alpha}{s} [\|x - Fy\| + x \|y - F\|] -\psi(\|x - Fy\|, \|y - Fx\|),$$
(2.9)

and $0 \leq \alpha < \frac{1}{2}$.

Where $\psi : (\mathbb{R}^{+} \times \mathbb{R}^{+}) \to \mathbb{R}^{+}$ is a continuous mapping in order for $\psi(x, y) = 0$ if and only if x = y = 0. If we take $\psi(x, y) = 0$, where $0 \le \alpha < \frac{1}{2}$ then (2.9) reduces to (2.8).

Theorem 2.2. Let $F : H \to H$ where $(H, \|.\|)$ is a G.B.S. be a weak α - contraction. Then F has a U.F.P.

Proof. Let u arbitrary in H and we will show that $\{u_n\}_{n=0}^{\infty}$ is Cauchy sequence, such that

$$un = Fun - 1 = F^n u_0$$
, for all $n \in \mathbb{N}$,

we assume $u_n \neq u_{n+1}$ for all $n \in \mathbb{N}$, putting $x = u_{n-1}$ and $y = u_n$ in (2.9), for all n = 0, 1, 2...

$$\|u_{n} - u_{n+1}\| = \|Fu_{n-1} - Fu_{n}\|$$

$$\leq \frac{\alpha}{s} [1\|u_{n-1} - Fu_{n}\| + \|u_{n} - Fu_{n-1}\|] - \psi (\|u_{n-1}\|)$$

$$= \frac{\alpha}{s} [\|u_{n-1} - u_{n+1}\| + \|u_n - u_n\|] - \psi (\|u_{n-1} - u_{n+1}\|) + \|u_n - u_n\|] = \frac{\alpha}{s} \|u_{n-1} - u_{n+1}\| - \psi (\|u_{n-1} - u_{n+1}\|, 0)$$
$$\|u_n - u_{n+1}\| \le \frac{s\alpha}{s} [\|u_{n-1} - u_n\| + 1\|u_n - u_{n+1}\|]$$
$$\|u_n - u_{n+1}\| \le \alpha [\|u_{n-1} - u_n\| + 1\|u_n - u_{n+1}\|]$$
$$(\alpha 1 -)\|u_n - u_{n+1}\| \le \alpha \|u_{n-1} - u_n\|$$

$$\|u_n-u_{n+1}\| \leq \frac{\alpha}{1-\alpha} \|u_{n-1}-u_n\|, \text{ where } \frac{\alpha}{1-\alpha} \langle 1 \rangle$$

From By lemma (1.1) we can draw the conclusion that $\{u_n\}$ is a Cauchy sequence in (H, $\|.\|$). As (H, $\|.\|$) is a G.B.S., $\{u_n\}$ is a converges to some $u^* \in H$ as $n \to \infty$.

We'll prove that $Fu^* = u^*$.

$$\|u^{*} - Fu^{*}\| \leq s[\|u^{*} - u_{n+1}\| + \|u_{n+1} - Fu\|]$$

$$\|u^{*} - Fu^{*}\| \leq s[\|u^{*} - u_{n+1}\| + \|Fu_{n} - Fu^{*}\|]$$

$$\leq s[\|u^{*} - u_{n+1}\| + \frac{\alpha}{s}[\|u_{n} - Fu^{*}\| + \|u^{*} - Fu_{n}\|]]$$

$$-\psi(\|u_{n} - Fu^{*}\|, \|u^{*} - Fu_{n}\|)]$$

(2.10)

by taking the limit as $n \to +\infty$, using (2.10) and continuity of ψ we obtain that,

$$\|u^{*} - Fu^{*}\| \leq \frac{s\alpha}{s} \|u^{*} - Fu^{*}\| - \psi(0, \|u^{*} - Fu^{*}\|)$$

$$\leq \alpha \|u^{*} - Fu^{*}\|$$

which is a contradiction $(0 \le \alpha < \frac{1}{2})$, $||u^* - Fu^*|| = 0$, hence $Fu^* = u^*$.

Now show that u^* is U.F.P., suppose that, u^* and v^* are different fixed points of *F*.

$$\begin{split} \|u^* - v^*\| &= \|Fu^* - Fv\| \\ &\leq \frac{\alpha}{s} \left[\|u^* - Fv^*\| + \|v^* - Fu^*\| \right] - \psi \left(\|u^* - Fv^*\|, \\ \|v^* - Fu^*\| \right) \\ &= \frac{\alpha}{s} \left[\|u^* - v^*\| + \|v^* - u^*\| \right] - \psi \left(\|u^* - v^*\|, \|v^* - u^*\| \right) \\ &\|u^* - v^*\| \leq \frac{2\alpha}{s} \|u^* - v^*\| - \psi (\|u^* - v^*\|, *\|v^* - u\|). \end{split}$$

Which by property of $\psi = 0$, which is a contradiction.

On him $||u^* - v^*|| = 0$, that is $u^* = v^*$.

Funding

Self-funding.

References

- Alber YI, Guerre-Delabriere S. Principle of weakly contractive maps in Hilbert spaces. In: New results in operator theory and its applications; 1997. p. 7–22.
- [2] Bhardwaj R, Wadkar BR, Singh B. Fixed point theorems in generalized Banach Space. Intern J Comp Math Sci (IJCMS) 2015. ISSN, 2347-8527.
- [3] Choudhury BS. Unique fixed point theorem for weakly Ccontractive mappings. Kathmandu Univ J Sci Eng Technol 2009;5(1):6–13.
- [4] Kannan R. Some results on fixed points. Bull Calcutta Math Soc 1968;60:71-6.
- [5] Kannan R. Some results on fixed points—II. Am Math Mon 1969;76(4):405–8.
- [6] Khuen WN, Hassan AS. Fixed point theorems with various enriched contraction conditions in generalized Banach spaces. J Al-Qadisiyah Comp Sci Math 2022;14(2):15.
- [7] Ramakant B, Balaji R, Basant K. Fixed point theorem in generalized Banach space international. J Comp Math Sci IJCMS 2015;4:96–102.
- [8] Rhoades BE. A comparison of various definitions of contractive mappings. Trans Am Math Soc 1977;226:257–90.
- [9] Rus IA. Some fixed point theorems in metric spaces. Rend Istit Mat Univ Trieste 1972;3:169–72.
- [10] Shahzad N. Invariant approximations and R-subweakly commuting maps. J Math Anal Appl 2001;257(1):39–45.