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Abstract

This study deals with the problem of approximating the dynamic and static
analysis of plates by using equivalent grid-framework moded. The emphasis, for
plate analysis, is on the stability and vibration analysis. Numerical results are
presented for many example problems, and they indicate that the adopted method is
reasonably accurate. For vibration analysis of plates using beam-column analogy
the percentage of error is depends on mesh size.
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Notation:

Cross-sectional area i Mass per unit length of beam's
Flexural rigidity of plate span
Y oung's modulus v Poisson'sratio

Natural frequency, Hz p  Specific weight of dement

nlo—™m o >

Frequency functions, (i = 1 to 6) o Freguency of structure, rad / sec
Gravitational acceeration

Shear modulus of the material

Torsional constant

Member length

Stability functions, (i = 1to 6)

Plate thickness

Rotation

- (o Q@

>

Frequency parameter
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1. Introduction

The analysis of a plate under in-
plane or out-of-plane loads has been
attempted in various forms. series
solutions @, the finite eement
technique @ @, the finite strip method
@ the finite difference technique ©,
and grillage analyses® "9,

In this study a grillage method is
adopted based on a formulation
presented by Yettram and Husain
which can be most useful when
dealing with plate problems where an
exact series solution is difficult to
obtain, eg., plates with complex
boundary conditions.

The main difficulty in designing a
grid of orthogonally connected beams
to simulate a plate is due to the
Poisson's effect. This has a
considerable effect on deflections and
moment distributions in a plate,
whereas it has no effect on grids that
consist of unidirectional beams. So, in
order to simulate a plate by an
equivalent grid, the latter has to be
designed in such a manner that its
flexural behavior in all directions
must be coupled. This coupling will
be such that the grid deflection in any
direction will produce curvatures in
al other directions governed by the
plate bending relationships.

In deriving the stiffness properties
of the beam-column analog, the
following assumptions are made:

1. Thematerial is perfectly dastic.

2. The deflections are small reative
to the thickness of the continuum.

3. The thickness of the plate is small

relative to its other dimensions.

. The dements used are plane and

rectangular in shape.

5. The beams used for the analog are
only fictitious beams used to
construct the stiffness matrix of the
element.
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6. The moment intensities on the
plate eement are constant along
any edge.

The last assumption is true for
infinitesimal  dements, and the
accuracy of the results will depend on
the size of the mesh used.

The modd consists of side and
diagonal beams as in Fig. 1b. The
cross-sectional  properties of the
members are obtained by equating the
rotations of the nodes of the grid with
those of an dement of equal size,
when both are subjected to statically
equivalent moments and torques. A
rectangular grid modd with five
cross-sectional properties will define
uniquely a rectangular dement of a
plate. These properties are chosen to
be the flexural and torsional rigidities
of the side beams and the flexural
rigidity of the diagonals.

A computer program
(STAVIBPS) was developed here
using continuous mass method® and
Wittrick-Williams ~ method™®  for
solving for eigenvalues™.

2. Evaluation of the Cross
Sectional Properties

By considering the dynamic
stiffness matrix of each beam in the
grid-framework modd (Fig. 1), which
is given in the Appendix for vibration-
stability analysis and making
appropriate substitutions of dynamic-
stability functions given also in the
Appendix, the governing matrix
equation for the grid mode will be

{F}=[K]a}

where {F} and {d} are force and
displacement vectors and are given as

D
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Fr=M, My, Q M, M, Q
{IVIEX [l\l\::; Q M4X M4y ler (2)

{=b. 0, W d dy W g
q3x q3y W3 q4x q4y W4

In these matrices 6, 6y, and wi
are the rotations about the x- and y-
directions and the transverse
displacement; My, My, and Q; are the
moments about the x- and y-directions
and the transverse shearing force, for
anodei =1, 2, 3, 4 and [K] is the
dynamic stiffness matrix for plate
edement where the nonzero dements
of this matrix are™

k11 = k4,4 = k7,7 = lelO =

|
+ELE,( )+% (1,)8

El
kj,z =- k4,5 =- k7,3 :k1Q11 =- r_grsz(I d)

_ _E
kL _kae I(79 kmn_E(lsFA(l s)

+I F(I )
(4]
oo =5a£—;° F.()
+GJa, cota, +El k2 A )"-j
g
kasz'k\s,e:kagz'kmz Iz(?kz ( )

Kl .
<SRl

ki
El.
k2,6 = k812 =- k2|2 F3(I c)
K,g =Kg = - GJ’Salcscal
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Ky =Ksg = Eldk F(,)
Ky, = Kgo =- d kF( J)
e —'fg‘
SR+ 'r Fe(ld)g
Ky =Koy =- kEZ'I; F(.)

30 =Ko =3
k310 = k67 IEIIdz 4(I d)

Kyp =~ Kep =- rEs'Idz kF, (1 ,)

Ko = Koo =%F5(| J) ...(4)

This is considered to be the
dynamic stiffness matrix for plate
eement. For vibration with including
the effect of in-plane forces, the
frequency functions, Fi(4), 1 =1, 2, ...,
6, above are replaced with stability-
frequency functions Fi(a,b) as given
in the Appendix. For stability analysis
12 the stability functions S(f), i = 1,
2, ..., 4, are used and the dements of
dynamic stiffness matrix are modified
by replacing F1(2) to  F3(A) with S,(B)
to S(B), Fa(4) with - S(p), Fs(4) with
Sy(B) and Fe(2) with - S4(B).

For zero freguencies, the
frequency functions F;(4), are reduced
to the linear static case of plate-grid-
framework that is given by Yettram
and Husain ), which are used in the
derivation of properties of the
constituting éements of grid model.
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For the grid to simulate the plate
element, corresponding rotations must
be equal for the two systems (Fig. 1);
thus,

9,=0e, d, =0y,
and q5 :qlo

Q5 =0,
..(5)

4, =

where 0; to 05 are the rotations of the
plate dement when subjected to
unidirectional moment intensities M,
and M,, as in Fig. 1c and Fig. 1e and
sdf-equilibrating torque intensities H
aong each edge (Fig. 1g), and they
can be given as

_kIMm,
AT
EE =
125
_niM,
AT,
Eg =
125
—_ IM2
P o
Eg—:
125
nklM
q, =———-,and
&’ 0
Eg =
125
_ kI H(1+n)
5 3 = (6)
&0
Ee—=
12,

in which | and kI are the side lengths
of the dement, t is its thickness, v is
Poisson's ratio and E is the dastic
maodulus of the material.

The rotations 0 to 09 are the
corresponding rotations of the grid-
framework subjected to the same
moment and torque intensities and
they are
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_M,I%k e+,
©T 2 I+ +K3 I,
M1 I,

ST E R L KL,
Mk R KR
STU2E rR I, + 1,1+ KL,
RYRES I,

B = I, KL

311 2
ho =g a:3r3k|@ g )
2Egc—o++ 2K
é eEg 0

As in Fig. 1b, the side beams of
length | have equal second moments
of area |s and equal torsion factors GJs
/ E, and the side beams of length ki
have equal second moments of area I
and equal torsion factors GJ. / E. The
diagonals of length rl have second
moments of area |y and no torsional
stiffness.

Of Egs. 5 the second and fourth
are identical and the first three then
provide, when expanded and solved,
the second moments of area of the
grid members as

_(ke-n)i e
* 7 2k1-n?)12’
_f- k)i e
©” 2l-n?)12°

nri t°

|, = _
¢ 7 2k[1-n?)12

The last of Eg. 5 gives the torsion
factor

. (8

Gl _([-d)i ¢ 0
E 2-n?)12
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Substitution of the values 09 and w;
into the second of Eq. 1 yidds the
remaining cross-sectional property

GJ

S

E

(- )it

fn?) 12 (0

Whenk=1andv=0

o =1
s ¢ 212
l,=0,and

S_GJC_

(1)

For this case the grid reduces to one
consisting of side beams only, and of
equal flexural and torsional rigidities.

3. Plates Subjected to In-Plane
and Out-of-Plane Loading

The beam-column analog can also
be used to determine the interaction
between out-of-plane and in-plane
loads through using the stability
functions given in the Appendix. The
critical load of the plate under any
system of axial compressive loads can
be determined by considering the
effect of axial forces on the side
beams only and neglecting the axial
forces in the diagonal beams.

The in-plane distributed pressure
is replaced by a statically equivalent
system of concentrated loads at the
edge nodes of the analog (Fig. 2). The
effect of the in-plane compressive or
tensile loads is introduced simply by
substituting the values of the stability
functions, corresponding to such
loads, into the stiffness matrix of the
corresponding member of the analog.

4. Dynamic Analysis using Beam-
Column Analogy
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When considering the dynamic
behavior there must be additional
requirement that the mass per unit
area of the grillage must be the same
as that of the plate. In order to satisfy
this condition, the total mass of the
plate e ement must be the same as that
of its eguivalent beam-column analog
element.

Here the diagonal beams will be
assumed of zero mass. If each side
member of the beam-analog €ement
is assumed to be of constant mass per
unit length, thus for an dement of
dimensions | and kI, Fig. 3, the mass
per unit length of the member of
length | can be written as®?
m=Ktr /49 (12)
and that for the member with length ki
as.
m=ltr /4g (13)
in which t, p and g are the thickness,
material specific weight of the plate
and gravitational accderation
respectively. The values given in Egs.
12 and 13 are those for boundary
members and should be doubled for
inside members.

If beside the harmonic excitation,
the plate is subjected to in-plane static
loads, these loads must be applied as
statically equivalent [lumped loads
aong the members of the beam-

analog as explained previougly.
The dynamic-stability functions,
as given in the Appendix, are

expressed in terms of the static and
dynamic parameters g and A. If g and
A are calculated, the dynamic-stability
functions can be directly determined.
The dynamic behavior of the plate in
the presence of in-plane static loads
can thus be obtained by substituting
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these values of the dynamic-stability
functions into the stiffness matrices of
the members of the beam-analog

5. Natural
Computations

The frequency of the discrete
coordinate system may be given as
follows

Frequencies

| [K]- w?[m]|=0 (14)

The formulation of Eq. 14 is an
important ~ mathematical ~ problem
known as a linear eigenvalue problem.
There are many numerical methods *?
degling  with  egenvaue and
eigenvector problems.

In the continuous mass method ©
adopted here, the eigenvalue is of the

type

[Kw)fD} =0 (15)
where the dynamic stiffness matrix
[K(w)] is no longer a linear function

of »® and Eq. 15 is known as a
nonlinear eigenvalue problem. The
dynamic stiffness matrix [K(W)] has
in general a  transcendental
dependence on w?

The solution of EQ. 15 needs
methods different from those used to
solve the linear eigenvalue praoblem
given in Eq. 14. A powerful method
presented by Wittrick and Williams
19 js explained by Ali™® and adopted
here.

6. Applications

In order to check the accuracy of
the beam-column analogy when used
for the analysis of vibration and
stability of plates, several examples
have been worked out numerically.
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The examples are chosen to represent
different boundary conditions.

6.1 Example 1

Table 1 shows a comparison
between the results obtained using the
proposed grillage analogy and those
obtained using both Mohsin-Sadek's
beamranalog and exact series
solution, as given by Timoshenko®,
for a sguare plate with central
concentrated load under different
boundary conditions.

6.2 Example 2

To deemine the interaction
between out-of-plane and in-plane
loads, a simply supported plate under
the action of a uniform pressure, Ny,
as wdl as an out-of-plane central
load, P, is studied here, Fig. 4. Thein-
plane distributed pressure is replaced
by equivalent system of concentrated
loads at the edge nodes of the analog.

Fig. 5 shows the effect of the in-
plane compressive load, represented
by the non-dimensional factor, 7,
(g= NX/(4p2D/a2)) on the central
deflection  with  comparison  with
Mohsin and Sadek's ® solution using
ther modd of beamanalog. The
critical value of this load is that at
which § — o0 and, when extrapolated
from Fig. 5, it is found by Mohsin and
Sadek to be that corresponding to y =
0.97. Using Wittrick-Williams
method for solving the same case, it is
found that y = 0.9996 which is closer
to the exact solution given by
Timoshenko'? Yexact = 1.0.

6.3 Example 3

This example a sguare
cantilever plate and represents a
problem of considerable practical
interest and one for which no exact
solution is available. The first five

is
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natural frequencies are calculated
using the beam-column analogy
method and compared with:

1. The values obtained using the finite
dement technique with 12 terms
quartic element.

2. Beam-analog  method
Mohsin and Sadek ™2,

3. The experimental results.

In order to check the rate of
convergency, the analysis has been
done for mesh sizes of 6 x 6 and 4 x
4. The specimen wused, with
dimensions 300 x 300 x 2.23 mm, is
made of sted with the following
properties:
E = 21.575 x 10 N / mn?;
and p=78x10°N/mm’

Theresults are givenin Table 1 in
terms of the non-dimensional factor ¢

defined by
[3r il- vzi
E

in which f is the frequency in cps and
a is the plate side. Thus for the
dimensions and material used c is
given by c =0.01631f,. It is clear

from Table 2 that the results obtained,
using the beam-column analogy for
the present study are aways
converging towards the experimental
values. Even when a beam-column
analog with a coarse mesh size 4 x 4
is used, acceptable accuracy is
obtained.

used by

v=0.3

4a°f
pt

c=

6.4 Example 4

In order to check the accuracy of
the beam-column method in studying
the vibration of plates in the presence
of in-plane static loads, this example
has been carried out (Fig. 6).

The plate dimensions are taken
1000 x 1000 x 1 mm, and material
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properties are E = 21 x 10* N / mm?;
v=03 and p=78x10°N/mm’.

The intensity of the in-plane
hydrostatic tension N is assumed to be
gven by Na?/p?’D=10 which
correspondsto N = 1.896 N / mm. The
grillage used is of 8 x 8 mesh size and
thus the dstatically equivalent nodal
forces are 237 N / mesh. Table 2 gives
comparison of the results obtained
using the grillage method and those
obtained by Mohsin and Sadek™ and
the exact solution given in the same
reference from a research done by
Leissa™, for the first five natural
frequencies (cps) of the plate It is
clear from Table 3 that the results
obtained using the grillage method are
very close to the exact values obtained
by using the series solution.

7. Summary and Conclusion

A grid-based method used to deal
with plated structures including the
effect of both stability and vibration
on behavior. It was seen that the
method is efficient and accurate
enough to use in analyzing plates with
simple or complex support conditions.
It is obvious from applications and
examples solved that the method is
competitive compared with finite
element method.
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3 rl I
4 GJ./E k!
1
kI 2 kI GlL/E 72 ©xIE
€Y (b)
6 IM,/2 %
IM,/2
M1 M1
6, o,
Mi/2 IMy/2
(0) (d)
kIM / 2 kIM / 2
6, Mo (\ 2 2
Bs
M, 3! kiMz / 2 o KIM, / 2
(€) ()
My M H / 2 kIH /2
y KIH / 2
o %
2 H/2
AN A ﬁ H/2 "
My kHiz / IH/2
H/2
(9) (h)

Fig. 1: Plate dement and equivalent framework mode! .
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Nx |+ —  Nx
i a 1
(@
Pxl2__ __Px/2
Px — — P«
Py — — Py
P, — — P, Px=Nx.h
Px — — Px
Py — — Py
PX/ 2— - Px/ 2
hH a=nh 1
(b)

Fig. 2: (@) Square dement plate under action of uniform in-
planeload. (b) Beam-column analogy used.

M=Atp/klg

B <
o) A ~
~ S P
Q 1
2SOEA 1S Ao | <
< / N~
I 8
= R <

| kl |

Fig. 3: Lumping of the distributed mass of the plate element
into concentrated mass along the side beams of the analog.
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Table 1. Simply supported square plate of side a, central load P

using 6x6 grid (Example 1).
Present 0.01186
51 (Pa’ I D) Mohsin and Sadek® 0.01190
Exact® 0.0116
Present 0.3112
M/P Mohsin and Sadek® 0.3117
Exact® 0.2980
Present 0.118
R/P Mohsin and Sadek® 0.110
Exact® 0.122

Note Poisson'sratio, v = 0.3, § is central deflection, M is centra
moment, and R is concentrated corner reaction.

_— Fig. 4. Simply
supported  plate
under action of

Ne |0 | _ P N, uniform in-plane
pressure together

] ] with out-of-plane
— | ] central load
L (Example 2).

0.12 —— Present

+ Mohsin and
Sadek (1976)

0.08

5/(Pa’/D)

0.04

Y

Fig. 5. Effect of in-plane compressive load on central
deflection (Example 2).
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Table 2: The nondimensional factors for natural frequencies of
a square cantilever plate (Example 3).

Finite Mohsin and Present
G Element Sadek ™ Experimental
4x4  6%x6 | 4x4  6x6 | 4x4  6x6
¢ | 0352 0.352|0.347 0.351|0.347 0.350 0.351
Cc | 0.863 0.863|0.835 0.850| 0.829 0.846 0.858
G| 2182 2169|2039 2107|2038 2104 2.138
Cs| 2735 2.746| 2528 2.649| 2524 2.644 2.712
Cs | 3.133 3.138| 2955 3.055| 2922 3.038 3.089
N
EEEREREEEERREREE _
- 1 | 1000™
N -
kHHlHHHHHH )
1000™

Fig. 6. Simply supported plate under action of uniform in-
plane tension (Example 4).
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Table 3: The natural frequencies of a square simply supported
plate under tension N a*/ 7% D = 10 (Example 4).

Mohsin and =
f Sadek 9 Exact resent
' 88 8x8
f 11.95 11.96 11.94
f, 21.05 21.15 21.01
f3 29.10 29.30 29.24
f4 41.80 42.20 41.72
fs 53.90 54.80 53.50
APPENDIX: General Stiffness 6GJ
Matrix & a0, 0 0
g B, B,
The stiffness matrix for any & L 2 2
member of the analog shown in Fig. [k]=g El,
A.l IS e L3 6
¢
é .
{f} - [k]{d} (A1) & Symmetric
e
GJ u
where {f} and {d} are force and -, O 0 g
displacement vectors, and El, B, _Y
® 0 ZR R
El, EL_ g
0 B F, 5 R
a
galcota1 0 0 u
L u
El El ¥
El,_U
R
(A2
where
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I~

>
a, = oL EEG—I;Q (A.3)

a

in which o is the angular frequency, p
is the specific weight of dement, G is
the shear modulus of the material and
g isthe gravitational accderation.

The dynamic-stability functions,
F. to Fe, for a beam subjected to
harmonic loads, while under the
action of an axial load, P, are givenin
Ali ™, and are given here briefly.

Dynamic-Stability Functions

1 General case of dynamic
excitation in the presence of axial
static load:

(a2 +d?)(asinhd - dsina)

F.(a,d)=-
i f,(a,d)
F,(a.d)=
a? +d?)dcoshd sina - asinhd cos)
f,(a.d)
2 2
. (a.d)=- ad(a® +d?)(coshd - cosa)

f.(ad)

Flad)=
a({?iz - az)(coshd com- 1)+2adf sinlisira
flad

ad(a® +d?dsinhd + asina
o) e - asie)
1\

Fy(@,d)=
) ad(a’ +d?)(dcoshd sira+asintd cosa)

f,(a.d)

where
ép 2 4 L
azéb—+&b—+l“g a (A.4)
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€ Rh2 4 --]/201/2
d=¢ b? +aEbT #1142 g
& )
Q6
b=Lc=+ (A.6)
eEl g
1
2 57
| = BAWEO A7)
§ B 5
and
f,(a,d)=
2ad(costticosa - 1) + (& - d?)sinhd sira
..(A.8)
2. Case of dynamic excitation

with zero axial static load:

F (I _. sinhA- sind
' coshAcosi - 1
E (I ):-I coshl sinl - sinhl cod
2 coshl cosl -1
Fs(l):- P coshi- cost
coshAcosA- 1
= ()v): 2 sinhAsinA
N coshAcosa - 1
= ()v): P snhA+snA
° coshAcosa - 1
E (l):- fcoshlsinﬂsinMCosi
6 coshl cost-1

3. Case of static loading:
a. Axial compressive load;

_ _ b(sinb-b)
Fi=s(b)= b sinb +2(cosb - 1)
_ _ b(sinb - bcosh)
F=S(b)=- b sinb +2(cos - 1)

F. =s,(b)= b2(cosb - 1)

) b sinb +2(cosb - 1)
I:4 =- S?,(b)
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b ®sinb

F. = =
»=Si(b b sinb + 2(cosb - 1)

)
Fe :'84(b)

b. Axial tensileload;

_ _ bf(sinhb - b)
Fi=5b)= b sinhb - 2(coshb - 1)
F =5 (b)= b(sinhb - bcostb)

" bsinb - 2(costb - 1)

ds, f3

Grillage Analysis of Plates for Vibration
and gability

(b)= b?(coshb - 1)

de, fo

B =S 00)= b - 2o - 1)
F4:'Sta(b)
bsintb

F.=S,(b)=-

=5b) b sintb - 2{costb - 1)
Fes:' 4(b)

X

I ds, f4

|

[

- ds, fs

/4 -
y
dy, f / /Ld,Z! fa

Fig. A.l: Deformations d; and reactions fi in member

coordinate axes system, xyz.



