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ORIGINAL STUDY

On fuzzy Soft Modular Space

Rand R. Huniwi , Noori F. Al-Mayahi

Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq

Abstract

In this paper, we will present a definition of fuzzy soft modular space and some properties of fuzzy soft modular
(convergent, continuous, bounded) are explained Instead of the prevailing definition.

Keywords: Fuzzy set, Soft set, Fuzzy soft set, Fuzzy soft metric space, Soft modular space

1. Introduction

I n 1999, Russian researcher Molodtsov [1] origi-
nated the idea of soft set theory as a Mathe-
matical tool for dealing with uncertainty and
decision making problems. There are Many prac-
tical applications of soft set theory in various fields
of sciences including social Sciences, physics, engi-
neerin economics, computer science and medical
sciences. Maji et al. [4] applied soft set theory in
decision making problems and defended many op-
erations on soft sets. Yildirim et al. [3] presented the
notion of soft ideal for a soft topological space and
defined soft I-Baire spaces for a soft ideal topologi-
cal spaces as well. Soft topology and soft metric
spaces has studied by many researchers in the last
decade [6], [7].

2. Basic concepts about soft sets
2.1. Definition (2.1) [2]

A pair (F, E) is said to be a soft set over X, where F
is a function given by F:E—P(X)

2.2. Definition (2.2) [5]
Let R be the set of real numbers, B(R) be the

collection of all non-empty bounded subsets of R
and E taken as a set of parameters. Then a function

F: E—B(R) is called a soft real set. If a soft real set is
a singleton soft set, it will be said a soft real number
and denoted by 7,5,f etc. 0 and 1 are the soft real
numbers where 0(e) = 0, 1(e) =1 for all e€E.

2.3. Remark (2.3) [3]

The set of all soft real numbers is denoted by R(E)
and the set of all non-negative soft real numbers by
R" (E).

2.4. Remark 2.4) [7]

Let 7,5,tE€ R(E). Then the soft addition 745 of 7,5
and soft scaler multiplication ¢*7 of ¢+ and r are
defined by:

1. (7 + 5)(e) = 7(e) + 5(e), for all e<E.

2. (¥ — 8)(e) = 7(e) — s(e), for all eE.

3. (7:5)(e) =7(e)- 5(e), for all e€E.

4. (v/s)(e) =7(e)/s(e), and 5(e)#0 for all e<E.

2.5. Remark (2.5) [3]

For two soft real numbers 7,5, we have:

1. If 7<8, then 7 + t<& + t ; for all tER(A).
2. If #<5, then 7 - i< - f ; for all tER(A)".
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2.6. Theorem (2.6) [5]

Let Fg,Gg, HE are soft sets in S(X), X,# @ . Then the
following hold:

(i) Ve€EL, (e, @) EF:.

(i) X € [FOGE] iff X, EFp V% EGg.
(lll) X, € [FEOGE] iff x, GFE /\ X IS GE
(iv) x.€ [FE\GE] iff xEEFE/\ xeGEGE

2.7. Definition (2.7) [7]

A soft point (F,E) over X is said to be a soft point if
there is exactly one e € E, such that

F(e) = {x} for some x € X and F(e) = @, Vee
E/{e}. It will be denoted by X.

2.8. Definition (2.8) [7]

Let (F, E) be a soft set over X. The set soft (F, E) is
said to be a soft vector and denoted by x, if there is
exactly one e €E. Such that F(e) = {x} for some x €
X and F(e) = &,

V e €E\{e} set. The set of all soft vector over X
will be denoted by SV(X).

2.9. Definition (2.9) [7]
The set SV(X) is called soft vector space.
2.10. Theorem (2.10) [6]
Every soft set can be expressed as union of all soft

points belonging to it. Conversely, any set of soft
points can be considering as a soft set.

2.11. Definition (2.11): [4]

A pair (F,E ) is called a fuzzy soft set over (X,E ), if
F: E—>IX is a function from E into IX. The collection
of all fuzzy soft sets over ( X,E ) is denoted by F(X,
E).

2.12. Definition (2.12) [4]
A Fuzzy soft set (F,A) over (X,E) is said to be an

absolute fuzzy soft set, if for all e € E, F(e) is a fuzzy
universal set 1 over X and is denoted by E.

2.13. Definition (2.13) [4]
A fuzzy soft set (F,E) over (X, E) is said to be a null

fuzzy soft set, if forall e € E, F(e) is the null fuzzy set
0 over X. It is denoted by & .

2.14. Definition (2.15) [4]

For two fuzzy soft sets (F,A) and (G, B) in F(X,E)

we say that (F,A)C (G,B) if AC B andF(e)(x)
< G(e)(x).
2.15. Definition (2.16) [4]

Two fuzzy soft sets (F,A) and (G,B)in F(X,E)

are equal if FC Gand GC F.
2.16. Definition (2.17) [4]

The different between two fuzzy soft sets (F,A)
and (G,B) in F (X, E) is a fuzzy soft set ( F/G,E) (say)
defined by ( F/G) (e) = F(e)/G(e) for each e<E.

(F/G)(e) : X = I,(F/G)(e)(x) =F(e) ()N (G(e) (x)*
=min{F(e)(x),G (e)(x)}VxEX.

2.17. Definition (2.18) [4]

The complement of a fuzzy soft set (F,E) is a fuzzy
soft set ( F°, E) defined by F° (e) = 1/F(e) for each
e<E,

(F*(e))(x) =1 — E(e)(x) VxEX.

2.18. Definition (2.19) [1]

Let (F, A) and (G, B) be two fuzzy soft sets in F (X,
E) with AnB=+ @, then:

a) their intersection ( FNG,C) is a fuzzy soft set,
where C=ANB and (FNG)(e) =F (e)nG(e) for
each eeC, (FNG)(e)(x) = min {(e,F.(x)),(e,G,(x))

b) their union (FUG,C) is a fuzzy soft set, where
C=AUBand (FUG)e=F(e)UG(e) for eachesC
(FUG)(e)(x) =max {F(e)(x), G(e) (x)}

3. Fuzzy soft modular

In this section We will define a fuzzy soft modular
space and some properties.

3.1. Definition (3.1)

Let SV(X) be a soft vector space over a field F, A
function M: SV(X) —-R" (I) is said fuzzy soft
modular on SV(X) if satisfies the following
condition:

1. M(fe) = 0 % =0, xa€ SV (X).
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2. M(axel) (xﬂ) or &€ F with |a| =
3. M(axe1 +6y62)<M xﬂ @M yez iff &
all %1,7,,€ SV(X).

1
, 8>0, for

The soft vector space SV(X) with the fuzzy soft
modular M on X is said to be a fuzzy soft modular
space and denoted by (X, M).

3.2. Example (3.2)

Let SV( ) = R? with M(xe1,ye2 —xel@yez, for any
pair (X.,7,,) in SV(X), then (X, M)is fuzzy soft
modular space.

3.2.1. Solution
Let (%.1,7,,), €R* and v,8,A€F with v + 8 = 1

1. Since M (¥1,¥,,) = 0 if and only if X1@Dy,, =0
and since

¥a @Dy, = 0 if and only if %, = Vo = 0, then
M(xe1,yez2) =0 if and only if the pair (¥%.,7,,) the
zero in R

2. M('Y(Xelaygz)) = M((Wel#?ez)) = Yi'el@ﬁ’yez-

Since lv] = 1, then M((%e1, V,)) = %@y, =
M((%e1,9,))-

3. M(a(kehyez) + 5(2%37;1@)) = a(xelaya)@ﬂ(ze&a&;)

< <a (xﬂeayez) ) ® (ﬁ (283@9 62) ) |

Let N =%, Dy,,, M=z, Dd,,

= oN@GBOM, where g :X — X (by definition
1OA)

= g(N) D gM)

Thus R? is fuzzy soft modular space

3.3. Definition (3.3)

A function ©: SP(X) X SP(X)—» R" ()is said to be
fuzzy soft metric on SP(X) if § satisfies the following
conditions:

1. (a1, ¥,,) >0 for all %a,7,,€ SPX).

2. 3? (¥e1, ¥,,) = 0 if and only if X;; = 26 SP( X)
3.9 (o1, Yp) = 9 ( yez,xel) for all X1, ¥,, € SP(X).
4.9 (7 Yoo Ze3) < < @ Ger, U9 ) D D (1, Ze3) for all &g,

ye2, Ze3 IS SP( )

The soft vector space SP(X) with the fuzzy soft
metric $ on X is said to be a fuzzy soft metric space
and denoted by (X, 9 ).

3.4. Definition (3.4)

A sequence of soft vectors {x.,} in (}u(, M) is said to
be convergent to Xif V&> 0,

AkEZ such that M( X, —X,,) <%, ¥Vn>k and is

denoted by X, —¥X,as n—o0 or hm X, = = ey,
Xo,is said to be the limit of sequence %, as 11— co.

3.5. Definition (3.5)
A sequence {X,,} in (X, M) is said to be a Cauchy

sequence if corresponding to every &>0, 3
meEN such that M(X,, — X)) <& ¥V n,j >m,ie

M <5cen —Xej> — 0,asn,j— co.

3.6. Definition (3.6)
Let (X,M) be a fuzzy soft modular space. Then

(X,M) is said to be complete if every Cauchy
sequence in X convergent to a soft vector of X

3.7. Theorem (3.7)

Every fuzzy soft modular space (X,M) is soft
metric space (X , ).

3.7.1. Proof
_Let (X,M) be a soft modular space, defined
$:SV(X) x SV(X)— R" (I) by

) (azel,gez > =M <x -, ) for all x,,,7,, € SV(X)
1. Let all &,,7, € SV(X)
%, 0y, — M <xe1 -, > >0- 6 <i21,y82 ) >0.

2. Let all %,,,7, € SV(X)

‘6 (5"81’?/32 ) :GQM (‘iel _yez ) :6©x€1 _yez

=0e%x, = yez .

3. Let %,,,7, €SV(X)
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@(y):M< yez> M(‘@ ‘))
o)

4. Let %o, 7,, , Z3 € SV(X)

M <x -7, ) =M ( (x - zes> (zes Yer ) )
M (223 ~7, )
=6 (x e, ) <9 (x —263) o <2es ~ Ty ) :

It follow that ( X, ) is fuzzy soft metric on X and
this fuzzy soft metric is called the fuzzy soft metric
induced by fuzzy soft modular.

3.8. Definition (3.8)

Let (X, M) be a fuzzy soft modular space. The
fuzzy soft open ball with center %, € SV(X) and
radius 7 > 0 is denoted and defined by

B(icel,?) = {gezéxM ‘M (x ~7, ) 27}

Similarly, the fuzzy soft closed ball with center
X, € SV(X ) and radius 7 > 0 is denoted and defined
by

B<xq,> {yez XM:M<Xgl—ye2>§r}.

3.9. Definition (3.9)

Let (X,M) be a fuzzy soft modular space and
ACX we say that A is fuzzy soft open set if for every
X,, € A there exist 7 >03B(%,,,7)C A . A subset A of
X is said to be fuzzy soft closed if its complement is
fuzzy soft open, that is, A“=X — A is fuzzy soft
closed.

3.10. Definition (3.10)

Let (X,M),(Y,M) be two fuzzy soft modular
spaces. The linear function f:SV(X)—Y is said
bounded if f(A) is bounded set in Y for all A
bounded set in X.

i-e : V{A bounded set in SV(X) f(A) bounded set
in Y}.

3.11. Theorem (3.11)

Let (X ,M)and (Y ,M) be a two fuzzy soft
modular spaces and let

Xe, = Xy, Y, ye , such that {%,} and {y, } are
two. sequences in SV(X) and «,BEF/{0} then

of (Xe,) + Pg(5,,) = of (%o )DBE(7,,) whenever f and
g are two identity functions.

3.11.1. Proof
Let Xen —>er and ]?en _)yel

(o)l (o) ()

Since M( %,, %) —0 and M(§, —y,)—0
_Then B
M((a(f( %) +068( ¥,,) —(af ( %) +68( ¥,,))) — O as
n— o

Then of ( X,) + 68(¥,,) = of ( X, )DBS( 7e,)-
3.12. Definition (3.12)

Let (X,M),(Y,M) be two fuzzy soft Modular
spaces. The function

f:X — X is said to be continuous at ¥,, € SV(X) if
for all ¢ > 0 and there exists 6 > 0 such that for all
X, € SV(X)

(o)t =) o)<

The function f is called continuous function, if it
continuous at every point of SV(X).
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3.13. Remark (3.13)

Every identity function in fuzzy soft modular
space (X ,M) is continuous functions in fuzzy soft
modular space.

3.13.1. Proof

For all &> Otakez=6.0>0 M (%, —%,) <
OM(f (%e,) —f (Xey)) = M(%,, —%,) <0<E then f is
continuous at X,, Since ¥,, is an arbitrary point then f
is continuous function

3.14. Theorem (3.14)

Let X be fuzzy soft modular space over F. Then the
function f : X— X, f (¥ers ¥,, ) = %e,Dy,, is continuous
functions.

3.14.1. Proof

Let Xy, € SV(X) and {xe,},ye,} € SV(X) such
that X,, — Xe, and y, =1, asn— oo

o) o)) ()
- (x +yeo>) =M ((x — ) <ye,, y))
< (5, -5, ) DM (y - y)

Since M (¥,, —X,,) —0 and M(yen ~¥,,)—>0asn — oo,
weﬁave -
M(f xen’?e f('i‘e‘pye ))_>0 as n— oo

Then f (xgmye )= f (%ey, yel) as n —oo is continuous
function at (xel,ye ) and (Xe,,Y,, ) is any point in X x X
, therefore f is continuous function

3.15. Theorem (3.15)

Let (X, M), (Y, M) be a fuzzy soft modular spaces,
then the function f:SV(X)—Y is continuous at
%, € SV(X) if and only if for all sequence {%,}
convergent to %, € SV(X) then the sequence
{f( %)} is convergent to f( %) inY

3.15.1. Proof
Suppose the function f is continuous in xo and let
{ %} is a sequence in SV(X) such that &, — .
Let £€(0,1), since f is continuous in X,,= there

exist _0>0, such tl}at for all
Xe, ESV(X) : M( Xy —Xey) < 0= M(f(Xey) —f(Xep)) <
€ Since

X, —X0,0>0, there exist k€Z* such that

M X, —Xey) <% for all
M(f( %e,) —f (X)) <eforalln >k

Thenf (5, ) =f( )

Conversely suppose the condition in the theorem
is true.

Suppose f is not continuous at ¥,,.

There exist £> 0 such that for all 6> 0, there exist
%, € SV(X) and

(o) i) (1)

That is mean %, — ¥, in SV(X) but f( %) »f( i)
in Y this contradiction, f is continuous at .

n>k hence

3.16. Theorem (3.16)

Let (X, M), (Y M) be fuzzy soft modular spaces
and let f : SV(X)—Y be a linear function. Then f is
continuous elther at every point of SV( ) or at no
point of SV(X).

3.16.1. Proof

Let %, and %, be any two point of SV(X) and
suppose f is continuous at X, € SV(X ), Then for
each £> 0 there exist 6> 0 such that ¥,, € SV(X).

M (%o~ To, ) < 5= MF (%) Fe1)) <2

Now M( %o ~%e,) <8 M( %y 45, — T ) —er) <3

= M(f( )4 Fer) =5 G2 )~ Fer) ) <
:M(f( xeo)—f J'C@Z)) <z

then f is continuous at i, € SV(X), since %, is an
arbitrary point, then f is continuous.

3.17. Corollary (3.17)

Let (X, M), (Y, M) be two fuzzy soft modular spaces
and let f:SV(X)—Y be a linear function. If f is
continuous at 0 then it is continuous at every point.

3.17.1. Proof
Let { X,y be a sequence in SV(X) such that %,, — X,
Since f is continuous at 0, then:

For all §> 0, there exist 6> 0,: (X, — X, )SV(X)
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w( (-5, )~0) <=2 (.-, ) ~(0)) <z
dfen)es-sl o) o) )
( IORIOR

M

) <0>) <5,

Xe, —5€e0> <6 :>M<

(s
(5,50 ) <5 =d( () (5 ) ) <=

Xe, = Xe, = [ (Xe,) = f( X¢,) Then f is continuous at X,,
Since %,, is arbitrary point, therefore f is continuous
function.

3.18. Theorem (3.18)

Let (X,M),(Y,M) be two fuzzy soft modular
spaces. If the function

f:X—Y,g:X—Y are two continuous functions
then:

1. f + g is continuous function.
2. kf where k€F/{0} is continuous function.

3.18.1. Proof

Let {%,} be a sequence in SV(X) such that ¥, —
X, Since f and g are two continuous functions at X,,,
Then for all >0 there exist 6>0 such that for
all %, €SV(X) : M(%,, — %) <0=>M(f(X,) —
f(&)) <%,

And M ( %,

Now M((f+g) <xL) —(f+g) (&1)),

) <b=o(n) 5{x) <

() () () (),
AR 1)

< (ee)(x (2)}:y Dz=x},

Therefore f + g is continuous function.

) =sup{min{e(y)

2. Let { %, } be a sequence in X such that x,, = %,
then for all _E>6 there exist 6 >0 such that
M( x,, —X.,) <06 implies M(f( X,,) — f( %)) < €

_Then for all & >0 there exist 6>0 such that
M(x,— x) < 6 implies

(i) 0(e)) (e
() slee) o)<
Therefore kf is continuous function.
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