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ORIGINAL STUDY

Bayesian Analysis of Left Censored Regression With
Normal-compound Gamma Priors

Ahmed Alhamzawi a,*, Gorgees S. Mohammad b

a University of AL-Qadisiyah, College of Science, Department of Mathematics, Iraq
b University of AL-Qadisiyah, College of Education, Department of Mathematics, Iraq

Abstract

This paper presents a Bayesian estimation of left censored regression models with scale mixture of normal-compound
gamma priors. We presented a new hierarchical modeling for Bayesian inference in left censored regression models. We
derived a Gibbs sampling algorithm from this Bayesian hierarchical modeling to estimate the regression parameters
with an efficient EM algorithm for updating the hyperparameters. We illustrated the new model using simulation
studies and a real data analysis. The results show that the proposed model performs very well in comparison to the other
existing models.

Keywords: Tobit regression, Normal-compound gamma prior, Gibbs sampler

1. Introduction

T he issue with censored data is that traditional
methods can no longer be used in the standard

problems of Statistics. Tobit regression introduced
in Ref. [14] is a special case of censored regressions
which covers a large class of models where the
dependent variable is censored beyond some
threshold. These models in addition to the Cox
proportional hazard model [7], the accelerated fail-
ure time [10] and several others where proposed to
overcome the bias caused by the censoring of the
data. The main attractiveness and reason for wide
use of the Cox model is the possibility do variable
selection without any assumption on the duration
variable. Kalbfleisch et al. [11] and Efron, B [8].
established that the Cox model produces nearly
fully efficient estimator. However, this model is very
limited in some cases especially where the propor-
tionality of the hazard function is not verified by the
data. For this, the accelerated failure time models,
unlike the Cox model, suffers from the problem of
the need of setting a distribution for the duration.
Additionally, these models are not consistent, that

is, the bias doesn't vanish as the size of sample in-
creases. There are several examples of censored
data such as the demand of capital goods in
econometrics [14], the time of recovery after surgery
in biomedicine or the number of repeat arrests of
prisoners [16]. These examples and others demon-
strate the need for developing methods that provide
consistent estimates for censored data.
In this paper, we will be concerned with the Tobit

model which modifies the likelihood function
depending on the value of the latent dependent
variable such that the resulting function has
different sampling probability for each observation
which is a consistent estimator for large samples as
was shown in Ref. [2]. While the method of
maximum likelihood and other related methods
maybe used for uncensored data, these methods
cannot be applied for censored data. The main
problem stems from the fact that the method of least
square is not valid for censored observations. There
are several variations of the Tobit model depending
on where censoring occurs, we will focus in the
standard Tobit model
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yi¼max
�
y*i ;0

�
; i¼1;/;n ð1Þ

and

y*i ¼xTi bþ ei ð2Þ

where the observable yi as equal to the latent
random variable y*i for positive values and zero
otherwise. The above regression model is defined
by the matrix of covariates Xn�p ¼ ðx1;/; xpÞ , an
unknown regression coefficient vector bp�1 ¼
ðb1;/;bpÞT and the vector en�1 ¼ ðe1;/; enÞT where
each ei has a normal distribution with mean zero
and variance s2.
In the following sections, we will introduce the

mormal-compound gamma (NCG) prior for Tobit
regression. In addition, the Markov chain Monte
Carlo (MCMC) and Monte Carlo Expectation-
Maximization (MCEM) sampler for the Tobit model
will be derived. Finally, we will use simulation
studies and real data set to compare our model with
different priors.

2. Normal-compound gamma prior

In recent years, different priors of the form of
scale mixture of normals for the regression co-
efficients has been used in sparse regression
[5,6,13,17]. Perhaps one the most famous of these
priors is the horseshoe prior [6] which is defined as

bi

���rest � Nð0;s2z1Þ;z1=21 � Cþð0; z2Þ;and z1=22 � Cþð0;
1Þ, where Cþ is the half-Cauchy distribution or
alternatively:

z1 � Gð1=2;z2Þ;

z2 � IGð1=2; z3Þ;

z3 � Gð1=2; z4Þ;

z4 � IGð1=2;1Þ

where G is the gamma distribution, IG is the in-
verse-gamma distribution and zi indicates a vector
of length p while zi is a scalar. Another example is
the Three-Parameter Beta Distribution [3,4] (or the
Scaled Beta2 (SBeta2) family of distributions [12])
which is given by:

bi

��rest�N �0;s2z1
�
;

z1 � Gða;z2Þ;

z2 � IGðb;fÞ

where f is some constant. This is sometimes called
the Normal-Beta Prime (NBP) prior for f ¼ 1. In this
paper, we seek to generalize these compound
gamma priors for the scale mixture and propose the
prior of the form

pðxÞ¼
Z ∞

0
…

Z ∞

0

"YN
i¼1

zciiþ1

GðciÞz
ci�1
i expf�ziziþ1g

#
dz2…dzN

ð3Þ

where z1 ¼ x, zi are the latent variables, ci are the
hyperparameters for our prior and zNþ1 ¼ f is some
constant. In Alhamzawi, A. and G. S. Mohammad
[1], we have presented a study of this prior in the
contest of posterior consistency, where it was shown
that this model achieves posterior consistency under
some conditions. Furthermore, we derived the
Markov chain Monte Carlo (MCMC) and the Vari-
ational Inference (VI) methods for this model. In this
paper we seek to further study the properties of this
model in the context of censored data. Fig. 1 clearly
shows the shape of the prior for different values of N
and c1. In order to simplify our prior, we use the
following

Fig. 1. A plot showing the behavior of the density (3) with changing parameters for N and c1 (left: c1 ¼ 0:3 and right c1 ¼ 1:3). The solid, dashed and
dotted lines represent N ¼ 3;N ¼ 4 and N ¼ 5, respectively.
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Proposition 1. If z1 � CGðc1;…;cN ;fÞ, where CG is the
compound gamma distribution, then

ð1Þ z1�Gðc1;z2Þ;z2�Gðc2;z3Þ;…;zN � GðcN ;fÞ ð4Þ

ð2Þ z1�Gðc1;1Þ;z2�IGðc2;1Þ;…;zN �AGðN; cN ;fÞ
ð5Þ

where AGðN; a; bÞ ¼
�Gða; bÞ odd N
IGða; bÞ even N

CGðc1;…; cN ;fÞ is compound gamma of order N and
Gða; bÞ is the gamma distribution with shape a and
inverse scale (rate) parameter b.

proof of Proposition 1. The proof is provided in [1].
Thus, our hierarchal model is given by

yi¼max
�
0;y*i

�
; i¼1;/;n;

y*i ¼xTi bþ ei; ei � N
�
0;s2

�
;

bi

�����z1;…;zN ;s2 � N

 
0;s2

YN
i¼1

zi

!
;

zi �AGði; ci;fÞ;

s2 � IGðc0;d0Þ:

3. The full conditionals

The full conditional probability is given by

1. Update y*i

y*i

�����yi;b;s2 �
(
d
�
yi
�

y*i >yi;

N
�
x0ib;s

2
�
I
�
y*i � yi

�
otherwise;

where the distribution of dðyiÞ is that it concentrates
all of its mass on yi and I is the indicator function.

2. Update b

P
�
b
��X;y*;y;z1;…;zN ;s2

�
fP
�
y*jb;s2

�
pðbÞ;

fexp
�
� 1
2s2

ðy* �XbÞTðy*�XbÞ� 1
2s2

bTZ�1b

�
;

fexp
�
� 1
2s2

�� 2y*
T
XbþbTXTXbþbTZ�1b

��
; ð6Þ

¼ exp
�
� S

2s2

	
� 2mT

bbþbTb

�

;

where mb ¼ S�1XTy*, Z ¼ daigðQN
i¼1zi1;…;

QN
i¼1zipÞ

and S ¼ XTXþ Z�1. Therefore, we have the normal
distribution Nðmb;S

�1s2Þ. Forodd k we have

3. Update zk (for odd k)

P
�
zkjX;y*;s2;z1;…;zN

�
fp
�
bi

��z1;…;zN ;s2
�
pðzkÞ

f
1ffiffiffiffiffi
zk

p exp
�
� bTZ�1b

2s2

�
� ðzkÞck�1 exp f�zk4kg; ð7Þ

fðzkÞ

�
ck�1

2



�1

exp
�
� 1
2

�
bTZ�1

�kb

s2
ðzkÞ�1þ2zk4k

��
;

where 4k ¼ 1þ ðf�1ÞIðk�NÞ and Z�k ¼
daigðQN

i¼1;iskzi1; …;
QN

i¼1;iskzipÞ. Thus, we have the
generalized inverse-gaussian distribution

GIG
	
bTZ�1

�kb

s2
; 24k; ck � 1

2



. For even k, we have

4. Update zk (for even k)

P
�
zkjX;y*;s2;z1;…;zN

�
fp
�
bi

��z1;…;zN ;s2
�
pðzkÞ

f
1ffiffiffiffiffi
zk

p exp
�
� bTZ�1b

2s2

�
� ðzkÞ�ck�1 exp

�
�4k

zk

�
; ð8Þ

fðzkÞ
�

�
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�1

exp
�
�
�
bTZ�1

�kb

2s2
þ4k

�
ðzkÞ�1

�
;

which is the inverse-gamma distribution IG
	
ck þ 1

2;

bTZ�1
�kb

2s2 þ 4k



.

5. Update s2

P
�
s2jX;y*;z1;…;zN

�
fP
�
y
��b;z1;…;zN ;s2

�
p
�
bi

��z1;z2;…;zN ;s2
�
p
�
s2
�

f
�
s2
��n=2 exp

(
� ðy* �XbÞTðy* �XbÞ

2s2

)

� �s2
��p=2 exp

�
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2s2

�
ð9Þ

��s2
��c0�1

exp
�
�d0
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�
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f
�
s2
��
�

nþpþ2c0
2



�1

exp

(
� ðy* �XbÞTðy* �XbÞ þ bTZ�1bþ 2d0

2s2

)

this is again the inverse-gamma distribution

IG
	
nþpþ2c0

2 ;
ðy*�XbÞT ðy*�XbÞþbTZ�1bþ2d0

2



.

As for the hyperparameters ck, we follow the
method provided in Ref. [1] by proposing an
Expectation Maximization Monte Carlo (MCEM)
method [15] with

G0ðckÞ¼
Xp
i¼1

ð�1Þkþ1
Ecoldk

½log ðzkiÞjy�þ cN log ðfÞIðk¼NÞ

4. Simulation studies

In this section, we compare the performance of
our Gibbs sampler (tNCG10) with the Beta prime
prior for scale parameters for tobit data with the
NCG prior (tNCG2), the tobit horseshoe (tHorse-
Shoe), Bayesian tobit quantile regression (Btqr),
Bayesian adaptive Lasso tobit quantile regression
(BALtqr) and the classical tobit method (Tobit). For
tobit horseshoe we use our Gibbs sampler with N ¼
4 and fix c1 ¼ c2 ¼ c3 ¼ c4 ¼ 0:5. All the results in
these simulations will be averaged over 100 repli-
cations and presented in Tables 1e3 with their
associated standard deviations (sd) listed in the
parentheses with the mean squared error (MSE), the
false positive rate (FPR) and the false negative rate
(FNR).

Table 1. Results for example 1.

Methods s2 MSE (sd) FPR (FPRsd) FNR (FNRsd)

tNCG2 1 0.0454 (0.0344) 0.0100 (0.1000) 0.0000 (0.0000)
tNCG10 1 0.0291 (0.0303) 0.0100 (0.1000) 0.0000 (0.0000)
tHorseShoe 1 0.0418 (0.0330) 0.0100 (0.1000) 0.0000 (0.0000)
Btqr 1 0.2026 (0.1016) 0.5400 (0.8459) 0.0000 (0.0000)
BALtqr 1 0.1386 (0.0746) 0.2600 (0.4845) 0.0000 (0.0000)
Tobit 1 0.1860 (0.1451) 0.0000 (0.0000) 0.0000 (0.0000)
tNCG2 9 1.4470 (0.8713) 0.1600 (0.3949) 0.2400 (0.4292)
tNCG10 9 1.2977 (0.8091) 0.0600 (0.2387) 0.2900 (0.4560)
tHorseShoe 9 1.3789 (0.8180) 0.0700 (0.2564) 0.2300 (0.4230)
Btqr 9 2.1650 (0.9438) 0.4500 (0.5752) 0.1400 (0.3487)
BALtqr 9 1.6910 (0.8286) 0.2100 (0.4333) 0.2100 (0.4094)
Tobit 9 1.8141 (0.9094) 0.0000 (0.0000) 0.0000 (0.0000)
tNCG2 25 1.1154 (0.8142) 0.0300 (0.1714) 0.0000 (0.0000)
tNCG10 25 0.6907 (0.6219) 0.0100 (0.1000) 0.0000 (0.0000)
tHorseShoe 25 1.0170 (0.7498) 0.0200 (0.1407) 0.0000 (0.0000)
Btqr 25 4.3371 (2.0923) 0.6200 (0.8261) 0.0000 (0.0000)
BALtqr 25 2.4953 (1.4605) 0.2600 (0.5049) 0.0000 (0.0000)
Tobit 25 3.6516 (1.5782) 0.0000 (0.0000) 0.0000 (0.0000)

Table 2. Results for example 2.

Methods s2 MSE (sd) FPR (FPRsd) FNR (FNRsd)

tNCG2 1 0.1469 (0.0877) 0.0500 (0.2190) 0.0000 (0.0000)
tNCG10 1 0.1404 (0.0850) 0.0500 (0.2190) 0.0000 (0.0000)
tHorseShoe 1 0.1637 (0.0883) 0.0800 (0.2727) 0.0000 (0.0000)
Btqr 1 0.2525 (0.1254) 0.3800 (0.6159) 0.0000 (0.0000)
BALtqr 1 0.2051 (0.1072) 0.1900 (0.4191) 0.0000 (0.0000)
Tobit 1 0.3769 (0.9249) 0.0000 (0.0000) 0.0000 (0.0000)
tNCG2 9 1.4470 (0.8713) 0.1600 (0.3949) 0.2400 (0.4292)
tNCG10 9 1.2977 (0.8091) 0.0600 (0.2387) 0.2900 (0.4560)
tHorseShoe 9 1.3789 (0.8180) 0.0700 (0.2564) 0.2300 (0.4230)
Btqr 9 2.1650 (0.9438) 0.4500 (0.5752) 0.1400 (0.3487)
BALtqr 9 1.6910 (0.8286) 0.2100 (0.4333) 0.2100 (0.4094)
Tobit 9 1.8141 (0.9094) 0.0000 (0.0000) 0.0000 (0.0000)
tNCG2 25 3.2497 (1.6826) 0.1100 (0.3145) 0.6100 (0.4902)
tNCG10 25 2.9618 (1.5235) 0.0500 (0.2190) 0.7600 (0.4292)
tHorseShoe 25 3.0524 (1.5256) 0.0700 (0.2564) 0.7100 (0.4560)
Btqr 25 4.5313 (2.1146) 0.2600 (0.5049) 0.4900 (0.5024)
BALtqr 25 3.5570 (1.7871) 0.1300 (0.3380) 0.6200 (0.4878)
Tobit 25 3.9734 (1.7510) 0.0000 (0.0000) 0.0000 (0.0000)
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4.1. Example 1 (very sparse model)

Here we consider a simple sparse model. We set
b ¼ ð6:5; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ and s22f1; 9; 25g. One
can see as demonstrated in Fig. 1 and displayed in
Table 1 that our approach tendsto work better than
the other approaches in terms of variable selection
and estimation.

4.2. Example 2 (sparse model)

Here we consider a sparse model by setting b ¼
ð1:5; 4; 0; 5; 0; 0; 7; 0; 9; 0Þ and s22f1; 9; 25g. From
Table 2, we can see clearly that the proposed
approach perform better than the other approaches.

4.3. Example 3 (dense model)

In this example, we consider a dense model with
b ¼ ð0:95; 0:95;…; 0:95Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p¼10

and s22f1; 9; 25g.

We can clearly see from Table 3, that with dense
data, our model has better prediction accuracy than
other approaches considered in this paper.

5. Real data

In this section, we consider the extramarital af-
fairs which consist of 601 ovservations and 9 vari-
ables from Ref. [9]. The results are presented in
Table 5. The outcome variable is the number of
extramarital sexual intercourse during the past year

(affairs). The other eight covariates are described in
Table 4.
Table 5 shows that the proposed method perform

better than the other methods. Hence, the simula-
tion examples and real data analyses show that the
proposed approach perform better than the others.
Fig. 2 shows that the different methods lie in the
confidence interval of our model. Furthermore, The
trace plots in Fig. 3 and histograms in Fig. 4
demonstrate that our prior converges very fast
compared to the stationary distribution.

Table 4. Description of the extramarital affairs covariates.

Covariates Description

Affairs Number of extramarital sexual intercourse
last year

Gender Indicates gender
Age Indicates age (in years)
Yearsmarried Number of years married
Children Number of children
Religiousness Indicates religiousness (1e5)
Occupation The Hollingshead occupation classification
Rating Indicates the happiness rate of marriage (1e5)

Table 5. Results for extramarital affairs data.

Methods MSE sd

tNCG2 79.0599 75.9117
tNCG10 78.9466 75.1048
tHorseShoe 122.1099 101.2448
Btqr 104.5170 103.0127
BALtqr 99.5817 94.6092
Tobit 118.4258 107.6908

Table 3. Results for example 3.

Methods s2 MSE (sd) FPR (FPRsd) FNR (FNRsd)

tNCG2 1 0.1718 (0.0803) 0.0000 (0.0000) 0.0100 (0.1000)
tNCG10 1 0.1854 (0.0875) 0.0000 (0.0000) 0.0100 (0.1000)
tHorseShoe 1 0.1914 (0.0914) 0.0000 (0.0000) 0.0200 (0.1407)
Btqr 1 0.2144 (0.0977) 0.0000 (0.0000) 0.0300 (0.1714)
BALtqr 1 0.2328 (0.1069) 0.0000 (0.0000) 0.0300 (0.1714)
Tobit 1 0.1774 (0.0851) 0.0000 (0.0000) 0.0000 (0.0000)
tNCG2 9 1.1757 (0.5697) 0.0000 (0.0000) 4.4800 (1.3520)
tNCG10 9 1.4622 (0.6475) 0.0000 (0.0000) 5.5000 (1.3890)
tHorseShoe 9 1.4911 (0.6296) 0.0000 (0.0000) 5.7900 (1.2333)
Btqr 9 1.5406 (0.8226) 0.0000 (0.0000) 4.8200 (1.4521)
BALtqr 9 1.5260 (0.7439) 0.0000 (0.0000) 5.1900 (1.3977)
Tobit 9 1.3243 (0.6334) 0.0000 (0.0000) 0.0000 (0.0000)
tNCG2 25 2.6075 (1.2051) 0.0000 (0.0000) 7.9500 (1.1580)
tNCG10 25 3.1410 (1.4552) 0.0000 (0.0000) 8.5200 (0.9690)
tHorseShoe 25 2.9559 (1.2974) 0.0000 (0.0000) 8.4100 (0.9438)
Btqr 25 3.9399 (1.7057) 0.0000 (0.0000) 7.2600 (1.2522)
BALtqr 25 3.0383 (1.3227) 0.0000 (0.0000) 7.5800 (1.1822)
Tobit 25 3.3154 (1.4806) 0.0000 (0.0000) 0.0000 (0.0000)
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Fig. 2. The confidence interval of NCG10 for the predictors of the marriage affairs data compared with different methods.

Fig. 3. Trace plots of marriage affairs data covariates.
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6. Concluding Remarks

In this paper, we have proposed a new method for
variable selection and estimation in tobit model. We
also extend the Beta prime prior for scale parameters
and the horseshoe for tobit data. We have proposed
a new Bayesian hierarchical modeling and derived
the Gibbs sampling algorithm from this Bayesian
hierarchical modeling to estimate the regression
parameters with an efficient EM algorithm for
updating the hyperparameters. The results of the
simulation studies and real data analyses show that
the proposed method perform better than the others.
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Fig. 4. Histograms of marriage affairs data covariates.
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