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Abstract 
The paper presents a detailed numerical study of laminar flow in a pipe with 
sudden contraction in its cross sectional area. A computer program has been 
developed to analyze the laminar flow field in the pipe-sudden contraction 
configuration. The Navier-Stockes and energy equations are solved using primitive 
variables with a finite -volume (FV) solution method. The study was carried out for 
a Reynolds numbers range up to 750 and for different contraction ratios (d/D). The 
results demonstrate that the separation regions increase with the increase of 
Reynolds numbers. And the contraction ratio (d/D) has significant effect on these 
regions. 

دراسة الجريان الطباقي الثنائي الأبعاد في الأنبوب ذو التضييقة المفاجئة

 الخلاصة
قدم هذا البحث دراسة مفصلة للجريان الطباقي الثنائي الأبعـاد فـي الأنبـوب ذو التضـييقة

وللتنبـؤ بتصـرفات. اذ تم تطوير برنامج حاسوب لتحليل الجريان في هذا الأنبوب         . المفاجئة
معادلات نافير ستوكس ومعادلة الطاقة عدديا باستخدام المتغيرات الأولية مـعالجريان تم حل    

 والـى نسـب750أجريت الدراسـة لأرقـام رينولـدز وصـلت إلـي          . تقنية الحجم المحدد    
بينت النتائج المستحصلة من هذه الدراسة أن مناطق الأنفصال تـزداد. متعددة) تضييقة(تخصر

حت الدراسة أيضا أن لنسب التخصر تـأثير ملحـوظ علـىمع زيادة أرقام رينولدز كما أوض     
 .الجريان

Nomenclature 
d small diameter of the pipe 
e          contraction ratio (d/D)
L1       length of separation region upstream of the contraction. 
D         large diameter of the pipe  
Pr        Prandtl number  

Re       Reynolds number 







ν
DUo.

u, v     velocity  components 
U,V    dimensionless velocity components 

oU     inlet velocity 
X,R   dimensionless coordinates 
Sφ     source term     
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Greek     
θ       dimensionless temperature 
ν       kinematic viscosity 
Г      diffusion coefficient 

Introduction 
 The flow through a pipe with sudden 
changes in cross sectional area can be 
found in many industrial applications. 
This flow is characterized by 
increased pressure losses due to the 
separation close the change in cross 
sectional area. As a result to these 
variations in pressure loss, the 
erosions rates, heat and mass transfer 
rates are increased in the regions 
where separated flows occurs. The 
flow through a pipe with sudden 
contraction has been studied 
numerically and experimentally  (1-
5).The researchers emphasis on the 
separation region before and after the 
contraction region. Also they 
interested in studying the pressure 
loss for the problem of interest. In this 
paper the problem of a flow through a 
pipe with sudden contraction in its 
cross sectional area (as shown in 
fig.1) is studied numerically for 
different Reynolds numbers (300, 
500,750) and for different contraction 
ratios (0.5, 0.75, 0.85). In this work a 
finite difference procedure based on a 
staggered grid using control volume 
method is used to discretise  the flow 
equations. SIMPLE algorithm (7) is 
used to predict the flow under 
consideration.     

Theory: 
The governing equations to be 
considered are continuity, momentum 
and energy equations. Constant 
properties are assumed. The flow was 
considered to be axisymetric and 
steady. 
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 the above equations were cast in 
dimensionless using D, Uo (where Uo 
is the average velocity at inlet), ρU2 
and Th-Tc to scale the lengths, 
velocity,  pressure and temperature 
respectively.  
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 Boundary conditions: 
 At inlet, u = Uo   , hot fluid (θ =1)  

At the walls, U = V = 0, 0=
∂
∂
R
θ

0=
∂
∂

n
P

 where n vector normal to the 

wall

 symmetry axis, 0=
∂
∂

R
U

, V = 0. 

 At the exit of the pipe, 

.0=
∂
∂

=
∂
∂

=
∂
∂

XX
V

X
U θ

Numerical solution:
The flow equations are discredited 
using a finite -volume method  which 
may be described as follows: 
In the first step, the solution domain is 
subdivided into a finite number of 
control volumes (CV) by an 
orthogonal uniform grid. The 
computational points (storage 
locations for variables) are then 
located in the center of the control 
volumes. As seen in fig.2, all scalar 
variables (such as pressure and 
temperature are defined at the nodal 
points where the velocity components 

are defined on staggered grids 
centered around cell faces. Let φ be 
any dependent variables for which the 
conservation equations are as follows 
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where Sφ is the source term which has 
different expressions for different 
flow equations. After applying central 
difference for diffusion terms and 
upwind difference for convective 
terms, the above equations are 
discretized (reduced to algebraic 
equations).The discretization 
equations connected the values of φ 
for a group of grid points, usually the 
grids of the control volumes. The 
discretized form may be expressed as: 

APUP = AW UW + AE UE +AS US + AN 
UN + Sφ     (10) 
where   
AP = AW  + AE  +AS  + AN 

Solution Methodology: 
A developed computer program was 
used to solve the momentum 
discretized equations through an 
iterative procedure based on an 
integral control volume analysis with 
upwind finite difference and staggered 
grids. This procedure uses the 
SIMPLE algorithm developed by 
Patankar and Versteeg [6,7 ]. This 
procedure starts from an initial guess 
for all field values(typically zero). 
After the solution of the pressure 
correction equation, the nodal 
velocities and pressure are updated:  
U = U*+U'; V = V*+V';  P = P*+ αP'. 
Under relaxation factors were used to 
the components of the velocities, the 
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pressure and heat to prevent   
divergence due to non- linearity in the 
Navier-Stokes equations. 
 
Results and discussion 
In the following, the numerical results 
are presented concerning the 
characteristics of the problem under 
consideration: 
Fig.(3) exhibited the computational 
flow field with different  contraction 
ratios and for a specified Reynolds 
number. It is evident that the 
contraction ratio has significant effect 
on flow field where at high 
contraction ratio the separation 
regions are increased. Also the 
regions down stream of the 
contraction are more influenced with 
this parameter. The figure shows that 
with increasing the contraction ratio 
the separation regions down stream of 
the contraction are increased and the 
boundary layer is developed quickly. 
Fig.(4) shows the obtain pattern of the 
flow field for different Reynolds 
numbers and for contraction ratio 
equal to 0.2. It can be seen that the 
separation regions are increased with 
increasing the Reynolds numbers. 
This fact is confirmed in fig. (5) 
where the stream lines are increased 
in number and become closer to each 
other. Also the boundary layer growth 
is faster at high Reynolds numbers. 
Fig.(6) shows the isotherm contours 
for different Reynolds numbers .It is 
evident that the flow has higher values 
of temperature at high Reynolds 
numbers due to friction between the 
layers. The isotherm contours are 
more thick in the separation regions 
especially after the contraction, and 
the low temperatures are shown in this 
regions. This may be to the pressure 
losses in this regions which associated 
with heat losses. 

In Fig.(7) the reliability of 
computational results is checked with 
experimental results taken from ref 
(4). The comparison indicated good 
agreement between the numerical and 
experimental results. 
 
Conclusions 
The following conclusions can be 
drawn from this study: 

• The separation regions 
are increased with 
increasing Reynolds 
numbers. 

• The influence of 
separation region down 
stream of the contraction 
with increasing the 
contraction ratio is higher 
than the separation region 
upstream of the 
contraction. 

• The boundary layer 
growth down stream of 
the contraction is faster at 
high Reynolds numbers. 
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Fig.(7) comparison between numerical and experimental results 
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