The Open Mapping in Fuzzy K-proximity Space | Authors Names | Abstract | |--|--| | Saad Mahdi Jaber ^a
Marwah Yasir Mohsin ^{b,*} | In this paper, we define fuzzy \mathbb{K} -proximally open mapping. The properties of this mapping and its relationship with other types of maps were also studied. It was also proven through fuzzy \mathbb{K} -proximally open mapping that a relation \mathcal{S} on the corresp- | | Publication data : 30 / 8 /2024
Keywords: fuzzy set, fuzzy proximally space and fuzzy proximally mapping. | onding space is fuzzy K -proximity. | #### 1. Introduction The concept of fuzzy set was introduced by Zadeh in his classical paper [1]. In 1974, Chang [2] defined fuzzy topology. In 1979, Katsaras [3] introduced the nation of fuzzy proximities, on the base of the axioms suggested by Efremovic [4]. ## 2. Preliminaries In this paper W denote a nonempty set and $I^{\mathbb{W}}$ is the collection of all fuzzy set. $f:(\mathbb{W},\mathcal{S}_{\mathbb{W}})\to (\mathbb{M},\mathcal{S}_{\mathbb{M}})$ (or $f:\mathbb{W}\to\mathbb{M}$) means a mapping f from a fuzzy \mathbb{K} -proximity space \mathbb{W} to a fuzzy \mathbb{K} -proximity space \mathbb{M} . For any two fuzzy sets \mathbb{M} and \mathbb{M} in \mathbb{W} , \mathbb{M} v \mathbb{M} and \mathbb{M} \mathbb{M} defined as followings: For any $a\in\mathbb{W}$, $(\mathbb{M}\vee\mathbb{M})(x)=\sup\{\mathbb{M}(a),\mathbb{M}(a)\}$ and $(\mathbb{M}\wedge\mathbb{M})(a)=\inf\{\mathbb{M}(a),\mathbb{M}(a)\}$, respectively. And $\mathbb{M}\leq\mathbb{M}$ if for each $a\in\mathbb{W}$, $\mathbb{M}(a)\leq\mathbb{M}(a)$. \mathbb{M}^c is the complement of a fuzzy set \mathbb{M} in \mathbb{W} defined by $\mathbb{M}^c=1-\mathbb{M}$. The constant maps all of \mathbb{W} to 0 and 1 denoted by 0 and 1, respectively. A A fuzzy point a_β in \mathbb{W} is a fuzzy set defined by $a_\beta=0$ for all $b\in\mathbb{W}$ except one, called $a\in\mathbb{W}$ such that $a_\beta=\beta$, where $0<\beta<1$, we say a_β belong to \mathbb{M} denoted by $a_\beta\in\mathbb{M}$, if $\beta\leq\mathbb{M}(a)$, for any $a\in\mathbb{W}$. Evidently, every fuzzy set \mathbb{M} can be expressed as the union of all the fuzzy points which belong to \mathbb{M} . This paper was an attempt to give the most important properties of the fuzzy \mathbb{K} -proximally open mapping. **Definition 2.1 [2]:** A subset \mathbb{S} of $I^{\mathbb{W}}$ is called fuzzy topology on \mathbb{W} if the following statements are complete: - 0.1 ∈ S: - If $m, m \in \mathbb{S}$, then $m \land m \in \mathbb{S}$; - If $m_i \in \mathbb{S}$, then $\sup_{i \in \Delta} m_i \in \mathbb{S}$, for each $i \in \Delta$. We say the pair (W, S) is a fuzzy topological space, of its for short. **Definition 2.2 [3]:** A relation S on $I^{\mathbb{W}}$ is called a fuzzy proximity if the following statements are complete: C1- If mSm then mSm; C2- $(m \lor m)Sk$ if and only if mSk or mSk; ^aDepartment of Mathematics, Faculty of Education for Pure Science, University of Wasit, Wasit, Iraq. Email: s.jaber@uowasit.edu.iq ^bDepartment of Mathematics, Directorate-General of Education of Wasit, Wasit, Iraq. Email: marwayasir91@gmail.com - C3- If mSm then $m \neq 0$ and $m \neq 0$; - C4- If $m\bar{S}m$, then $\exists k \in I^{\mathbb{W}} \ni m\bar{S}k$ and $(1-k)\bar{S}m$; - C5- If $m \land m \neq 0$ then $m \mathcal{S} m$. We say the pair (W, S) is a fuzzy proximity space. **Definition 2.3 [6]:** A relation S on $I^{\mathbb{W}}$ is called a fuzzy \mathbb{K} -proximity if the following statements are complete: - S1- $a_{\beta}S(m \vee m)$ if and only if $a_{\beta}Sm$ or $a_{\beta}Sm$; - S2- $a_{\beta}\bar{S}0$ for all a_{β} ; - S3- If $a_{\beta} \in \mathbb{m}$ then $a_{\beta} \mathcal{S} \mathbb{m}$; - S4- If $a_{\beta}\bar{S}$ in then $\exists \mathbb{k} \in I^{\mathbb{W}} \ni a_{\beta}\bar{S}\mathbb{k}$ and $b_{\beta}\bar{S}$ in for all $b_{\beta} \in (1 \mathbb{k})$. We say the pair (W, S) is a fuzzy K-proximity space. #### **Notes:** - 1- Clear that the fuzzy proximity on $I^{\mathbb{W}}$ implies the fuzzy \mathbb{K} -proximity on $I^{\mathbb{W}}$. - 2- The pairs (W, S) and (M, S) we mean in the next stage of this paper is the fuzzy K-proximity space. **Definition 2.4 [6]:** A fuzzy \mathbb{K} -proximity S on $I^{\mathbb{W}}$ is called discrete \mathbb{K} -proximity, if we define $a_{\beta}S\mathbb{m}$ if and only if $a_{\beta} \wedge \mathbb{m} \neq 0$. **Definition 2.5:** Let $(\mathbb{W}, \mathcal{S})$ be a fuzzy proximity space. A fuzzy set $\mathbb{m} \in I^{\mathbb{W}}$ is called $F\mathcal{S}$ -closed if $a_{\mathcal{B}}\mathcal{S} \mathbb{m} \to a_{\mathcal{B}} \in \mathbb{m}$. **Definition 2.6:** Let $(\mathbb{W}, \mathcal{S})$ be a fuzzy proximity space, then the family $\tau_{\mathcal{S}} = \{ \mathbb{m} \in I^{\mathbb{W}} : (1 - \mathbb{m}) \text{ is } F\mathcal{S}\text{-closed} \}$ is called fuzzy topology induced by \mathcal{S} . **Definition 2.7:** Let $(\mathbb{W}, \mathcal{S})$ be a \mathbb{K} - proximity space and $\mathbb{m} \in I^{\mathbb{W}}$, a \mathcal{S} -closure of \mathbb{m} (briefly $\overline{\mathbb{m}}^{\mathcal{S}}$) and \mathcal{S} -interior of \mathbb{m} (briefly $\mathbb{m}^{o\mathcal{S}}$) are defined as: $$\overline{m}^{S} = \Lambda \{m: m \le m, m \text{ is } FS\text{-closed }\}$$ $$m^{oS} = V \{m: m \le m, (1 - m) \text{ is } FS\text{-closed }\}$$ **Theorem 2.7 [7]:** Let $(\mathbb{W}, \mathcal{T})$ be a fuzzy topological space and \mathcal{S} is a binary relation defined by $a_{\beta}\mathcal{S}_{\mathbb{W}}\mathbb{m}$ if and only if $a_{\beta} \in \overline{\mathbb{m}}^{\mathcal{S}}$, then \mathcal{S} is a fuzzy \mathbb{K} -proximity on $I^{\mathbb{W}}$ and the fuzzy topology $\tau_{\mathcal{S}}$ induced by \mathcal{S} is the given topology \mathcal{T} . **Definition 2.8 [7]:** Let m and m be a fuzzy set in K-proximity space (W, S). Then we say that m and m are in the relation \ll and write m \ll m if m \overline{S} (1-m). **Proposition 2.9:** Let $(\mathbb{W}, \mathcal{S}_{\mathbb{W}})$ be a fuzzy \mathbb{K} -proximity space. If $\mathbb{m} \ll \mathbb{m}$, then $\exists \mathbb{k} \in I^{\mathbb{W}}$ such that $\mathbb{m} \ll \mathbb{k} \ll \mathbb{m}$. **Proof:** Let $m \ll m$, then $m\bar{\mathcal{S}}_{\mathbb{W}}(1-m)$. So, $\exists \mathbb{k} \in I^{\mathbb{W}}$ such that $m\bar{\mathcal{S}}_{\mathbb{W}}(1-\mathbb{k})$ and $\mathbb{k}\bar{\mathcal{S}}_{\mathbb{W}}(1-m)$. So, $m \ll \mathbb{k}$ and $\mathbb{k} \ll m$. **Definition 2.10 [7]:** A mapping $f: (\mathbb{W}, \mathcal{S}_{\mathbb{W}}) \to (\mathbb{M}, \mathcal{S}_{\mathbb{M}})$ is said to be fuzzy proximally mapping (FS-continuous) if $a_{\beta}\mathcal{S}_{\mathbb{W}}m$ implies $f(a_{\beta})\mathcal{S}_{\mathbb{M}}f(m)$. Equivalently, $f: \mathbb{W} \to \mathbb{M}$ is said to be FS-continuous if $b_{\beta} \bar{\mathcal{S}}_{\mathbb{M}} \mathbf{m}$ implies $f^{-1}(b_{\beta}) \bar{\mathcal{S}}_{\mathbb{W}} f^{-1}(\mathbf{m})$ or $b_{\beta} \ll \mathbf{m}$ implies $f^{-1}(b_{\beta}) \ll f^{-1}(\mathbf{m})$. **Definition 2.11 [7]:** A fuzzy set m in K-proximity space (W, S) is called S-neighborhood of a fuzzy point a_{β} (in symbols $a_{\beta} \ll m$) if $a_{\beta} \overline{S}$ (1-m). **Definition 2.12 [7]:** Let S_1 and S_2 be two \mathbb{K} -proximity on \mathbb{W} , then we define $S_2 > S_1$ if $a_{\beta}S_1 \mathbb{m}$ implies $a_{\beta}S_2 \mathbb{m}$ (we say that S_1 is finer than S_2 or S_2 is coarser than S_1). # 3. Fuzzy K-proximities Open Mapping **Definition 3.1:** A mapping f from $(\mathbb{W}, \mathcal{S}_{\mathbb{W}})$ into $(\mathbb{M}, \mathcal{S}_{\mathbb{M}})$ is said to be fuzzy \mathbb{K} -proximity open $(F\mathcal{S}$ -open) if $b_{\beta}\mathcal{S}_{\mathbb{M}}$ m implies $a_{\beta}\mathcal{S}_{\mathbb{W}}$ m, where $b_{\beta} = f(a_{\beta})$, m = 1 - f(1 - m) and $m \neq 0$. Equivalently, $f: \mathbb{W} \to \mathbb{M}$ is said to be $F\mathcal{S}$ -open if $a_{\beta}\bar{\mathcal{S}}_{\mathbb{W}}$ m implies $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}$ m or $a_{\beta} \ll 1 - m$ implies $b_{\beta} \ll 1 - m$. where $b_{\beta} = f(a_{\beta})$ and m = 1 - f(1 - m) and $m \neq 0$. **Proposition 3.2:** Let $f:(\mathbb{W}, \mathcal{S}_{\mathbb{W}}) \to (\mathbb{M}, \mathcal{S}_{\mathbb{M}})$ be $F\mathcal{S}$ -open and injective mapping, then f is a fuzzy open with respect to the fuzzy topologies $\tau_{\mathcal{S}_{\mathbb{W}}}$ and $\tau_{\mathcal{S}_{\mathbb{M}}}$. **Proof:** Let $b_{\beta} \in f((\mathbb{m})^{oS}) = f(1 - (\overline{1 - \mathbb{m}^{S}}))$, where $b_{\beta} = f(a_{\beta})$ then $b_{\beta} \in 1 - f(\overline{1 - \mathbb{m}^{S}})$ i.e. $b_{\beta} \notin f(\overline{1 - \mathbb{m}^{S}})$, thus $a_{\beta} \notin (\overline{1 - \mathbb{m}^{S}})$ and $a_{\beta} \bar{S}_{\mathbb{W}} (1 - \mathbb{m})$. Since f is $F\delta$ -open, then $f(a_{\beta}) \bar{S}_{\mathbb{M}} 1 - f(\mathbb{m})$, that is $f(a_{\beta}) \notin (\overline{1 - f(\mathbb{m})^{S}})$ and $f(a_{\beta}) \in 1 - (\overline{1 - f(\mathbb{m})^{S}})$ implies $f(a_{\beta}) \in (f(\mathbb{m}))^{oS}$, this prove $f((\mathbb{m})^{oS}) \subseteq (f(\mathbb{m}))^{oS}$. Hence the mapping f is fuzzy open. **Proposition 3.3:** The composition of FS-open maps is FS-open. **Proof:** Clear **Proposition 3.4:** Let S_1 and S_2 be two \mathbb{K} -proximity on \mathbb{W} , then the identity mapping $i: (\mathbb{W}, S_1) \to (\mathbb{W}, S_2)$ is FS-open if and only if $S_1 > S_2$. **Proof:** Let $a_{\beta}S_{2}$ m, then $a_{\beta}S_{1}$ m, from definition of fuzzy identity mapping $m = 1 - (1 - f^{-1}) = m$ so, $a_{\beta}\delta_{1}$ m. Hence, $S_{1} > S_{2}$. **Proposition 3.5:** A bijective mapping $f: (\mathbb{W}, \mathcal{S}_{\mathbb{W}}) \to (\mathbb{M}, \mathcal{S}_{\mathbb{M}})$ is FS-open if and only if $f^{-1}: (\mathbb{M}, \mathcal{S}_{\mathbb{M}}) \to (\mathbb{W}, \mathcal{S}_{\mathbb{W}})$ is FS-continuous. **Proof**: Let $b_{\beta}S_{\mathbb{M}}m$, then $a_{\beta}S_{\mathbb{W}}m$ where $b_{\beta} = f(a_{\beta})$ and m = 1 - f(1 - m), since f is injective then m = f(m) and $m = f^{-1}(m)$, that is $f^{-1}(b_{\beta})S_{\mathbb{W}}f^{-1}(m)$. Conversely, Let $b_{\beta}S_{\mathbb{M}}$ m, then $f^{-1}(b_{\beta})S_{\mathbb{W}}f^{-1}(m)$. Since f is bijective, then there exists a_{β} and m in $I^{\mathbb{W}}$ s.t $x_{\gamma} = f^{-1}(b_{\beta})$ and $m = f^{-1}(m)$. Thus, $a_{\beta}S_{\mathbb{W}}m$, where $b_{\beta} = f(a_{\beta})$ and m = f(m) = 1 - f(1 - m). **Definition 3.6:** Let (W, S_D) be a fuzzy proximity space. A proximity S_D is called discrete if we define mS_D m if and only if $m \land m \neq 0$. **Proposition 3.7:** An injective mapping $f:(\mathbb{W}, \mathcal{S}_{\mathbb{W}}) \to (\mathbb{M}, \mathcal{S}_{\mathbb{M}})$ is $F\mathcal{S}$ -open if $\mathcal{S}_{\mathbb{M}}$ is a discrete \mathbb{K} -proximity on $I^{\mathbb{M}}$. **Proof**: Let $b_{\beta}S_{\mathbb{M}}$ m then $f(a_{\beta}) \wedge 1 - f(1 - \mathbb{m}) \neq 0$ where $b_{\beta} = f(a_{\beta})$ and $\mathbb{m} = 1 - f(1 - \mathbb{m})$, but f is injective then $f(\mathbb{m}) = 1 - f(1 - \mathbb{m})$ and $a_{\beta} \wedge \mathbb{m} \neq 0$, thus $a_{\beta}S\mathbb{m}$. Hence f is FS-open. **Definition 3.8:** A mapping f from $(\mathbb{W}, \mathcal{S}_{\mathbb{W}})$ into $(\mathbb{M}, \mathcal{S}_{\mathbb{M}})$ is said to be fuzzy \mathbb{K} -proximity closed (FS-closed) if $b_{\beta} \mathcal{S}_{\mathbb{M}}$ m implies $a_{\beta} \mathcal{S}_{\mathbb{W}}$ m, where $b_{\beta} = f(a_{\beta})$, m = f(m) and $m \neq 0$. Equivalently, $f: \mathbb{W} \to \mathbb{M}$ is said to be FS-closed if $a_{\beta} \bar{S}_{\mathbb{W}} \mathbb{m}$ implies $b_{\beta} \bar{S}_{\mathbb{M}} \mathbb{m}$ or $a_{\beta} \ll 1 - \mathbb{m}$ implies $b_{\beta} \ll 1 - \mathbb{m}$ where $b_{\beta} = f(a_{\beta})$, $\mathbb{m} = f(\mathbb{m})$ and $\mathbb{m} \neq 0$. **Proposition 3.9:** An injective mapping $f: (\mathbb{W}, \mathcal{S}_{\mathbb{W}}) \to (\mathbb{M}, \mathcal{S}_{\mathbb{M}})$ is FS-closed if and only if it is $\mathcal{S}_{\mathbb{M}}$ is a fuzzy \mathbb{K} -proximity on $I^{\mathbb{M}}$. **Proof**: Let $b_{\beta}S_{\mathbb{M}}$ m, then $a_{\beta}S_{\mathbb{W}}$ m where $b_{\beta} = f(a_{\beta})$ and m = 1 - f(1 - m), since f is injective then m = f(m), that is FS-closed. **Theorem 3.10:** Let f be a injective mapping from a fuzzy \mathbb{K} -proximity space $(\mathbb{W}, \mathcal{S}_{\mathbb{W}})$ into Y, the coarsest fuzzy \mathbb{K} -proximity $\mathcal{S}_{\mathbb{M}}$ which be assigned to \mathbb{M} in order that f be fuzzy \mathbb{K} -proximally open is defined by $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}$ m if and only if there exists $\mathbb{m}^* \in I^{\mathbb{W}}$ s.t $a_{\beta}\bar{\mathcal{S}}_{\mathbb{W}}(1-\mathbb{m}^*)$ and $f(\mathbb{m}^*) \in 1-\mathbb{m}$, where $b_{\beta} = f(a_{\beta})$, $\mathbb{m} = f(\mathbb{m})$. **Proof:** First, we must prove that $S_{\mathbb{M}}$ is a fuzzy \mathbb{K} -proximity on \mathbb{M} . K1- Let $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}(\mathbf{m}_{1}\vee\mathbf{m}_{2})$, then there exists $\mathbf{m}^{*}\in I^{X}$ s.t. $a_{\beta}\bar{\mathcal{S}}_{\mathbb{W}}(1-\mathbf{m}^{*})$ and $f(\mathbf{m}^{*})\in 1-\mathbf{m}_{1}\vee\mathbf{m}_{2})$, where $b_{\beta}=f\left(a_{\beta}\right)$, $\mathbf{m}_{1}\vee\mathbf{m}_{2}=1-f(1-\mathbf{m})$ from which $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}\mathbf{m}_{1}$ and $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}\mathbf{m}_{2}$ follow. If $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}\mathbf{m}_{1}$ and $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}\mathbf{m}_{2}$, then there exists \mathbf{m}^{*}_{1} , $\mathbf{m}^{*}_{2}\in I^{\mathbb{W}}$ s.t. $a_{\beta}\bar{\mathcal{S}}_{\mathbb{W}}(1-\mathbf{m}^{*}_{1})$, $a_{\beta}\bar{\mathcal{S}}_{\mathbb{W}}(1-\mathbf{m}^{*}_{2})$ and $f(\mathbf{m}^{*}_{1}\vee\mathbf{m}^{*}_{2})\in 1-\mathbf{m}_{2}$, then $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}(1-(\mathbf{m}^{*}_{1}\vee\mathbf{m}^{*}_{2}))$ and $f(\mathbf{m}^{*}_{1}\vee\mathbf{m}^{*}_{2})\in 1-(\mathbf{m}_{1}\vee\mathbf{m}_{2})$, that is $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}(\mathbf{m}_{1}\vee\mathbf{m}_{2})$. K2- $b_{\beta}\bar{S}_{\mathbb{M}}0$ is clear for all b_{β} . K3- If $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}$ m, then there exists $m^* \in I^{\mathbb{W}}$ s.t. $a_{\beta}\bar{\mathcal{S}}_{\mathbb{W}}(1-m^*)$ and $f(m^*) \in 1-m$. Thus $a_{\beta} \notin (1-m^*)$ and then $b_{\beta} \notin 1-f(m^*)$ also $b_{\beta} \in 1-m$, this prove that $b_{\beta} \notin m$. K4- If $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}$ m, then there exists $\mathbf{m}^* \in I^{\mathbb{W}}$ s.t. $a_{\beta}\bar{\mathcal{S}}_{\mathbb{W}}(1-\mathbf{m}^*)$ and $f(\mathbf{m}^*) \in 1-\mathbf{m}$. Since $\mathcal{S}_{\mathbb{W}}$ satisfies condition (K4), then there exists $\mathbf{m} \in I^{\mathbb{W}}$ s.t. $a_{\beta}\bar{\mathcal{S}}_{\mathbb{W}}\mathbf{m}$ and $a_{\beta}^*\bar{\mathcal{S}}_{\mathbb{W}}(1-\mathbf{m}^*)$ for all $a_{\beta}^* \in 1-\mathbf{m}$. Assume $f(\mathbf{m}) = \rho$ then $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}\mathbf{m}$, since $a_{\beta}^*\bar{\mathcal{S}}_{\mathbb{W}}(1-\mathbf{m}^*)$ and $\mathbf{m}^* \in f^{-1}(f(\mathbf{m}^*)) \in 1-f^{-1}(\mathbf{m})$, then $(1-\mathbf{m})\bar{\mathcal{S}}_{\mathbb{W}}f^{-1}(\mathbf{m})$ which implies $(1-f(\mathbf{m}))\bar{\mathcal{S}}_{Y}\mathbf{m}$ i.e. $b_{\beta}^*\bar{\mathcal{S}}_{\mathbb{M}}\mathbf{m}$ for all $b_{\beta}^* \in (1-\rho)$. Now, to show that $f: (\mathbb{W}, \mathcal{S}_{\mathbb{W}}) \to (\mathbb{M}, \mathcal{S}_{\mathbb{M}})$ is fuzzy K-proximally open. Suppose that $a_{\beta}\bar{\mathcal{S}}_{\mathbb{W}}$ m i.e. $a_{\beta} \ll 1 - m$ by proposition (2.9) then there exists $m^* \in I^{\mathbb{W}}$ s.t $a_{\beta} \ll m^* \ll 1 - m$. Thus, $a_{\beta}\bar{\mathcal{S}}_{\mathbb{W}}m^*$ and $m^*\bar{\mathcal{S}}_{\mathbb{W}}m$ that is $m^* \in 1 - m$, if m = f(m) then $f(m^*) \in 1 - m$, by assumption $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}m$ and this prove that f is $F\mathcal{S}$ -open. It remains to show that $\mathcal{S}_{\mathbb{M}}$ coarsest fuzzy K-proximity. Let $\dot{\mathcal{S}}_{\mathbb{M}}$ be any fuzzy K-proximally on M s.t $f: (\mathbb{W}, \mathcal{S}_{\mathbb{W}}) \to (\mathbb{M}, \mathcal{S}_{\mathbb{M}})$ is fuzzy K-proximally open mapping. If $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}$ m, then there exists $\mathbb{m}^* \in I^{\mathbb{W}}$ s.t. $a_{\beta}^* \bar{\mathcal{S}}_{\mathbb{W}} (1 - \mathbb{m}^*)$ and $f(\mathbb{m}^*) \in 1 - \mathbb{m}$. Since f is FS-open then $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}} (1 - f(\mathbb{m}^*))$ but $\mathbb{m} \in 1 - f(\mathbb{m}^*)$, then $b_{\beta}\bar{\mathcal{S}}_{\mathbb{M}}$ m, hence $\mathcal{S}_{\mathbb{M}} < \dot{\mathcal{S}}_{\mathbb{M}}$. ## 4. Conclusions and future studies The result of this paper initiated was the definition of the fuzzy \mathbb{K} -proximity open mapping and relationship with fuzzy \mathbb{K} -proximity continuous. In addition, new fuzzy a \mathbb{K} -proximity relation was defined on the basis of this mapping. In the future it is possible to link this mapping to the fuzzy \mathbb{K} -proximity compact. ## References - [1] L.A. Zadah, Fuzzy sets, Informs. Contr.8 (1965), 333-353. - [2] C.L. Chang, Fuzzy topological space, J. Math. Anal. Appl. 24 (1968), 182-190. - [3] A. K. Katsaras, Fuzzy proximity spaces, J. Math. Anal. Appl. 68 (1979), 100-110. - [4] P-M. Pu- and Y-M. Lin, Fuzzy topology 1, J. Math. Anal. Appl. 76 (1980), 571-599. - [5] C. K. Wong, Fuzzy points and Local properties of fuzzy topology, J. Math. Anal. Appl. 46 (1974), 316-328. - [6] K. D. Park, On the Fuzzy K-proximities, J. Nat.Sci. Res. Inst. Dongguk Univ. 14 (1994), 19-24. - [7] K. D. Park, Fuzzy K-proximities Mapping, Kangweon-Kyungki Math Jour. 14 (2006), 7-11.