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Application of Generalized Fixed Point Theorems to Ordinary
Differential Equations
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Mohammed Amer Atiyah? Ordinary differential equations (ODESs) serve as a fundamental tool for modeling
various natural phenomena in science and engineering. The application of fixed point
Article Histor theorems has proved to be a powerful technique in the study of the existence,
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. . . ' In this research the Banach Contraction Fixed Point Theorems will be used, as well as
Generalized, fixed point Schauder's Theorem and Picard Theorem. Said Theorems will be executed to ordinary
differential equations (ODE). The objective is to emphasize the utility of the different
fixed point theorems, when applying them to proofing the existence theorems and the
uniqueness theorems of the solutions of ODE in initial conditions or boundary
conditions.

1. Introduction

In this section, we will list some of the concepts needed for job analysis and the definitions that serve
as a basis for the work in this research.

1.1 The metric space [1]

Assume that x is a nonempty set. It can be said that:

d: X x X > R"
(x,y) > d(x,y)
d is considered a space over X, if it checks for three facts as follows:

dxy) =0 x=y
X,y €EX =dxy) =d(y,x)
x,y,z €EX =2dxy) <dxz) +d(zy)

So, the couple (X,d) are considered as metric space.
1.2 Cauchy sequence [2]

It is said that the sequence (X,), in the metric space (X, d) is of Cauchy sequence if:

Ve > 0,3INe > 0 Sushas Vn,m > Ne = d(x,,Xy) < €

d(x,,Xm) — 0 When n,m — oo
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1.3 Normed vector space [3]
Assume that (x) is considered as a vector space on R. We call normed vector space on X, an application

| . | defined by:

|.[: X >R+

x| x|
Where:
° ||X||:O<:>X:0

o VieR WxeX:|Ax|=|1]]x]|

o« WxyeX:ifx+y<|x|+]y]

Assume that X is a normed vector space, it can be said that the distance actuated by norm is:
d:XxX—> R+

xy)—dxy) =lx—y I

Any complete normed vector space is named Banach’s space.
1.4 Convexity [4]
Assume that (C < X)) is considered as convex set if:

vte[0,1],¥(a b)eC? ta+(1-t)beC
1.5 Contraction [5]
Assume that there is a metric space (X, d) so, an application T : X — X :
e Lipchitz function (or K-Lipschitzian) if and only if there is K >0 forall x ¢ X and y € X

then:
e d(T,Ty) <Kd(xy)

e Contraction is applied if K <1.
e Non expansive if K <1.
e Contractive if: forall x,y € X we have:
d(Tx, Ty) < d(x,¥)
If T is nonexpansive, then it is Lipchitz function.
1.6 Uniform convergence [6]

Assume that ( X ) is considered as a set of (Y,d) a metric space, A isasubset of X . Suppose (f.),
a series of functions defined in X and the values of these functions are in set Y . Thus it can be
said that (fn)n converges uniformly to f over A if:

Ve > 0,INeg,Vn € N,n = Ng,Vx € A= d(fn(x),f(x)) <e¢

1.7 Equicontinues [7]
Assume (fn)n be a sequence of functions defined on an interval | with values in R. We say that the

sequence (f,), is equicontinuous if:
Vx€eLVe>0,38>0,vneN,Vy el |x—y| <= |f,(x) —f,(y)| <¢
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1.8 Ordinary differential equations [8]
Assume that | is considered as an open-set in ( R ), and (X) is considered as a Banach’s space in (R )

and Ul---U  is considered as an open-sets in E.

A differential equation (DE) in Banach’s space is an equation in this form:
F(t,x,x',x",x", ey x® =0

Where:
e [l :is considered a non-zero integer.

e F :agiven function of (n+2) supposedly regular variables on I xU,---U .

e X is considered un-known function for | in the Banach’s space and (X, ..., X" ) are its successive
derivatives.
The problem is to find open interval (1) in R, and search for a function x: t — x (t) differentiable
on this interval up to order n and satisfying this equation:
vte LF(t X, x,x", ..,x™ =0

An ODE of order n is linear if it has this form:
an (DX () + ap_; (OxOV() + -+ + 2o (Dx(D) = g(t)

With all the x® and all the coefficients depending on t, if g(t)=0, then the equation is said to be
homogeneous. The following DE is called the associated DE:
ap(O)x"(t) + ap_1 (Ox* 1) + -+ ao(Ox(t) = 0

If a; (t):0< j<n are constants, the equation is named a linear DE with constant coefficients.

1.9 Cauchy problem [9]
A Cauchy problem is definition as a problem consisting of a DE for which we seek a solution satisfying
a certain initial condition. The condition takes several forms relying on the nature of DE.

Assume that U is considered as an open-set of (RxR"), and f :U — R" a function.

The first order DE is given as the following form:
X'(t)= f (t,X)

For (t, x(t)) U , and a point (15, X,) € U the corresponding Cauchy’s problem consists in looking
for solutions x = x(t).
Solution of the Cauchy’s problem of an open interval | of R with the initial condition (t;, X;) €U and

t, €l isa differentiable function x : R— R where:
e Foreacht e I, (t, x(t))eU.
e Foreacht e I, x (t) = f (t, x(t)).
o X(t) = X.
Afunction x : R, — R isasolution of the Cauchy problem if:
e The function X iscontinuous vt « R,, (t, x(t)) € R, x R.
e The solution x of the Cauchy problem is called the integral of the problem:
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t

Vvt € R, x(t) = x4 + ff(s,x(s))ds

to

1.10  Security cylinder
We say that safety cylinder for the equation if any solution X :1 —R" of the Cauchy problem X(t,)=X,

where | c[t, —h,t, +h] remains contained in B(X,,r;) where h: length, t:time and t; >h

. o
h < min (tO,M) where M = Sup || f(t,x) |l

2. Fixed point theorem:

2.1 Fixed point theorem in a metric space

Banach’s theorem 2.1.1[10]: Assume that T is considered as a contraction on Banach’s space then T
admits a unique fixed point (FP).

Generalization of Banach's theorem 2.1.1 [10]: Assume that (T ) is considered a map in Banach’s
space X ,where T" is contractionin X so, T admits a unique FP.

I T(xp) = Xo 1=I T"(T(x0)) = T"(Xo) < ¢ Il T(xo) — Xo I
Implies (T(XO) =Xp)asFPfor 0 < ¢ < 1,uniquenessisclearas FP for T isalsoaFP for T".

Assume that F is closed subset in Banach’s space, T :F — F contracting map, so:
e The following equation Tx = x has only 1 unique solution.

e This unique solution can be gained by the limit of the sequence (X,), of F defined by:
X, = TX,,: n=1234,-etc and X, an arbitrary of F .
Xx=1lmT" (x,)
Picard's theorem 2.1.1[11]: Assume that ( X ,d ) is considered complete-metric-space,
T : X — X isconsidered contracting map, so:
e There is unique FP (x) for (T ).
o Forall X, € X, lim T" (x,) = X.
Proof:
Existence: Let X, € X and (Xn)n the associated sequence, we have:
d(x, X,p) = d(T(x,4) T(x,) < kd(x,,, X,)
We will show by recurrence on n that:
d(xn ! Xn+1) < knd(XO’ Xl)
Forn=0:
d (%, %) <k d(x, %)
Suppose the condition is true for n and show for n + 1:
d(Xp41,Xnt2) = d(T(Xn)'T(Xn+1)) < Kd(xp, Xp+1)

d(Xn+1,Xn42) < K(Knd(xo,xﬂ)

d(Xp+1,Xnt2) < K" 1d(x0,%4)
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We Assume that (X,), is Cauchy, p,qe N,vq > p:
d(xp, xq) < d(xp, Xp41) + d(Xpr1,%q)

d(%p,Xq) < d(Xp, Xp+1)d(Xps1,Xps2) + -+ d(Xg-1,Xq)
d(xp,Xq) < KPd(x,%1) + kP*1d(xg, %) + -~ k97 d(xo, X1)

d(xp,xq) < d(xg, 1) [KP + KP*1 4 ... 4 k971

KP — k4 kP
<
1—k —d(Xo,X1)1_k

d(xp,xq) = d(xg,X1) <eg

This shows (X,), that is a Cauchy’s sequence and if X is considered as complete space:
lim(x,) =X
n—o0

Existence of the FP: We consider x = lim(x,) is FP of T. We have:

Xn+1 = TXp
lim x,,, =limTx, = x=lim x,
n—oo n—oo n—o0

x =T lim x, because T is continuous

n—o

X =Tx where x is considered as a FP of (T).
Uniqueness of the FP: Suppose there are x,,x, where x, = x, .

If x, isaFP, then x, =Tx,

If x, isaFP, then x, =Tx,

Cauchy Lipschitz 2.1.1 [12]: Let U be an open-set of RxR", if f:U — R" is continuous and
locally Lipschitz with respect to X on U and assume that h,r, >0 then for any security cylinder
C=[t, —ht, +h]xB; (X, ;) the Cauchy’s problem:

x'(t) = f(t x(t))
X (to )= Xo
Given (t;,X,)€U | a solution x:1 < R-—>R" , where I, €l admits a unique solution

X[ty =h,tg +h] = U_ Moreover, if we set:
t

d(x)(t) =x9 + ff(u,x(u))du

to

There exists p e N, where the sequence ¢p(X) uniformly converges to the exact solution.

Proof:
We start by constructing a security cylinder for C.
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Assume that V' be a neighborhood of (t;,X,) on which f is k-Lipschitz with respect to X, hy, >0
and Cy =[t; —hy,ty +hIxB(X,,15) €V a cylinder . C; is a bounded closed set of R™, hence

compact, and deduces that f is bounded on C;.

M = Sup Il f(t, x(©)) Il
C = [tO - h, to + h] X Bf(Xo, ro)

. o
h = min(h,, M)

Let X : | =[t,—h,,t;+h, T > R", with X(t,) = Xy and x' = f (t,x), Vt € I.

Suppose thereis 7 € [ t,,t; + h ] such that x(z) does not belong to B, (X,,T,) . Moreover, suppose
that J={t e [t,,t,+h]: x(t) ¢ B; (X,,r,)} is non-empty.

We set = = inf J . Then Vt €[t;, 7] we have X(t) € B, (X,,r,), and moreover:

d(xo,x(r)) =T1y.As (t,x(t)) € Cy, Vt € [ty, T]and x = f(t, x):
ro =l xo — x(7) =1l x(ty) —x(v) I< |ty — | Sup |x(t)] < Mh <,

In the following we work with this security cylinder. Note that by construction we have sup | f | =M
C

and f is a k-Lipschitz with x on C. We denote F =C°([t, —h,t, +h],B(X,.r,)) endowed with

the distance d =| . | , V xe F we associate ¢(x):
t

d(x)(t) =% + ff(u,x(u))du

to

We first show the following equivalence: x is considered a Cauchy’s problem solution if and only if x
isaFPof ¢.

t
Suppose x isa FP of ¢. Then Vxe F we have ¢(X) = x, x(t) =X, + [ f (u,x(u)) du.

to
But f is considered continuous on U so also x is considered continuous on U .
Moreover, x is differentiable in [t, —h,t, +h] and its derivative equals f (t, x (t)), We also have:

t0
X(t,)=X%, + jf (u,x(u))du =x,
to
So f issolution of the Cauchy problem.
We then have x' (t)=f (t,x(t)) and x(t,)=X,. We can integrate X, with respect to u because
X"(u)=f (u,x(u)) and u— f (u,x(u)) is continuous on a segment and therefore
integrable on this same segment. So we get:

[X') du = [ (0, x(6)) du = (K@), = X0~ x(t) = X(O)~ %,

f
So:
28
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t

x(t) =xo + f f(u, x(u))du = d(x)(t)

to

So x isaFPof ¢.
We want to apply the FP theorem to ¢” .

e Assume that ¢ is considered as a map from F to F . For this we show that:
e ®(x)(t) € Be(Xq,10), Vt € [ty — h,ty + h]
o 1M —xo Il =1l J f(ux(w))dul
o 1PE® —xo I f, f(u,x(w)du
t
e <M fto du
o < M(t—tp)
o < Mh < Io

Therefore V.t e[ t; — h,t; + h ], ¢ (x)(t)eB,; (x,r1,). #(X) € F and we obviously have
the stability of F by ¢°.

e We now show that ¢° is contractive. Assume that X,z € F . We denote by x, =¢" and z, = ¢°(2)

, Vp e N". By recurrence on p we show that we have:

[t—to|P
— < p_ 2
o Ix,(0) —z,(®) ISK o dx2)

Initialization: This is obvious in the case p =0.
Generalization: Suppose that for some arbitrary but fixed integer p we have:
t
1 Xp2 (0 = Zp1a 0 1= | [ K xp(0) = 700 1

to

lu — tol
1

t
p
Il Xp+1 (D) — Zp1 (D) IS fk X kP > X d(x,z)du

to

p+1
Il Xp+1 (D) = Zp41 (D) 1=

d(x,z)

lu —to|P*!
(p+ 1!
|t_t0|

I Xp41 (1) = Zpyq () II= KPH md(& z)

p!

Which completes the recurrence.
As [t—t, |<h

hP
d (xp (0, zp (t)) < kP E d(x,z)
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p p p
So ¢ is Lipschitz of ratio k° h—l and thereis p e N~ where k” h—l <1 because lim k" h—| =0
p! p! poe pl

So, for q > p, ¢* is contractive.
The theorem gives us the completeness of F .
We deduce from Picard theorem that ¢ admits a unique FP x so:

¢° (#(x)) = ¢(4"x)) = $(x)
Therefore ¢(X) is considered as a FP of ¢, and by uniqueness of FP of ¢ be ¢(x) =X . As the FP of

¢ are FP of ¢ deduces that x is the unique FP of ¢. Finally, x is considered a unique-solution
for Cauchy problem.

2.2 Fixed point theorem in a topological space

Brouwer fixed point theorem 2.2.1 [13]: The topological space ( X ) has the property FP if each
continuous map has a FP.

Brouwer's theorem is the fundamental FP theorem in finite dimension which affirms the following
theorems:

e Any continuous mapping of the closed unit ball of R" into itself admits a FP.
e There is no application f :B™ — S™" continue as we have f |gna=1d

where B™ is a closed-unit-ball and S™* is the boundary of this ball.

Assume that f is a retractionand g (x) =—f (x), then g eCO(ﬁ,ﬁ) admits a FP X, , which
therefore satisfies X, =—f(x;),as f has values in the unit sphere, x, e S™* ,as f isa retraction,
deduces that f(x,) = X, and therefore that x, =0 which contradicts | x, | =1.

Theorem of continuous non-retraction of the ball and theorem of Brouwer are two equivalent results.

As a result, assume that C be a non-empty compact convex set of R", any continuous map from C to
C admits at least 1 FP.

Schauder’s theorem 2.2.1 [14]:

Schauder's theorem is defined on topological vector spaces of infinite dimension. Assume that ( X ) is
considered as a Banach’s space and k — X a compact and non-empty convex-subset. Assume that
T: K — K be acontinuous operator, then T admits 1 FP at least.

Assume that ( X ) is considered a Banach’s space, D — X a non-empty set, convex, closed and
bounded, alsolet T: D — D be a complete continuous operator, so T admits 1 FP at least.

Assume that ( X ) is considered as a Banach’s space and C is considered as a closed convex set of X
and T is continuous map from C to C where t T(C) be relatively compact, so T is a FP.

The Leray-Schauder principle 2.2.3 [15]: Assume that X is considered as Banach’s space and
k < X isconvex and closed subset (U — K') an open-bounded-set in K, and Q, €U a fixed

element, suppose that the operator T ‘U — K is continuous, complete and satisfies the boundary
condition: Q # (1-1)Q, +AT(Q), Forall Qe U, 1€ (01) then T admits 1 FP in U at least.

3. Fixed point applications to differential equations:
3.1 Application of Schauder's theorem

Assume that | is considered as an open-interval of (R, Q),and f:IxQ — R" a continuous map,
thenif t, e | and x, € Q are given, the following problem:
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x'(t) = f(t x(1))

X(to):Xo

admits 1 solution x at least of class C* defined on a certain interval in | of the form [t, —h, t, + h]
, with h>0.

Proof:
As | and Q are open sets, there exists C, =[t, —h,t, +h]><§(yo,r0) acylinderincluded in I xQ, C,
is compact so f is bounded on C, by a constant M .
Assume that h<h; and x be a solution of the problem defined at least on I, < [t, —h, t; + h],
suppose that it comes out of the cylinder:
C=[t,—h t,+h]xB (X, ry)
Attimer € [ t, — h, t, + h ] then, by continuity:

T

Ix’(u)du

to

ro:”X(T)—Xo”: <hM

Soif h< min(ho,;/l—o) then any solution defined on I, —[t, —h,t, +h], stays in the ball §(x0, r,). We

will call the safety cylinder the assembly
[t, —h,t, + h]x B(X,,T,)
Application of Schauder:
E = ¢([ty — h,ty + h],R™)
C=¢([to —h,to +hl, B(x,,1; )

Then (E) is R normed-vector-space, C is non-empty closed convex set, for x € C, the function
®(x) on [t, —h,t, +h] is defined as follows:

D x(t) = x0+j f(ux(u)) du

By convergence, @ is continuous then as Mh <r,, we have:
®:C »> C
Assume that (® (C)) is relatively compact, so by Schauder's theorem, we have the presence a FP for
@ in C.
® (C) isrelatively compact, [t, — h, t, + h ]is compact and ®(C) is bounded by r, in infinite norm.
Thenif xeC and t,,t, €[t, —h,t, +h] then:

t

jf(u,x(u))du

4

|| x(t,) — x(t,) ||= < Mt -t

Deduce that the functions of ®(C) are M-Lipschitz on [t, —h,t, +h]. So form an equicontinuous
family.
So, Ascoli's theorem allows us to say that ®(C) is relatively compact.
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3.2 Banach contraction application
According Cauchy's problem thereis f : D — Ef, D is adomain of Rx E with E a Banach , then

the problem admits a single solution x(t) defined on a certain interval 1 € [t, —h,t, +h], given
that h is chosen:

h <min{r, ré,i}
p
Assume that E be a Banach space, we define the operator:

t
Nx(t):x0+'|.f(s,x(s))ds :N:E—>E
t
We consider the following assumptions:
e fisconsidered continuous.

e thereis 6 >0 and £ >0 where:
5= sup | f(tx)]

(t,x)eD

B= sup | f, (t,x)]|

(t,x)eD
e The function f is B-Lipschitz in x uniformly with respectto tel.
Using the mean value theorem there exists z(t) such that:
f(t,x(®) — f(t y(©) = £(t 2(0) [x(© — y(©®)]
|(t, () — ft y@®)] < Bx| (x(®)-y(®) |
Proof:
Assume that the operator N satisfies the conditions of the Banach contraction theorem, the proof is
given in two steps:
Stepl: we show that N(M) c M, with M = B(x,,r),r >0.So, YxeM, NxeM.

Assumethat x ¢ M ,fort € | we have:

NX(t) = X, +j f (s, x(s)) ds < Nx(t) = X, —j' f(s,x(s)) ds

t to

INX(t) — Xo| < Nx(t) = j| f (s, x(s)) ds

t
sup [Nx(t) — X, | < jsup| f (s, x(s))|ds
tel t tel
SUP|NX(t) — Xo| < St —t,|
tel
sup [Nx(t) = X,| < h&
tel

sup [Nx(t) = x,| <1

tel

As a result:
d(Nx,x,)<r Where NxeM

Step2: N is a contraction. Assume that x,y € M forall t e | we have:
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NXx(t) — Ny(t) = x, +j f(s,x(s))ds—x, —j' f(s,y(s))ds
Nx(t) — Ny (t) =I f(s,x(s))— f(s,y(s))ds

NXx(t) — Ny(t) < _t[ f(s,x(s))— f(s,y(s))ds

to

Pwm—NWOSﬂQ?Vm—wm

3.3 Application of Picard's theorem
Assume that E, F is considered as two Banach’s spaces, U c E is considered as an open-set, where

f :U — F is an application of the class C".
a €U such that df , is continuous and invertible and therefore df * is continuous.
So, there is an open-neighborhood V of «, and an open-neighborhood W of f («) where:
e The restriction f |, of f toV isabijectionfromV to W .
e Theinverse map g:W —V is continuous.
e gisofclass C'and VxeW, dg,, =df "
Proof:
We equip L, (E,F)of the norm | u ||= sup| u(x) |.

| x =L
Even if it means replacing f with the function x — df [ f (& + x) — f («)], we can come back just in
case =0, f(a)=0and df, =df, =1d; (so E=F).
As fis of class C', there exists r >0 where:

B(0,r)cU and | df, —df, | =] df, - Id. ||s% for all x e B(O,T).
We denote u=Id. —df, =df, =1d.—u:|u ||<% Then, df, is a bicontinuous satisfying

df,* => u", and then:
n=0

Sy 2 M
H%WE§MHS§%=W lez

n—o0

e Therestriction of f to an open neighborhood of 0in B(0,r) is a bijection on B(O,%) . Assume that

ye B(O,%). We consider the function h:
h:B,(0,r)>E
Xy +X—T(x)
Itis clear that h is of class C*, ¥x e B(0,r), | dh, ||=| Id. —df, | S%.

So, by the theorem of mean value:
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1
v, x € B, (0,r),| h(x)-h(x) | = EH x—x |

Especially for x' = 0:
1
[ x= 100 |=]h00-h) || < 2] |

1
vx e BOM OO+ [x— 9 <+ ZIx|< S+ 2 =7
Thus h is a function from B, (0,r) to B(0,r) = B(0,1).
Since x =h(x) and h has valuesin B (0, r ), sowe concludethat x € B(0,r).

Soye B, (o,%), Jx e B(O,r) where f(x)=y.

We define V = f (B(0,r)) nB(0,r). V is a neighborhood of 0 because (f(0)=0) and (f) is
continuous in B(O,r).

Through denoting W = B(0,r), we then have f, : V — W isa bisection.

e Wenote g:W —V the inverse map.

We use h again, this time with y =0 so:
vxeU,x=h(x)+ f(x)

vx,x € B(0,r),[x—x| < [n(x) = h(x )|+ f () - F ()] < %Hx-vaJer () - f(x)
So:
[x=x| <2t 0-f0x)
We deduce that:
vy, y eW, g -a(y)|< 2 f(a())- F g )|+ 2y-y|
g is therefore Lipschitzian and therefore continuous.

e Wefix xeV andweset y=f(x)eW,
There exists r’ > 0 such that B(y,r') cW , and for all we B(0,r), we set:

V=g(y+w)-g(y)
V]| < 2|w]

A(w) = g(y +w) - g(y)—df *(w)
Aw) =v —df *[f (x+w— f(x)]
A(w) = —df [ (x+v— f(x)—df, (V)]

Since H df

‘ <2 we get:
lA(w)| < 2| f (x+V) = f(x) —df, (v)] = 2v]e(V)|
With lim g(v) = 0,so0:

[AW)] < 4wz (g y +w) — g (y)) = 4wl (W)
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As g is continuous. Iin}) g'(w) =0

o, [ A (w) | = 0| wl).

So g is differentiable at y and dg, =df,".

Finally, as df * is continuous because f is considered of class Cland LeGL(E) > L' eGL(E) is

continuous, the function dg : y > dg, is continuous. Thus g is of class ch.

4. Conclusion
The FP theorem is fundamental in the field of applications to DEs. We have discussed some theorems
(principle of Banach contraction is the basis of the FP theory which ensures the uniqueness of solutions
and Schauder's theorem only affirms existence). At the end of this thesis, we cite applications to ordinary
DEs.

In conclusion, this research has demonstrated the fruitful application of generalized fixed point theorems
to ordinary differential equations, providing valuable insights into the study of existence, uniqueness,
and stability of solutions in diverse settings. By embracing the flexibility and versatility offered by
generalized fixed point theorems, we have expanded the scope of our understanding of ODEs and
developed a powerful toolset to tackle complex and non-standard problems.

Through a thorough examination of the fundamental principles behind generalized fixed point theorems,
we have established a robust theoretical framework that merges concepts from functional analysis and
nonlinear dynamics. This framework has allowed us to address a wide range of ODEs, including both
linear and nonlinear systems, autonomous and non-autonomous equations, and various initial and
boundary value problems.
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