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Abstract

This study includes the derivation of the stiffness matrix for a haunched
member using the simple bending theory. The derived stiffness matrix covers
most possible geometric shapes for haunched members under different
loading cases and combinations with including transverse shear deformations
effect. The importance of the transverse shear deformation in haunched
members with high depth to span ratios is shown using numerical example.
The accuracy of the proposed analysis technique is verified by comparing the
results of the numerical example with those obtained from the general
analysis program SAP90 using a large number of subelements.
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I ntroduction prismatic members (Including

Haunched members can be used haunched members). Reynolds and
to shape the members in accordance Steedman (1988) published tables and
with the distribution of the internal graphs for analysis purposes. Similar
stress. By using these types of calculations are also given in other
members, one can achieve the textbooks, for example by

required strength with the minimum Timoshenko and Young (1965),
weight and material and also may Vanderbilt (1978) and Funk and
satisfy architectural or functional Wang (1988) calculated the stiffness

requirements. In industrial buildings, matrix and fixed end forces by
bridges, and high rise buildings, non- dividing the non-prismatic member
prismatic members  with variable into subelements.
depth or width are usually used. A refined analysis can be
Different approaches have been performed by deriving the stiffness
developed for the analysis of non- matrix and fixed end forces by
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considering the exact variations of the
geometry. Al-Gahtani (1996) derived
the stiffness matrix by using
differential equations and determined
fixed end forces for distributed and
concentrated member loads.
Timoshenko and Young (1965)
concluded that if the variation of the
cross section of a non-prismatic
member is not too rapid, it can be
analyzed with sufficient accuracy by
using the prismatic beam equations.
Al-Mezani and Balkaya (1991)
demonstrated the problems due to
discontinuity of member axis and
arching effect in analyzing non-
prismatic members.

The use of tables and graphsis limited
to certain cross sections and span
loads and is also difficult if several
loading may be considered. In the
case of computer applications,
dividing the members into
subdements increases the number of
equations and requires a larger
amount of input data. Therefore, most
of latest studies have focused on a
stiffness formulation of non-prismatic
members, which considered the exact
variation of the geometry. The effect
of shear deformations on fixed end
forces has not been considered so far
for non-prismatic members.

0 0
(my +my +2m) 2D (m +m) 2D
(m; +m)) =2 mi%q
0 0
(e +2m) =2b - (m+m) = 2Lb
(my +m,) '°b m =26,
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The purpose of this study is to
develop an exact solution using the
simple bending theory for non-
prismatic members with a wide range
of span load variations and finite
element formulation.

Stiffness Matrix:

The haunched members with a
rectangular cross section and length L
as shown in Fig. 1 is assumed to be
made of homogeneous, isotropic and
linearly dastic materials. Stiffness
Matrix:

The haunched members with a
rectangular cross section and length L
as shown in Fig. 1 is assumed to be
made of homogeneous, isotropic and
linearly eastic materials. Member end
displacements, U, forces F, and fixed
end forces P are shown in Fig. 2.

The displacement method yidds the

following member equilibrium
equation:

F=K.U+P 1)

where K is the general stiffness

matrix of a non-prismatic member.
Based on the conjugate beam method
(Norriss et. a. 1982), K can be
suggested to be as follows:
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where A, and |, are the area and
moment of inertia for the prismatic
part of haunched member respectively
and E is the modulus of dasticity.

The effect of the variation of the
area is expressed by the coefficients
n; and the variation of the moment of
inertia by the coefficients m; , m; ,
and m; When the member is
prismatic, n; =1,m; = m; = 4 and m;
=2. The factors b , G, G and G
account for the shear effect. In the
case of Bernoulli-Euler theory, b = G,
= &G = &G =1 (nho transverse shear
effect). However, especially for
members with high depth to span
ratios, shear deformations should be
considered to increase the accuracy.

The coefficients mg, m; and m;
are determined by using the conjugate
beam method and n; is derived from
the force-deformation. Fig. 3a shows
the corresponding forces and couples
when P = 0, U; =1, and all other
displacements are zero in eg. (1).
M(x)/EI(X) is applied as load to the
conjugate beam as shown in Fig. 3d.

From the equilibrium at thei and j

ends, the following equations are
obtained:
L 2
AL miizo\(l_- X)
> o El(¥
El
e
. X(L - Xx)
o = = 3
5 El(x)
El, “x(L- X) El
BL+m —2 @& dx- m —0
M2 OOW XMz
L XZ

OOde: 0 (4)

Denoting theintegral as:
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_L\ X2 _L\ 1
L= G ™ 27 Gy ™
L
(5

then equations (3) and (4) can be
rewritten in the form:

EAl_ 1,€& L2, +2L15- 1, Lig- 1,0
e~ 138 u
&da L'g -Liz+l Iy
. émiu

é G (6)
dnia

where A = -1 and B=0 in this case.

Imposing a unit displacement Ug
=1, similar equations can be written in
terms of m; and my for the case of
A=0 and B=1. Denoting the matrix of
the coefficients in eq.(6) by C then for
U; =1, and Ug =0 and for U3 =0, and
Us =1, the following systems are
obtained:

émiu_é 1
u=é u
dMia &0a
em; u_ &0u
’ngy-gu
ig el

Thisyield

Cc

(7)

M detC

— L|3' I1
detC
- L2, 4200 |
m; = 2 3- 1
detC

(8

ih

wheredetC = - ITO(Illz- 12) (9)

when P=0, and U; =1 and all other
displacements are zero in eg. (1), an
axial force of magnitude n; EAJL is
developed. Then the  force
deformation relation gives:
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L
Dl_:lzn“%‘ L dx (10

L0 X)

Solving eg. (10) for the unknown ny;
yidds:
L

1 L

T L51/A(x))o|x Ay +
where i

!
I, = %dx (12)

Determination of the factors ny; ,
m; and m; of the basic stiffness
coefficients is based on the evaluation
of the integrals of egs. (5) and (12).
The integrals 1, 1, , 13 and 14 for the
sdected member types can be
calculated for different haunch shapes
according to the taper factors a, and
a; at ends(see Appendix (A)). A
hunched member is assumed to be
consisting of three segments as shown
in Fig. 1. The moment of inertia and
the area in the regions with length L;
and Lj are variable and in the region
with length L, are constant. The
integrals 1y, 15, I3 and 14 represent the
summation of these three components.
Integrals for the constant and linear
variations can be  performed
analytically, while for any curved
variation, numerical integration is
suggested to be done.

Stiffness Factor s for Shear Effect:

Neglecting axial deformations and
partitioning the matrices into four 2 x
2 submatrices, the beam stiffness
matrices can  be  represented
respectivly in  the following
simplified forms:
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E:ékll KQH, E:gk;ll Elzﬂ
gﬂ K (1 5 Ko

13
The stiffness matrix of the member
shown in Fig. 4 corresponding to the
coordinates F,and F; is:

&m; +my +2my)Ely  (m; +m;)Elqu
k=6 L2 2 Gae
Mg (mi+my)El miElo g

& L2 L

Using the reation between the
transverse shearing deformations and
applied shearing forces, shear
deflection due to unit transverse load
at end i can be expressed as Popov
(1968):

L
_a .1

“60ax

al

2 G4 (15

shear

where G is the shear modulus and a is
the shape factor of the cross section
for shear.

The following notation is used:

:a_|4(miimjj - mJZ)Elo

= —r (16)

y

Shear deformation can be added to the
inverse of eq. (14), i.e, the flexibility
matrix as:
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The stiffness  matrix Zl by
considering the transverse shear
deformation can be obtained by
inverting eg. (17). The matrix Elcan
be obtained from the equilibrium
conditions of the member. Repesting
the outlined procedure for the
cantilever, by considering joint i as

fixed end and releasing joint j, k,and
k,can be obtained similarly. The

multiplication factors b , G, Gand G
are given as follows:

b= Elol,(m; +rS”Li 2m;) + %G 18)
q:{El()"‘(,n”;igé- ﬁﬁ)”}b 19
G ={- E|0|4;ng "M b (20
Q={E'°"‘(mn:[22 m;) +3b (2D

Fixed End Forces Due to Axial
Forces:

Fixed end forces for the axially
loaded non-prismatic member are
derived using the flexibility method.
Referring to Fig. 5, static equilibrium
yidds:

P1+ Pz = 'Q (22)

Choosing P; as a redundant and
loading the primary structure with the
actual load Q, the displacement of
point i dueto P; is:

Pl I31'4
dp = =
i n,AE/L E
and the displacement of point i due to
the actual forceQ is:

(23
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dQ:__Q _ - s (24)
n; AJE/L E

where A, is the minimum area along
thelength L,

n,;= % - ! (25a) and
O/ A(x))dx
0

- L1/ A(X))dx

s-0 (25b)

0

Using compatibility at point i and
the equilibrium condition (eg. (22)),
then:

(26)

Ps = Q(:—S- D (27)
4

Fixed End Forces Due to Bending
and Shear :

The rest of the span loads
considered are perpendicular to the
member axis, therefore P, = P, = 0.
The force P; and Ps are caculated
from:

€hu_ Elg emi m; il o
e uU—"— € u
P Lam Mg

where 6; and 0; are the rotations at the
ends of the member due to the span
load Q(x). Using the conjugate beam
method, these rotations, which are
also given by Timoshenko and Y oung
(1965), can be expressed as:
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-
_ LMoL 2,
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L —
1 “M(X)Xx
q, = (X)

where M (x) is the moment function
due to span load Q(x) of the simply
supported beam. The numerical
integration is used for the calculations
of 6 and 6, in eg. (29). Adding
rotations for the different loads and
substituting into eg. (28) yieds the
fixed end forces P; and Ps. Then P,
and Ps can be calculated by adding the
respective simply supported beam and
end rotations and the reactions due to
the end moments.

Deformations of the cross section
due to transverse shear will produce
additional  deflection  which s
calculated by using the Bernoulli-
Euler beam theory. The non-prismatic
member shown in Fig.1l is subjected
to member forces Q(x). Adding shear
deformations over the length, the net
deflection at end j with respect to
origini can be expressed as:

where V,(x)is the function of shear
force for the simply supported beam,
which is obtained by differentiating
the M (x) function with respect to x ,
and V, is the constant shear force due
to end moments. From equilibrium,

lo

V, == E0(my +my)a +(m, +my)a;] (@D

L

Therefore, U, can be calculated by
using numerical integration.
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Additional fixed end forces
caused by shear effects are the fixed
end forces that will prevent U, in

the beam. If the span load and the
non-prismatic member are symmetric,
then U,,.. = 0 and the additional

fixed end forces will also equal to
zero. Otherwise, a correction factor
due to shear can be determined from
eg. (1) and eg. (2) asfollows:

¢ (m; +my +2my;)

u
& & u

es u e u

ép3l] = ﬂé - (my +my) Q (32)
ép,u 2 & (m; +my +2my) G5
Y g————u

&% Ogpear é L U

g ~(my+m) ¢

Finally, the vector P is determined by
assigning the corresponding
components of the fixed end forces
dueto axial forces, bending and shear.

Numerical Example

For the fixed ends haunched beam
shown in Fig .6, the dastic modulus
of concrete, E, is taken as 30 GPa, the
shear modulus. G, as 12 GPa, the
shape factor for shear,a, as 1.2 (for
rectangular cross section), and
member width is 0.4m.

The beam is analyzed by using
the proposed method for mid-span
heights, h, of 0.5, 0.75, 1.0, 1.25, and
1.5m. Fixed end moments at the left
and right supports are determined
with and without the transverse shear
deformations.  The  results are
compared with that obtained using the
wel-known finite dement analysis
program SAP90. For SAP0 analysis,
the beam is divided into 48
subeements having constant area and
moment of inertia defined at mid-
section of each dement with and
without considering the effect of
transverse shear deformations. The
result of analysis is shown in Table
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1A and Table 1B for both typed of
analysis. When shear deformation is
considered, the end moments
increase. It is clear that the effect of
shear deformations increases as the
depth to span ratio increases.

Conclusions:

1-The derived stiffness matrix is
general and applicable to simple
bending theory, and cover a wide
range of depth variation for haunched
beams.

2-The proposed formulation is also
general and can be used for other
types of non-prismatic or haunched
members.

3-Fixed end forces due to transverse
shear deformations are considered,
therefore more accurate results can be
obtained in the case of high depth to
Span ratios.

4-Members with haunches can be
analyzed as one dement. This will
reduce the number of equations, input
data, time and effort compared to the
analysis method of dividing into
prismatic subelements, and that is
very useful in frame analysis with
non-prismatic members.

5-The proposed dement is convenient
to use with the general displacement
method. It can be adapted to any finite
e ements analysis program.

List of Symbols:

a subdivision length (Fig. 5)

A, B left and right support
reaction

A, A; cross sectional area at
i andj ends

A(X) ross section area of the
beam

A, min. area of the member

Cross section

Ko min. area along the
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length L
C matrix of the coeff. in eg.
(6)

E modulus of dasticity
F member force vector
F.. Fe¢ member forces
G shear modulus
[i,I; moment of inertiaat i
and j ends
[ (X) moment of inertia at x
from origin
o min. moment of inertia
of member cross section
I1...14integrals givenin
egs.(5) and (12)
I's integral givenin eq.
(25b)
K 23.k53 stiffness coeff. for
U3=1
K, K14 beam stiffness with
neglecting axial
deformation
K  member stiffness
matrix
L length of member
Li,L; lengthinvariable
left and right
haunches
L, lengthin the constant
mid-section.
L subdivision length
M (X) moment function of
the beam

M (X) moment function

due to span load (x)
of simply supported
beam
N, MG, M, G factors of the
basic stiffness
coefficients

N;; factor of the stiffness

coeff. for length L
P member fixed end
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forces vector
P...Ps fixed end forces
g(x) addition of g1 and g2
01,92 M(X)/El(x) function
dueto left right
moment
Q load intensity
Q(x) span load function
U member displacement
vector
U;..Us member disp.
Uzsnear Shear deflection
Usghear total shear
deflection of non-
prismatic member at
right end

V; (X) function of shear

forcefor simply
supported beam
V, constant shear force due
toend moment
a shapefactor for shear

aja; taper factor at the
left and right
haunches

b,G G G shear

consideration factors
AL total axial dongationin
length L
d¢ disp. of point i dueto
the actual force Q
op; disp. of point i dueto P1

0,, 0; rotations at the |eft
and right supports of

the simply support
beam
y factor defined in eg.
(16)
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Appendix A :

Depth Equations for Haunches :
(1) Stepped Haunches :
h(x)=hj=const.

for 0<x <Lij,

h(x)=h,=const.
for Li<x < (Lij+Lo)

h(x)=h,=const.
for (Lix Lo)<x <L

(2) Linear Haunches:
h(x)=hi-a;. for 0<x <L,

h(x)=h,=const. for Li< x < (Li+L,)
h(x)=hi-ai(L-x) for (L. L)< x <L
(3) Parabolic Haunches :

h(X)= Qi X2/ L -2a; X.+ h;

for O<x <L

h(x)=h,=const. for Li< x < (L;i+L,)
h(X)= Qi (X2-2 (L-Lj)X+(L-Lj)2/ L +
ho

for (Li+ Lo<x <L
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Table 1A: Fixed end moments,

kN.m
(Proposed Analysis)
hm [05|07 |10 [12 |15
5 5
With
Shea | 29 | 276 | 263 | 254 | 247
5 |r 53| 7| 9| 6 | 7
2 | effect
3 | W/O
% |shear |29 | 269 | 253 | 241 | 231
— |effect |07 |.1 |.3 .0 .0
With
Shea | - - - - -
= |r 54. | 62. | 67. | 69. | 71.
S |effect |7 |6 |1 |9 |7
% W/O
= | shear |- - - - -
S | effect | 58. | 69. | 76. | 82. | 87.
s 8 |4 |7 3 0
Table 1B: Fixed end moments,
kN.m
(Finite Element Analysis Using
SAP90)
hm |05 [075]10 |125|15
With
Shea | 295. | 276. | 263. | 254. | 247.
5 |r 23 |91 |94 |51 |94
2 | effect
3 | W/O
& | shear | 290. | 269. | 253. | 240. | 231.
— |effect |44 |25 |40 |90 |13
With
Shea | - - - - -
= |r 54.8 | 62.6 | 67.1 | 69.9 | 71.6
S | effect | 7 3 7 5 4
% W/O
= | shear |- - - - -
S | effect | 58.9 | 69.4 | 76.6 | 82.3 | 86.8
@ 2 5 6 3 6
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Fig.4: Non-prismatic member
A Subjected to F2 and F3
y
—_—) \ - / > >
P: Q % P4 X
a | L
L
Fig.5: Axially loaded member
| 0.5m 0.5m O.5m0.5in 15m |
100kN 70 kN
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E g
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Fig.6: Numerical example
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