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Abstract  
The fundamentals of free electron laser (FEL) theory are now well–established 
and can provide a sophisticated description of experiments over a wide range 
of parameters. While new technology is being developed for systems working 
from 1mm to 10nm wavelengths, the theory remains the same. In this work, 
the final consequences of Lorentzian energy distribution in FEL amplifier will 
be found by solving of Integro-differential equation using symbolic toolbox 
services in MATLAB software v. 6.5 and the relation between several 
parameters will be delimited and plotted in order to extract  and present  the 
complex relations between the FEL parameters.             
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الخلاصة 
تصـف التجـارب أَن   هـا ويمكِنُأصبحت الان معرفة    أساسيات نظريةِ ليزرِ الألكترون الحر      ان  
تَعملُ التي تُطور للأنظمةِ قد بدات تحديثة ال اتتقنيال بينما. تشكيلة واسعة من العواملِه لـمعقّدال

.  النظريةُ بدون تغييـر تيبقومع ذلك طولِ موجة ، عشرة نانومتر من ال   إلى   واحد  مِن مليمترِ   
جِد وليزرِ الألكترون الحر سـتَ      في مضخّمِ  لورنزيةفي هذا العملِ، النتائج النهائية لتوزيعِ طاقةِ        

للغـة البرمجـة خصـائص وميـزات    تسـتعمل حيـث اَ   التفاضليةِ   -التكاملية  معادلة  البحلّ  
(MATLAB software v. 6)ةوصف  علاوة على ذلك تم.  في هذا البحثالعلاقـةِ بـين عِـد

 .عواملِ ليزرِ الألكترون الحرعدد من  العلاقاتَ المركّبةَ بين وتمثيل لأستخلاصعوامل 

1 Introduction  
The problem of electromagnetic wave 
amplification in the undulator refers to 
a class of self-consistent problems [1]. 
It can be separated into two parts: 
Solution of the dynamical problem 
and Solution of the electrodynamics' 
problem. 

To close the problem, the field 
equations and equations of motion 
should be solved simultaneously. In 
principle, modern super-computers 
allow one to perform direct simulation 
of the FEL process. The results of 
such simulations depend on a large 
number of problem parameters. They 
provide the possibility of obtaining a 
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numerical answer for a specific set of 
input data. 
A deeper insight into FEL physics can 
be obtained only by introducing some 
simplifying assumptions about the 
properties of the electron beam and of 
the electromagnetic field. 
Theoretical investigation of the free 
electron laser should be performed in 
two stages. In the beginning one 
should study the general properties of 
the FEL, namely the ideal mechanism 
of amplification. At the next stage 
different complications can be 
introduced into the FEL model 
allowing it to extend the number of 
additional effects influencing the 
operation of the FEL amplifier. These 
factors can be divided into two 
groups. The space charge effects and 
diffraction effects are fundamental. 
On the other hand, there are a lot of 
other factors such as energy spread 
effects, non-ideality of the undulator 
field, etc. the principal difference of 
the fundamental effects and all the 
others is that the fundamental effects 
depend on the same physical 
parameters as the ideal FEL 
amplification mechanism itself. 
The one-dimensional model is an 
important one from the 
methodological point of view. The 
following assumptions are used in the 
one-dimensional, steady-state model 
of the FEL amplifier for linear region: 
- The electron beam has Gaussian 
density distribution in the direction 
perpendicular to the undulator axis; 
- The electron moves along identical 
trajectories parallel to the undulator 
axis; 
- The amplified wave is a 
monochromatic plane wave; 
- The electron beam is infinitely long. 

 
 

2 Theory 
The description of the Free Electron 
Laser   given here is based on Kim [1] 
and Reiche [2]. A more detailed 
description can be found in [3] and [4] 
and the references therein.  
The treatment in this search will be 
considered the case of an electron 
beam with Lorentzian energy 
distribution as [2]:  

22)(
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Λ
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where: 
)( oF εε − is the distribution function 

of the canonical momentum.  
TΛ is the normalized energy spread 

parameter. 
ε   is the energy, and 

oε  is the nominal energy of an 
electron. 
The corresponding expression for the 
reduced distribution function F̂ has 
the form (see Figure (1));  
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which is at least an approximation for 
the more realistic Gaussian 
distribution. 
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Figure (1) 

Distribution function of the reduced 
canonical momentum )P(F ˆˆ  versus reduced 

canonical momentum P̂ and energy spread 
parameter TΛ̂ . 

 
 
Substituting the Lorentzian 
distribution function into the final 
form of integro-differential equation 
solution [3], we find that D̂  is given 
by the expression: 

2)ˆˆ(ˆ −+Λ+= CiiD Tλ      (3) 
  
And a lengthily calculation yields the 
cubic dispersion equation [2]: 

01)ˆ)ˆˆ(( 22 =+Λ−+Λ− λλ pT Ci     (4) 
 

This equation is similar to equation 
for a mono-energetic beam but with 
complex coefficients [5]. 
 
3 Results and Discussion 
For the realization, it can be found the 
general solution of integro-differential 
equation for a Lorentzian Energy 
Spread case using the Laplace 
transform technique [6] and 
MATLAB symbolic toolbox [7,8]. 
The same result can be extract using 
another technique, which the resultant 

cubic equation (in normalized form) 
can be written as equation (5 ): 
 

01)ˆ)ˆˆ(( 22 =+Λ−+Λ− λλ pT Ci ,  (5)
          
 

The general solution of above 
equation can be written as follow: 
 

Ĉ
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The three roots are not symmetrically 
located in the complex plane and there 
might be more than one growing and 
decaying modes.  
 
In Figure (2) the largest growth rate of 
all three solution is plotted depending 
on different settings of the energy 
spread TΛ̂ . With increasing energy 
spread the growth rate for a fixed 
value of Ĉ  < 0 is reduced almost in a 
linear way. The steep edge of the gain 
curved at 2ˆ ≈C  is smeared out 

TΛ̂  
P̂  

)P(F ˆˆ  
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yielding a slightly increased growth 
rate for Ĉ  >1.9 with increasing 
spread. 
Beside the predicted reduction of the 
growth rate the gain curve becomes 
more and more antisymmetric for TΛ̂  
> 0.5. For an injection below the 
resonant energy ( Ĉ  < 0), where all 
roots have positive imaginary parts, 
all modes are exponentially decaying.  
The complete energy of the radiation 
field is transferred to the electron 
beam. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (2) 
Reduced field growth rate Λ̂Re versus the 

detuning parameter Ĉ , Curve 1: 0ˆ →ΛT , 

Curve 2: 25.0ˆ →ΛT , Curve 3: 

5.0ˆ →ΛT , Curve 4: 5.1ˆ →ΛT , Curve 5: 

5.2ˆ →ΛT  at 0ˆ 2 →Λ p . 

 
This can be understood regarding the 
electron motion in the longitudinal 
phase space. The bucket of the 
ponderomotive wave is filled by the 
initial distribution in such a way that 
the distribution thins out towards 
higher energy. This happens if the 
mean energy of the distribution lies at 
the lower border of the separatrix and 
the tail towards higher energy covers 
the bucket.  
 

Due to the FEL interaction more 
electrons in the center of the 
distribution gain energy than the 
electrons lose in the tail. The width of 
the bucket is reduced and electrons 
may be detrapped if the center of the 
electron distribution is close to the 
separatrix of the bucket. This principle 
is repeated till the bucket completely 
vanishes. 
The final formula of field amplitude 

)ˆ(~ zE in case of Lorentian energy 
distribution can be written as [15]: 

∑
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where  
jλ are the roots of the cubic equation 

(Eq. (5a,b)). 
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Figure (3) 

Field gain E/Eext versus Ĉ  and the reduced 

length of undulator ẑ . Here →Λ2ˆ
p 0 and 

02 →ΛT
ˆ . 
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Ĉ  

1 
2 

3 

4 

5 



Eng. & Technology, Vol.25, Suppl. of No.2, 2007              Study the Integro-differential Equation in  
                                                                                                       a Lorentzian Energy Spread Case 

 

 295 

E/
E e

xt
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Figure (4) 

Field gain E/Eext versus Ĉ  and the reduced 

length of undulator ẑ . Here →Λ2ˆ
p 0.25 

and 02 →ΛT
ˆ . 
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Figure (5) 

Field gain E/Eext versus Ĉ  and the reduced 

length of undulator ẑ . Here →Λ2ˆ
p 0.5 

and 02 →ΛT
ˆ . 

 
 
 
 
 
 

 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 (b) 
 

Figure (6) 

Field gain E/Eext versus Ĉ  and the reduced 

length of undulator ẑ . Here →Λ2ˆ
p 1.5 

and 02 →ΛT
ˆ . 
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Ĉ  
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 (b) 
 

Figure (7) 

Field gain E/Eext versus Ĉ  and the reduced 

length of undulator ẑ . Here →Λ2ˆ
p 2.5 

and 02 →ΛT
ˆ . 

 
 
 
 
 
 

 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (b) 
 
 
 
 
 
 

Figure (8) 

Field gain E/Eext versus Ĉ  and the reduced 

length of undulator ẑ . Here →Λ2ˆ
p 0.5 

and 1ˆ 2 →ΛT . 
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Figure (9) 

Field gain E/Eext versus Ĉ  and the reduced 

length of undulator ẑ . Here →Λ2ˆ
p 1.5 

and 1ˆ 2 →ΛT . 
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Figure (10) 

Field gain E/Eext versus Ĉ  and the reduced 

length of undulator ẑ . Here →Λ2ˆ
p 0.5 

and 4ˆ 2 →ΛT . 

 
 
 
 
 
 

 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (b) 
 

Figure (11) 

Field gain E/Eext versus Ĉ  and the reduced 

length of undulator ẑ . Here →Λ2ˆ
p 1.5 

and 4ˆ 2 →ΛT . 
 

4 Conclusion 
Figures (3) to (11) illustrate the 
dependence of the field gain on the 
detuning parameter Ĉ  , space charge 
parameter 2ˆ

pΛ  and spread energy 

parameter 2ˆ
TΛ  along the undulator 

length.    
According to our process in the 
previous equations, the vectors shown 
in Figures (3b) to (11b), and the 
directions of these vectors in Figures 
(3b) to (5b) will be from the undulator 
entrance in the direction of the end of 
undulator length where this 
phenomena occur only with 
neglecting the space charge 
parameter 2ˆ

pΛ . 
When we enter the effects of the space 
charge, the field gain equation (see 
Figures (6) to (8)), the negative peak 
in the field gain amplitude will be 
observed along the detuning 
parameter Ĉ  axis. 
The negative concavity values in the 
field gain amplitude will be increases 
when we increase the effective value 
of the space charge parameter 2ˆ

pΛ  
(see Figures (6) to (11)). Also, the 
universal distribution of the field gain 
amplitude will be shifted in the 
positive side of the detuning 
parameter values.      
The rigorous results obtained in 
reduced form furnish universal plots 
for calculation the output 
characteristics of the FEL amplifier in 
the linear mode of operation. These 
solutions serve as a reliable basis for 
the development of numerical 
methods. 
The analysis of nonlinear processes 
refers to problems solvable only 
numerically by a computer. On the 
other hand, testing of the numerical 
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simulation codes would be difficult 
without the use of rigorous results of 
FEL amplifier linear theory as a 
primary standard. 
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