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Abstract 
An artificial neural network (ANN) model has been developed for the 
prediction of nonlinear response for plates with built-in edges and different 
sizes, thickness and uniform loads. The model is based on a six-layer neural 
network with back propagation learning algorithm. The learning data were 
performed using a nonlinear finite element program, the set of 1500x16 
represent the deflection response of load. Incremental stages of the nonlinear 
finite element analysis was generated by using 25 schemes of built-in 
rectangular plates with different thickness and uniform distributed loads. 
The neural network model has four input nodes representing the uniform 
distributed load, thickness, length of plate and length to width ratio, four 
hidden layers and sixteen output nodes representing the deflection response. 
Regression analysis between finite element results and values predicted by the 
neural network model shows the least error. This approach helps in the 
reduction of the effort and time required determining the load-deflection 
response of plate as the FE methods usually deal with only a single problem 
for each run while ANN methods can solve simultaneously for a patch of 
problems. 

Keywords: Artificial neural network, Elasto-plastic plate, Finite element, 
Nonlinear plate. 

Notations 
Ae:  Element area 
B  :   Strain-displacement matrix 
Bb :   Bending strain-displacement matrix 
Bs :   Transverse shear strain-displacement matrix 
D  :   Elasticity matrix 
Db :   Flexural (bending) rigidities 
Ds :   Shear rigidities  
E :    Young,s modulus 
J  :    Jacobian matrix 
K :    Stiffness matrix 
Kb :   Bending stiffness matrix 
Ks :   Transverse shear stiffness matrix 
[ ]R :  Transformation matrix
Mx,My,Mxy  : Generalized stress components (moment)
N,Ri,SI : Shape functions
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Qx,Qy :  Generalized stress components (shear forces) 
w, di :     Displacements 
 NI : Number of neurons in the input layer. 
NH : Number of neurons in the hidden layer. 
NO : Number of neurons in the output layer. 
 x : Input vector. 
hH : Input for the hidden layer. 
hO : Input for the output layer. 
yH : Output of the hidden layer. 
 y : Output of the network. 
 wji : Matrix NH ×NI of synaptic weights connecting the input and hidden layers. 
 wkj : Matrix NO ×NH of synaptic weights connecting the hidden and output 
layers. 
 b : Bias, or threshold vector. 
i = [1 : NI] : A neuron in the input layer. 
j = [1 : NH] : A neuron in the hidden layer. 
k = [1 : NO] : A neuron in the output lay 
γxz, γyz  :   Transverse shear strain components in the Cartesian coordinate system.         
γξζ ,  γηξ  : Transverse shear strain components in the natural (local)  coordinate 
system. 
γ′ξζ,γ′ηξ : Assumed transverse shear strain components in the  natural (local) 
coordinate system. 
εb : Bending strain tensor 
εs : Transverse shear strain tensor 
θxi, θyi : Rotations 
ν   : Poisson,s ratio 
fc

' : Concrete cylinder compressive strength 
{ }σ :Stress vector at sampling point. 

(.)φ  : The nonlinear function performed by the neuron. 
 
Introduction 
Accurate modeling of the elasto-
plastic plate has been attempted with a 
variety of numerical methods, such as 
the finite-element (FE), and the finite-
difference approach. While accurate, 
these techniques are generally limited 
to a single analysis for a specific 
structure, and require long 
computation times when a number of 
simulations are run with different 
mesh properties. For this reason, the 
present work will explore the use of 
artificial neural network (ANN) 
modeling of the elasto-plastic plate in 

conjugation with the finite element 
techniques. The model is constructed 
through the use of the neural network 
design (NND) toolbox in MATLAB 
[1] from the MathWorks (Natick, 
MA). 
Finite element formulation 
 Basic theory 
The variation in the displacement and 
rotation fields over a Mindlin plate 
element are given by the following 
expression [2] 

       [ ] i

n

1=i
i

T
yx d N =  , W, ∑θθ   (1) 



Eng. & Technology, Vol.25, No.3, 2007                            Artificial Neural Network Model for  
                                                                                            Predicting  Nonlinear Response of  
                                                                                               Uniformly Loaded Fixed Plates 
 

 336 

The plate curvature-displacement and 
shear strain-displacement relations are 
then written as: 

    εb = ∑ Bbi
i = 1

n
di               

id
n

1=i siB ∑=sε     (2)

  
      The moment-curvature and shear 
force-shear strain relationships are 
given as: 
   [ M x,M y,M xy]T =  

Db εb , [ Q x,Q y]T  = Ds εs  (3) 
                                                                                                       
      The stiffness matrix (Kij) 
contributions from the bending and 
shear relations can be written as: 

dABDB = e
bij bjb

Ae

T
bi∫K  ,         

dABDB = e
sij sjs

Ae

T
si∫K    (4)          

 
Assumed transverse shear strain 
fields 

Huang [2] used an artificial 
method for the elimination of shear 
locking by interpolating new shear 
strain fields from the strain values at 
the sampling points which are 
appropriately located in individual 
elements. 

In the natural coordinate 
system, the transverse shear strain 
(γξζ) and (γηξ) should tend towards 
zero for thin plate situations [2]. 
 
The assumed shear strain fields are 
chosen as: 

γ ξ η γξζ ξζ' ( , ) =  R  i
i=1

n
i∑    , 

ηζηζ γηξγ i
n

1=i
i  ),(S = ' ∑       (5)                                                                                             

The strain values at the sampling 
points are chosen as Dirac-delta 
functions of the following form: 

λ λ δ ξ ξ δ η η13 13

1
= −

=
∑ i
i

n
  ( -  )  (i

'
i
' ) ,

λ λ δ ξ ξ δ η η23 23

1
= −

=
∑ i
i

n
  ( -  )  (i

'
i
' )                               

(6)
        

The shear strain can be expressed as: 
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in which 
 

     J
2
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(8) 
 

The assumed shear strain field for the 
9- node Lagrangian element has been 
taken as a linear function of (ξ) 
direction for (γξζ) and a linear function 
of (η) direction for (γηξ) see Fig. (1). 
 
It is assumed that 

   0.0 d ,    0.0 d 
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                (9) 
 from which it can be concluded that 
 
ξ = + a   
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where   
a = (1/3)1/2                          (10)      
 
which are the two Gauss points in the 
(ξ) direction. 
 
Similarly, it can be concluded that 
 
η  = + a    where     a = (1/3)1/2    (11) 
 
which are the two Gauss points in the 
(η) direction. 

 
(γξζ) is linear in (ξ ) direction and 
quadratic in (η) direction and (γηξ) is 
linear in (η) direction and quadratic in 
(ξ ) direction, see Fig.(2), then  

ij
)(jQ )(P = 

3

1i j
i
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ξζγξηγ
ξζ ∑ ∑

= =
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where 
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The terms (γij

ξζ) and (γij
ηξ) are the 

transverse shear strain evaluated from 
the displacement field at a = (3) -1/2   

and b =1 
 
Neural network modeling 
Overview of neural network 
approach 

Neural networks are an 
information processing techniques 
based on the way biological nervous 
systems, such as the brain, process 

information. The fundamental concept 
of neural networks is the structure of 
the information processing system. 
Composed of a large number of 
highly interconnected processing 
elements or neurons, a neural network 
system uses the human-like technique 
of learning by example to solve 
problems. The neural network is 
configured for a specific application, 
such as data classification or pattern 
recognition, through a learning 
process called training. Just as in 
biological systems, learning involves 
adjustments to the synaptic 
connections that exist between the 
neurons. 

Neural networks can differ on 
the way their neurons are connected; 
the specific kinds of computations 
their neurons do; the way they 
transmit patterns of activity 
throughout the network; and the way 
they learn including their learning 
fate. Neural networks are being 
applied to an increasing large number 
of real world problems. Their primary 
advantage is that they can solve 
problems that are too complex for 
conventional technologies; problems 
that do not have an algorithmic 
solution or for which an algorithmic 
solution is too complex to be defined. 

The multi-layer perceptron is 
the most widely used type of neural 
network. It is both simple and based 
on solid mathematical grounds. Input 
quantities are processed through 
successive layers of ‘‘neurons’’. 
There is always an input layer, with a 
number of neurons equal to the 
number of variables of the problem, 
and an output layer, where the 
perceptron response is made 
available, with a number of neurons 
equal to the desired number of 
quantities computed from the inputs. 
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The layers in between are called 
‘‘hidden’’ layers. With no hidden 
layer, the perceptron can only perform 
linear tasks. All problems, which can 
be solved by a perceptron can be 
solved with only one hidden layer, but 
it is sometimes more efficient to use 
two or more hidden layers. Each 
neuron of a layer other than the input 
layer computes first a linear 
combination of the outputs of the 
neurons of the previous layer, plus a 
bias. The coefficients of the linear 
combinations plus the biases are 
called the weights. Neurons in the 
hidden layer then compute a non-
linear function of their input. 
Generally, the non-linear function is 
the sigmoid function. A sigmoid 
function is an S-shaped ‘‘squashing 
function’’, which maps a real value, 
which may be arbitrarily large in 
magnitude positive or negative to a 
real value, which lies within some 
narrow range. The result of this 
sigmoid function lies in the range 0–1. 
In the neural computation literature, 
the sigmoid is sometimes also referred 
to as the logistic function. According 
to the requirement of this function; the 
original data need to be scaled in to 
the range between 0 and 1. The 
criteria of convergence in training is 
based on the minimizing the root 
mean squared (RMS) error to a level, 
where a satisfactory agreement is 
found with the training set results of 
the network result. Once the networks 
are considered to be trained, testing 
data are presented to it and outputs are 
compared with the experimental or 
observed results. 

In this study, a multi-layer 
feed-forward neural network is used. 
In a multi-layer feed-forward neural 
network, the artificial neurons are 
arranged in layers, and all the neurons 

in each layer have connections to all 
the neurons in the next layer. 
Associated with each connection 
between these artificial neurons, a 
weight value is defined to represent 
the connection weight. Fig.(3) shows 
architecture of a multi-layer feed-
forward neural network with an input 
layer, an output layer, and foure 
hidden layers. The operation of the 
network consists of a forward pass 
through the network. A number of 
learning rules are available. The 
backpropagation learning algorithm is 
used in this study. Signals are 
received at the input layer, pass 
through the hidden layer, and reach 
the output layer. The learning process 
primarily involves the determining of 
connection weights and patterns of 
connections. 

 
Applications of neural networks 

Structural engineers started to 
use ANN in various applications. 
Chuang et al. [3] used back-
propagation network to model the 
nonlinear relationship between the 
various input parameters associated 
with reinforced concrete columns and 
the actual ultimate capacity of the 
column. 

  Mathew et al. [4] proposed 
hybrid system to predict the failure 
pressure of masonry panels of various 
boundary conditions subjected to 
biaxial bending. The system combines 
both case-based reasoning technique 
and ANN. 

Sanad and Saka [5] used 
ANN in predicting the ultimate shear 
strength of simply supported 
reinforced-concrete deep beams. 

   Pala et al [6] applied ANN 
approach for the soil-structure 
dynamic interaction analysis of a 
gravity dam. 
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 Pathak and Arora [7] 
predicted responses of composite 
laminated plates under dynamic 
loading using neural network 
approach 

Oreta [8] developed ANN 
model using past experimental data on 
shear failure of slender reinforced 
concrete beams without 
reinforcements.  
 
Mathematical background 

The Back Propagation (BP) 
neural network is a multi-layered, 
feed-forward NN. The BP neural 
network approximates the non-linear 
relationship between the input and the 
output by adjusting the weight values 
internally instead of giving the 
function expression explicitly. 
Further, the BP neural network can be 
generalized for the input that is not 
included in the training patterns 

The back propagation 
algorithm is used to train the BPNN. 
This algorithm looks for minimum of 
error function in weight space using 
the method of gradient descent. The 
combination of weights that 
minimizes the error function is 
considered to be a solution to the 
learning problem. The algorithm [9] 
can be described in the following 
steps: 
 Input feedforward: 
Once the input vector is presented to 
the input layer it can be calculated the 
input to the hidden layer as: 

 
Each neuron of the hidden layer takes 
its input H

jh  and uses it as the 
argument for a function and produces 
an output given by: 

 
 
 

 
Now the input to the neurons of the 
output layer calculated as: 
 
 
 
 
and the network output is then given 
by: 

where f  represents the activation 
function 
The error back-propagation 
learning algorithm: 
An error vector can be defined as 
being the difference between the 
network output and the target output 
value: 

Based on the error vector the mean 
square error vector can be calculated 
as: 

 
This is the cost function to be 
minimized during the learning 
process. The sum-squared error E is a 
function of all the variables of the 
network .  
Using the chain rule it is possible to 
calculate the gradient of the error with 
respect to the weight matrix 
connecting the hidden layer to the 
output layer as follows: 
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Computing each term of this 
expression yields: 
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   (21) 
              
Combining the expressions above 
results in: 
 
 
 
 
The correction kjw∆  applied to the 
weight matrix connecting the hidden 
layer to the output layer is: 
 
 
 
 where α  is a constant known as the 
step-size or the learning rate. 
 
To update the weights connecting the 
input layer to the hidden layer, the 
procedure above is to be repeated: 
 
 
 
    
After calculating each of the terms 
above, the correction to the weight 
matrix is written as: 
 
 
 
 
 
 
 
 Neural network design and 
training. 

To train a back propagation 
type neural network with the results of 

the finite element analyses [2], 
network architecture was required. 
Four input variables representing the 
uniform distributed load, thickness, 
length of plate and length to width 
ratio constituted the network-input 
layer. The sixteen output variables 
represent the deflection of load 
incremental stages of finite element 
analysis. 

The set of 1500x16 represents 
the deflection response of load. 
Incremental stages of finite element 
[2] analysis was generated by using 
25 schemes of built-in rectangular 
plates (Ex=Ey=30000N/mm2 and 
v=0.3) with different thickness and 
uniform distributed loads. 

An ANN training input data 
file was formed comprised of 1500 
rows and 4 columns, while the target 
file is formed of 1500 rows and 
sixteen columns. A network with four 
hidden layers was exclusively chosen 
for  ANN models trained in this study. 

To train ANN models, first 
the entire training data file was 
randomly divided into training and 
testing data sets. About 90 % of the 
data, 1350 patterns, were used to train 
the different network architectures 
where remaining 150 patterns were 
used for testing to verify the 
prediction ability of each trained 
ANN model. Since ANNs learn 
relations and approximate functional 
mapping limited by the extent of the 
training data, the best use of the 
trained ANN models can be achieved 
in interpolation. 

Preprocessing of data by 
scaling was carried out to improve the 
training of the neural network. To 
avoid the slow rate of learning near 
the end points specifically of the 
output range due to the property of the 
sigmoid function which is asymptotic 
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to values 0 and 1, the input and output 
data were scaled between the interval 
0.1 and 0.9. The linear scaling 
equation [8]: 
 

)/8.09.0()/8.0( max ∆−+∆= xxy  
    (27)                                                      

A variable limited to minimum ( minx ) 
and maximum ( maxx ) values given in 
Table 1 with minmax xx −=∆  was 
used in this study. 

 
Table (1). Range of input data. 

 Load kN/m2 Thickness (mm) Length (m) Aspect ratio 
Maximum 28000 300 6.0 2.5 
Minimum 70 100 2.0 1.0 

 
 

The back-propagation learning 
algorithm (scaled conjugate gradient) 
was employed for learning in the 
MATLAB program [10]. Each 
training “epoch” of the network 
consisted of one pass over the entire 
1350 training data sets. The 150 
testing data sets were used to monitor 
the training progress for a total of 
30,000 learning cycles (epochs). Six 
network architectures with four 
hidden layers were trained for 
predicting the deflection responses 
with four input nodes and sixteen 
output nodes. Overall, the MSEs 
(mean square errors) decreased as the 
networks grew in size with increasing 
number of neurons in the hidden 
layers. The error levels for both 
training and testing sets matched 
closely when the number of hidden 
nodes approached 40 in the 4-20-40-
40-40-16 architecture (4 inputs, 20 
nodes in first hidden layer, 40 nodes 
in other hidden layers and 16 output 
nodes, respectively)(see Fig. (3).)  
 
Results and discussions: 

The performance of the neural 
network and regression analysis is 
discussed in detail below. The mean 
square error of the network with 

number of epochs is shown in Fig.(4) 
and it is evident that for 30000 
epochs, the network attains an 
accuracy of (0.0000121). 

Figs.(5 and 6) show some of 
150 test results of central point load-
deflection relationships for different 
plate sizes, thickness and uniform 
distributed loads, the comparison 
between the nonlinear finite element 
and the neural network analysis are 
presented in Fig.(5), whereas Fig.(6) 
compares the linear part of the results 
with linear elastic analysis[11].  The 
average absolute errors for the 150 
test results are between 0.05% and 
2.13%. The figures show good 
agreement of ANN results with both 
finite element results and analytic 
result in its linear part.  

The performance of a trained 
network can be measured to some 
extent by the errors on the training, 
validation and test sets, but it is often 
useful to investigate the network 
response in more detail. One option is 
to perform a regression analysis 
between the network response and the 
corresponding targets and finding a 
correlation coefficient. It is a measure 
of how well the variation in output is 
explained by the targets. If this 
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number is equal to 1, then there is a 
perfect correlation between targets 
and outputs. 

Fig.(7) shows a plot of finite 
element maximum deflections against 
corresponding ANN prediction. A 
linear correlation can be observed and 
the correlation coefficient was found 
to be 1.0. 

ANN methods can often 
obtain results in almost negligible 
time as compared to similar works 
using the FE methods. Moreover, FE 
methods usually deal with only a 
single problem for each run, while 
ANN methods can solve 
simultaneously for a patch of 
problems. 

 
Conclusion: 

The system described in this 
work assists the neural network 
prediction model for nonlinear 
response of plates with built-in edges 
and with different sizes, thicknesses 
and uniform distributed loads. Such 
model can aid with the 
implementation of concurrent 
engineering practice. It is concluded 
that the proposed network model is 
capable of predicting the load-
deflection relationships of plates with 
least error, this approach helps in the 
reduction of the effort and time 
required in determining the nonlinear 
response of plates.  
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Fig. (2) Assumed shear strain fields for 9- node Lagrangian element. 
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 Fig. (3) Architecture of network  
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Fig. (4)   Mean square error of the network (performance) with 
          number of epochs 

Fig. (5)  Central point load-deflection relationships for nonlinear 
finite  
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Fig. (5) Continued 

 
Fig. (5) continued  
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Fig. (6) Central point load-deflection relationships for nonlinear finite 
element, neural network and linear elastic analysis. 
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Fig. (7)  Finite element maximum deflections and corresponding NN   prediction 


