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   In this paper, a new method is adopted which provides 

an easy and convenient way to separate partial differential 

equations involving fractional derivatives and delays. 

These fractional derivatives also refer to derivatives of an 

arbitrary real system. The method is based on the matrix 

approach developed by Podlubny, as presented in the 

article “Calculating Fractional Calculus and Applied 

Analysis” (Vol. 3, No. 4, 2000, 359-386). 
In order to implement this method, a set of MATLAB 

procedures was developed, and sample code was 

provided to solve the examples discussed in the paper. In 

the end, we can say that this paper highlights the 

importance of algebraic structures in fractional 

differential equations, especially in the context of 

concentration-dependent transport, as the proposed 

method provides a clear and flexible way to characterize 

these equations and demonstrate their effectiveness 

through numerical examples. 

 

1. Introduction and literature review: 

     After the development of science, kinetic equations involving fractional derivatives 

were recognized as a useful way to describe transport dynamics in complex systems. In 

most cases, these systems exhibit rapidly vanishing correlations and a time history that 

differs from conventional rules. A few examples are Gaussian or exponential laws. 

Systems with Hamiltonian chaos, turbulent media, complex system interactions, fluid 

and plasma turbulence, protein molecule dynamics, groundwater contamination, and 

motions under optical tweezers. [1-2-3] 

Derived from random walk models, fractional kinematic equations have the advantage 

of being able to include external force terms and solve boundary value problems as well 

as being able to take into account transport in the phase space extended by position and 

velocity data. Despite all this, the development of numerical methods is now crucial as 

the complex integral-differential nature of these equations limits analytical solutions to 

relatively basic scenarios. The similar diffusion equation for particle density, given by 

u(x, t), in a one-dimensional space is a good example to illustrate how fractionation 

occurs in kinetic equations with integer partial derivatives.[4-5] 
 

∂u

∂t
 = χ 

∂2u

∂x2
 , (t > 0, a < x < b) ………. (1) 

Where the constant χ is the diffusion coefficient.  
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By replacing a fractional derivative of order α smaller than 1 with a time derivative of  

first order, the fractional time diffusion equation is produced by the first type of 

partitioning. 

𝐷0
𝐶  𝑢𝑡

𝛼  = χ 
𝜕2𝑢

𝜕𝑥2 
 , ( t > 0, a < x < b ) ………. (2) 

Here, 𝐷0
𝐶  𝑡

𝛼  is the formula for the Caputo fractional derivative, which is [6] 

 

When α = 1 is used in (2), the classical diffusion equation is obtained. (1). 

There are two versions of the time fractional diffusion equation in the literature that 

replace the fractional Riemann-Lovell derivative with the Caputo derivative [2]. But it 

is more practical to apply it in physical situations since Caputo's derivative makes it 

possible to state the initial conditions in terms of the unknown function and its integer-

order derivatives, and he also suggested that the initial conditions have a physical 

interpretation of the fractional Riemann-Liouville derivative. [7]. 

We will focus on the form of the equation using the Caputo derivative in this discussion 

of algebraic structures in fractional differential equations for concentration-dependent 

transport, as the ease of expressing nonzero initial conditions motivates this choice [8]. 

In the second form of segmentation, a fractional derivative of order β between 1 and 2 

will likewise replace the second-order spatial derivative, so that this transformation 

leads to the spatial fractional diffusion equation [50]. 

 

where (with respect to the spatial component) ∂β /∂|x|β is the partial symmetric Riesz 

derivative, which is half the sum of the left- and right-side Derivatives of Riemann-

Liouville [9-10]: 

 

where the definitions of the Riemann-Liouville derivatives on the left and right sides 

are 
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The classical diffusion equation (1) can be obtained by reducing equation (4) to β = 2. 

Different kinds of derivatives are used in other asymmetric fractional extensions, 

though. Several alternatives exist, such as employing the left-sided Riemann-Liouville 

derivative in place of the symmetric Riesz derivative [11,12] or an asymmetric 

derivative in conjunction with asymmetric operators. distinct for derivatives on the left 

and right sides [13]. 

There are various generalizations of space-time partial diffusion equations, such as 

multi-dimensional partial diffusion and kinetic equations [5-17], and space-time 

fractional generalizations. In addition to the presence of different formulas that include 

different systematic forces in the fractional Fokker-Planck equations of space and time 

[16- 17], fractional derivatives of variable and dispersed orders in equations, and 

transport coefficients variable, and others. There is a need for an efficient numerical 

solution method that is relatively simple and capable of dealing with different forms of 

fractional kinematic equations due to the expansion of the fractional kinematic field. 

While a basic framework for the numerical solution of many existing numerical tools 

for ordinary rational equations has been established, the number of numerical methods 

available for solving rational equations with partial derivatives is relatively limited. 

Therefore, the currently active field of research is developing effective numerical 

schemes for such equations. Let's take a quick look at the various strategies employed 

in the literature [18]. 

The main distinction between numerical approaches is how they handle regular and 

fractional derivatives. For instance, the L2 differentiation approach is used in [19] to 

solve the diffusion reaction equation with the left Riemann-Liouville derivative 

between 1 and 2. The fractional integral that arises in the definition of the fractional 

Riemann-Liouville derivative is about the same for both the L2 technique and its 

variant, L2C. Within [20]. It has been demonstrated that the former is more accurate for 

orders greater than 1.5, whereas the latter is most accurate for orders smaller than 1.5. 

The semi-implicit scheme and the explicit forward Euler formula were applied to the 

first-order time derivative. 

To describe the fractional time derivative of Riemann-Liouville The L1 scheme from 

[20] was employed by Langlands and Henry [21] with an order ranging from 1 to 2. 

Yusti [22] took into account the Grünewald-Letnikov approximation of the Riemann-

Liouville time derivative and employed the weighted average of second-order space 

derivatives. A refinement of the Grünwald-Letnikov approximation was recently 

presented by Scherer et al. [23] expressly for the function's Caputo derivative. With this 

modification, the fractional diffusion equations were numerically solved with the use 

of non-zero beginning conditions and the Caputo time derivative. 

Liu and associates [24] By employing a different approach to solve the fractional space 

Fokker-Planck equation with fixed coefficients on the fractional derivative term, they 

were able to transform the partial differential equation into a system of ordinary 

differential equations. This was accomplished by applying the method of lines. 

A theoretical framework for the Galerkin finite element approach of the steady-state 

partial advection diffusion problem was developed by Irvin and Robb [25–26]. They 
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expanded their method to include fractional derivative terms in multidimensional 

partial differential equations with constant coefficients. 

Falco and Abate [27] tackled the temporal fractional diffusion equation on a semi-

infinite field by numerically inverting the two-dimensional Laplace transform. 

However, to solve the time fractional diffusion equation in a finite domain, Lin and Xu 

[28] suggested a method based on Legendre's spectral method in space and the finite 

difference scheme in time. 

Liang and Chen [29] used a combination of symbolic computations and numerical 

inversion of the Laplace transform to solve the time partial propagation wave equation 

with a time derivative of order between 1 and 2. The derivative of the transformed 

Caputo time in hydrodynamic equations for heterogeneous porous media has been 

approximated by means of a modification of Yuan and Agrawal's [29] method, which 

entails converting the fractional derivative to an infinite integral over the auxiliary 

internal variables [30]. 

Monte Carlo methods can be used to solve fractional kinematic equations, including 

specifically stochastic walking-based methods [31]. Gorenflo, Mainardi, and associates 

created a number of random walk schemes that were applied to fractional diffusion 

equations based on the Grunwald-Letnikov approximation. These schemes have been 

applied to solve various types of partial diffusion equations, including asymmetric 

spatial partial diffusion equations in the Lévy-Filler formula, symmetric spatial partial 

diffusion equations, temporal partial diffusion equations with the Caputo derivative, 

and spatiotemporal fractionation. Diffusion equations [32]. 

Gorenflo and Abdel-Rahim proposed discrete approximations of temporal fractional 

diffusion processes with heterogeneous drift toward the origin by generalizing the 

Ehrenfest jar model. Liu and associates [33]. They modeled the Lévy-Feller diffusion 

and advection process with constant drift using random walk and finite difference 

methods. In order to solve one-dimensional space-based partial diffusion and advection 

equations with space-dependent coefficients, Meerschaert and coauthors employed a 

stochastic particle tracking technique [34]. 

To tackle the nonlinear evolution problem involving the fractional Laplace operator, a 

method based on the numerical solution of coupled stochastic differential equations 

driven by symmetric stable Lévy processes is also proposed [35]. From the above, we 

find that the above-mentioned works highlight the increasingly crucial role of numerical 

solutions of fractional differential equations in applications of non-integer order 

methods and models. These techniques can be specifically applied to study algebraic 

structures in fractional differential equations for concentration-dependent transport 

We describe a novel approach to numerically solve partial differential equations in this 

study. Our method is based on the discrete rational operators' matrix form 

representation, which was first presented in [10]. Using trigonometric matrices, this 

method offers a coherent framework for n-fold integration as well as numerical 

differentiation of any order, including integer order. 

By applying our approach to the numerical solution of differential equations, we are 

able to unify the solution of both partial differential equations and integer-order partial 

differential equations, leading to a significant simplification in the numerical solutions 
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of partial differential equations. Additionally, because of its generality, algebraic 

structures in fractional differential equations of concentration-dependent transport can 

be treated. 

 

2. Data and Methods: 

Unlike widely used numerical methods, which obtain the solution step by step by 

moving from the previous time layer to the next layer to differentiate the differentiation 

and integration operators in the arbitrary real system, our method is based on the triple 

bar matrix approach [10]. As a result, the entire time interval of interest is taken into 

consideration. As a whole it also allows us to create a network of discriminating nodes. 

This step results in a two-dimensional network of nodes in the case of one spatial 

dimension. An example of this distinction is shown in Figure 1. Unknown function 

values should be identified at the internal nodes (shaded area in Figure 1). Later on, the 

system of algebraic equations will be constructed using the known values at the borders. 

The left side of the resulting system is formed by an algebraic equation system that is 

obtained at all internal nodes concurrently by approximating the equation. 

The right side of the system is then finished by applying the beginning and boundary 

conditions. The temporal levels in Figure 1 are numbered from bottom to top, and 

within each temporal level, the highlight nodes are numbered from right to left. 

Although standard numbering works well, we have used this numbering convention for 

the sake of clarity in presenting our approach as well. An outline of the fundamental 

instruments required for this technique, including transformers, demodulators, 

Kronecker products, and triangle strip matrices, is given below. We then demonstrate 

how these methods can be applied to obtain an algebraic system of equations by 

approximating the partial derivatives of any real system and the problem itself. 

2.1 Triangular strip matrices: 

For the matrices with a specific structure, we used in our research called triangular bar 

matrices [10, 36], which were also mentioned in [37-38]. 
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Fig. 1 Nodes and their numbering from bottom to top and from right to left 

 

We will need lower triangular strip matrices, 

 

and upper triangular strip matrices, 

 

Through the first column (row) the lower (upper) triangular bar matrix can be 

completely represented. Hence, if we introduce the truncation operation, truncN(·), 

which truncates the energy series ꝿ(z) in a general case 

ꝿ(z) = ∑ 𝜔ꝏ
𝑘=0 kz

k                            (10) 

 

to the polynomial ꝿ N(z), 
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A lower (or upper) triangular bar matrix can be represented using the generative series 

ꝿ (z) In the context of fractional differential equations with algebraic structures for 

concentration-dependent transport, The generating series for the set of lower (or upper) 

triangular matrices LN (or UN), where N = 1, 2,..., is the function ꝿ (z). As seen in [10], 

the generation chain of triangular bar matrices can be used to describe a variety of 

operations on them, including addition, subtraction, multiplication, and inverse (10). 

The commutativity of triangular bar matrices is a crucial characteristic. We can observe 

that matrices C and D move if they are both lower (or upper) triangular bar matrices 

CD = D C                                   (12) 

2.2 Kronecker matrix product: 

The n×m matrix A and the p×q matrix B's Kronecker product A⊗B 

 

is the np × mq matrix having the following block structure: 

 

For example, if 

 

Then 

 

The Kronecker product has several properties that are important in the context of 

fractional differential equations with algebraic structures for concentration-dependent 

transport that are relevant for later sections. These characteristics, outlined in [39], 

include the following: 

1. The Kronecker product A ⊗ B is also a range matrix if A and B are range 

matrices. 
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2. The Kronecker product of A ⊗ B is a lower (or upper) triangular matrix if A 

and B are lower (or upper) triangular matrices.  

3. En ⊗ A and A ⊗ Em are the two particular Kronecker products that need to be 

employed; En is a n × n identity matrix.  

For example, if A is a 2 x 3 matrix: En ⊗ A and A ⊗ Em will be used in the relevant 

calculations and formulas. 

 

Then 

 

This demonstrates that the left multiplication of An×m by En results in a n × n diagonal 

matrix when the matrix A is iterated on the diagonal, while the right multiplication of 

An×m by Em results in a sparse matrix composed of n × m diagonal blocks. 

2.3 Eliminators: 

The suggested approach makes use of aliquots, a particular class of matrices [10]. These 

matrices are obtained by picking only specific rows and eliminating all others from the 

N × N unit matrix E. For instance, by eliminating the first row of E, S1 is obtained; 

similarly, by eliminating the second row of E, S2 is acquired; and finally, by eliminating 

both the first and second rows of E, S1,2 is achieved. In other words, rk is found by 

eliminating rows that correspond to r1, r2,..., rk. 

In the situation of infinite matrices, similar matrices have been investigated [40]. Only 

rows of A whose numbers differ from those of rows1,2,..., rk are present in the product 

Sr1, r2,..., rkA. The product ASrT1, r2,..., rk only comprises columns A whose numbers 

differ from r1, r2,..., rk if A is a N × N square matrix. The following straightforward 

example serves as an illustration of this removers' property: This demonstrates 

removers' primary feature. 
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2.4 Shifters: 

For some types of differential operator approximations (e.g., one of the approximations 

to the symmetric Riesz derivative below in this article), and especially for the numerical 

solution of differential equations of arbitrary order, it is convenient to introduce another 

special type of matrix {shifters}, which will represent discrete transformations, such as 

delays. (fractional or integer) with a delay, for example. 

In [10], transformers—though this name is not used—were utilized to create basic 

triangular bar matrices. We differentiate between two categories of variables:  

(N + 1) × (N + 1) matrices 𝐸𝑁,𝑝
+  , p = 1, …..N 

1. With zeros everywhere else and numbers on the p-th diagonal above the main 

diagonal, the matrix  𝐸𝑁,𝑝
−  , p = 1, …..N.  

2. with zeros everywhere else and numbers on the p-th line beneath the main diagonal. 

Additionally, we indicate 𝐸𝑁,0
±  ,  ≡ EN as the unit matrix. 

If we start with UN+1 and then use transformers and demodulators, we can write the 

transformation of all the coefficients in the triangular bar matrix UN in the southwest 

direction (bottom left) easily: 

-1UN = S1 𝐸𝑁
−+1;1 UN+1 𝐸𝑁

−+1;1 𝑆𝑁
T +1            (20) 

Similarly, it is simple to determine how all of the coefficients in the triangular strip 

matrix UN have shifted in the north-east (top-right) direction: 

+1UN = 𝑆𝑁 +1 𝐸𝑁
++1;1 UN+1 𝐸𝑁

++1;1 𝑆1
T             (21) 

 

3. Discretization of ordinary fractional derivatives: 

According to [10], at all nodes of the equidistant discriminant network it is possible to 

approximate the fractional Riemann-Liouville or Caputo derivative on the left side 

v (α) (t) = 0 𝐷t
α v (t).     t = jτ (j = 0, 1, .. ., n) 

simultaneously using the upper triple band matrix 𝐵n
αas 1: 

 

Where 
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𝝎𝒋
(α)

 = (-1)j (α
𝒋
),   j = 0, 1, …. ,  n.                      (24) 

The Riemann-Liouville or Caputo fractional derivative can also be approximated on the 

right-hand side 

v(α)(t) = t 𝑫𝒃
α v(t) 

simultaneously at all nodes of the equidistant net differentiation t = j τ (j = 0, 1, ..., n ) 

using the lower triangular strip matrix 𝑭𝒏
(α)

: 

 

 

 

By applying its definition (5), one can approximate the symmetric Riesz derivative of 

order β as a combination of approximations (22) and (25) of the left- and right-side 

Riemann-Liouville derivatives. Another approach is to use the centered fractional 

differences approximation recently proposed by Ortigueira [41-42]. The general 

formula remains the same: 

 

1. The Kabuto derivative is approximated from the left side by taking one step 

forward, while by taking one step backward the Kabuto derivative is 

approximated from the right side. This leads to the formation of a matrix. 

 

2. The following is present in the second scenario (Ortigueira's definition [41]). 

symmetric matrix: 
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Both of these approximations of the symmetric Riesz derivatives yield similar 

numerical results. These approximations also lead to a well-formed matrix of the 

algebraic system resulting when solving fractional differential equations numerically. 

 

4. Partial derivatives discretization in space and time: 

In Figure 2 we find the simplest scheme for the implicit estimation of the classical 

diffusion equation. Two nodes are located in the temporal direction for the 

approximation of the time derivative, and three nodes are located in the spatial direction 

for the symmetric approximation of the spatial derivative. This stencil covers two-time 

layers specifically. But when considering a fractional order time derivative, all-time 

levels must be involved from the beginning, with five-time layers as shown in Figure 

3. In addition, when the fractional-order temporal derivative with symmetrical 

fractional-order spatial derivatives is taken into account all nodes in the current 

temporal layer must be used, from the leftmost to the rightmost spatial discrimination 

node as shown in Figure 4. 

The nodes (ih; jτ), where j is a real number between 0 and n, are the representation of 

all time layers at the i-th spatial discretization node. It has been shown in [10] that all 

values of the α-th order time derivative of u(x; t) at these nodes may be approximated 

using the discrete analogue of differentiation of arbitrary order. 

 

To get a simultaneous approximation of the α-th order time derivative of u(x, t) at all 

nodes in Figure 1, we need to organize all function values uij at the discriminant nodes 

in the form of a column vector. That is, a column vector U must be generated, where 

each element of U corresponds to a certain node (ij) and contains a value uij. By 

arranging the function values into this column vector, we can effectively represent the 

entire system of equations for the discrete problem. This column vector allows us to 

express the simultaneous approximation of the order time derivative α of u(x, t) at all 

nodes, which is necessary for solving fractional differential equations with algebraic 

structures for concentration-dependent transport 
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Visually, Figure 1 represents the discriminative nodes of the problem. To arrange the 

nodes in the desired order, we stack these nodes vertically to create a column vector, 

starting with n time layer nodes, followed by (n-1) time layer nodes, and so on. The 

matrix that converts the vector Unm into the vector Ut(α), which denotes the partial 

partial derivative of order α with respect to the time variable, can be obtained using the 

Kronecker product. This involves taking the matrix 𝑩𝒏
α, which is equivalent to the unit 

matrix Em and the fractional normal derivative of order α. The Kronecker product of 

these two matrices gives us the required transformation matrix.  

(where n denotes the number of time steps)  

(where m denotes the number of spatial discrimination nodes)  

This matrix is considered to have an important role in solving fractional differential 

equations with algebraic structures for concentration-dependent transport. 

 

This concept is illustrated in Figure 5, where the fractional order time derivative at the 

gray node is approximated using the white and gray nodes. The matrix that converts the 

vector U into the vector Ux(β), which denotes the partial partial derivative of the order 

β with respect to the spatial variable, can alternatively be obtained by using the 

Kronecker product. Taking the unit matrix En and the matrix Rm(β) is necessary for 

this. The symmetric normal Riesz derivative of order β is represented by the matrix 

Rm(β), as described in references [41-42].  

We obtain the required transformation matrix by performing the Kronecker product 

between the unit matrix En and the matrix Rm(β). This matrix is crucial in solving 

fractional differential equations with algebraic structures for concentration-dependent 

transport. 

 

  

Fig. 2 An integer-order derivative 

stencil 

Fig. 3 A template when dealing with 

fractional time derivatives 
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Fig. 3 In the event of fractional temporal and spatial derivatives, a stencil 

 

This is further illustrated in Figure 5, where the black and gray nodes (which represent 

all discriminative nodes from leftmost to rightmost) in the same gray node are utilized 

to approximate the symmetric fractional order Riesz derivative. Once we obtain these 

approximations of the partial fractional derivatives with respect to both variables, we 

can proceed to discretize the general form of the fractional diffusion equation by 

substituting the derivatives with their discrete counterparts, as shown in the figure 

 

is discretized as 

 

 

5. Utilization inside MATLAB: 

To facilitate the implementation of the proposed method, we used a set of MATLAB 

procedures [43].  

Using fractional difference methods, the BCRECUR function returns the coefficients 

needed to approximate fractional derivatives.  

The matrix approximating the back difference of the normal fractional derivative from 

the left side is returned by the BAN function.  

The matrix approximating the normal fractional derivative is returned by the FAN 

function from the right side.  

Using formulas (28) and (29), respectively, the RANSYM function and the RANORT 

function return matrices to the symmetric Riesz approximation.  

The ELEMINATOR function returns the eliminator array.  

Finally, the SHIFT function performs operations (20) and (21).  

These MATLAB procedures are designed to facilitate the implementation and 

calculation of fractional differential equations with algebraic structures for 

concentration-dependent transport. 
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Fig. 5 Partial derivatives are dematerialized Fig. 6  Partial derivatives and the equation's 

discretization 

 

 

 

Fig. 7 The resulting algebraic system's matrix structure 

Conclusion: 

In this research paper, a novel method employing algebraic structures for solving partial 

differential equations involving fractional derivatives and delays in concentration-

dependent transport dynamics has been presented. This method, based on the matrix 

approach by Podlubny, provides a clear and flexible way to handle complex systems 

where fractional derivatives play a crucial role. 

The development of algebraic structures in fractional differential equations is essential 

for accurately modeling systems exhibiting anomalous transport phenomena, such as 

chaotic systems, turbulent media, protein molecule dynamics, and groundwater 

contamination. The adoption of fractional derivatives allows for a more thorough 
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description of these systems' dynamics compared to traditional integer-order 

approaches. 

The numerical implementation of the proposed method has been facilitated through a 

set of MATLAB procedures, enabling researchers to efficiently solve fractional 

differential equations and demonstrate the effectiveness of the approach through 

practical examples. By discretizing fractional derivatives in both time and space 

domains and utilizing algebraic tools like triangular strip matrices, Kronecker products, 

and shifters, the method provides a systematic and rigorous framework for solving 

complex concentration-dependent transport problems. 

This research underscores the importance of leveraging algebraic structures in 

fractional calculus to advance our understanding and modeling capabilities in various 

scientific and engineering fields. By providing a comprehensive methodology to tackle 

concentration-dependent transport dynamics, this work contributes to the growing body 

of knowledge in fractional differential equations and their applications. 

In conclusion, the proposed method offers a promising avenue for researchers and 

practitioners to address challenging problems in concentration-dependent transport 

systems with fractional derivatives, paving the way for a deeper exploration of complex 

transport phenomena with improved numerical techniques and analytical tools. 

References: 

1. A. Chechkin, V. Y. Gonchar, J. Klafter, R. Metzler, Fundamentals of L´evy flight 

processes., Advances in Chemical Physics 133 (2006) 439- 496. 

2. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a 

fractional dynamics approach, Phys. Reports. 339 (1) (2000) 1-77. 

3. I. Sokolov, J. Klafter, A. Blumen, Fractional kinetics, Physics Today 55 (2002) 

48-54. 

4. G. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep. 

371 (1) (2002) 461-580. 

5. R. Klages, G. Radons, I. M. Sokolov (eds.), Anomalous Transport, Wiley-VCH, 

Berlin, 2008. 

6. M. Caputo, Elasticit`a e dissipazione, Zanichelli, Bologna, 1969. 

7. I. Podlubny, Geometric and physical interpretation of fractional integration and 

fractional differentiation, Fractional Calculus and Applied Analysis 5 (4) (2002) 

367-386. 

8. N. Heymans, I. Podlubny, Physical interpretation of initial conditions for 

fractional differential equations with Riemann-Liouville fractional derivatives, 

Rheologica Acta 45 (5) (2006) 765-771. 

9. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 

1999. 

10. I. Podlubny, Matrix approach to discrete fractional calculus, Fractional Calculus 

and Applied Analysis 3 (4) (2000) 359-386. 

11. D. del Castillo-Negrete, B. A. Carreras, V. E. Lynch, Front dynamics in reaction-

diffusion systems with L´evy flights: A fractional diffusion approach, Phys. Rev. 

Lett. 91 (1) (2003) Article 018302. 



     Journal of Iraqi Al-Khwarizmi (JIKh)   Volume:8  Issue:1 Year: 2024   pages: 49-65   
  

64 
 

12. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional 

advection-dispersion equations, Journal of Computational and Applied 

Mathematics 172 (1) (2004) 65-77. 

13. M. M. Meerschaert, H.-P. Scheffler, C. Tadjeran, Finite difference methods for 

two-dimensional fractional dispersion equation, Journal of Computational 

Physics 211 (1) (2006) 249-261. 

14. M. M. Meerschaert, H.-P. Scheffler, C. Tadjeran, Finite difference methods for 

two-dimensional fractional dispersion equation, Journal of Computational 

Physics 211 (1) (2006) 249-261. 

15. R. Friedrich, Statistics of Lagrangian velocities in turbulent flows, Physical 

Review Letters 90 (8) (2003) Article 084501. 

16. R. Metzler, E. Barkai, J. Klafter, Deriving fractional Fokker-Planck equations 

from a generalized master equation, Europhysics Letters 46 (4) (1999) 431-436. 

17. I. M. Sokolov, J. Klafter, Field-induced dispersion in subdiffusion, Physical 

Review Letters 97 (2006) Article 140602. 

18. I. Sokolov, J. Klafter, A. Blumen, Fractional kinetics, Physics Today 55 (2002) 

48-54. 

19. V. E. Lynch, B. A. Carreras, D. del Castillo-Negrete, K. Ferreira-Mejias, 

Numerical methods for the solution of partial differential equations of fractional 

order, Journal of Computational Physics 192 (2003) 406-421. 

20. K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 

1974. 

21. T. Langlands, B. Henry, The accuracy and stability of an implicit solution 

method for the fractional diffusion equation, Journal of Computational Physics 

205 (2) (2005) 719-736. 

22. S. Yuste, Weighted average finite difference methods for fractional diffusion 

equations, Journal of Computational Physics 216 (1) (2006) 264-274. 

23. R. Scherer, S. L. Kalla, L. Boyadjiev, B. Al-Saqabi, Numerical treatment of 

fractional heat equations, Applied Numerical Mathematics 58 (8) (2008) 1212-

1223. 

24. Q. Liu, F. Liu, I. Turner, V. Anh, Approximation of the Levy- Feller advection-

dispersion process by random walk and finite difference method, Journal of 

Computational Physics 222 (1) (2007) 57-70. 

25. V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional 

advection dispersion equation, Numerical Methods for Partial Differential 

Equations 22 (3) (2005) 558-576. 

26. V. J. Ervin, J. P. Roop, Variational solution of fractional advection dispersion 

equations on bounded domains in rd, Numerical Methods for Partial Differential 

Equations 23 (2) (2006) 256-281. 

27. P. P. Valko, J. Abate, Numerical inversion of 2-d Laplace transforms applied to 

fractional diffusion equation, Applied Numerical Mathematics 53 (2005) 73-88. 

28. Y. Lin, C. Xu, Finite difference/spectral approximations for the time fractional 

diffusion equation, Journal of Computational Physics 225 (2) (2007) 1533-

1552. 

29. L. Yuan, O. P. Agrawal, A numerical scheme for dynamic systems containing 

fractional derivatives, Journal of Vibration and Acoustics 124 (2) (2002) 321-

324. 



     Journal of Iraqi Al-Khwarizmi (JIKh)   Volume:8  Issue:1 Year: 2024   pages: 49-65   
  

65 
 

30. J.-F. Lu, A. Hanyga, Wave field simulation for heterogeneous porous media with 

singular memory drag force, Journal of Computational Physics 208 (2) (2005) 

651-674. 

31. R. Gorenflo, G. De Fabritiis, F. Mainardi, Discrete random walk models for 

symmetric L´evy{Feller diffusion processes, Physica A 269 (1999) 79-89. 

32. R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time fractional diffusion: A 

discrete random walk approach., Nonlinear Dynamics 29 (2002) 129-143. 

33. Q. Liu, F. Liu, I. Turner, V. Anh, Approximation of the Levy-Feller advection-

dispersion process by random walk and finite difference method, Journal of 

Computational Physics 222 (1) (2007) 57-70. 

34. Z. Yong, D. A. Benson, M. M. Meerschaert, H.-P. Scheffler, on using random 

walks to solve the space-fractional advection-dispersion equations, Journal of 

Statistical Physics 123 No.1 (2006) 89-110. 

35. D. Stanescu, D. Kim, W. A. Woyczynski, Numerical study of interacting 

particles approximation for integro-differential equations, Journal of 

Computational Physics 206 (2) (2005) 706-726. 

36. D. A. Suprunenko, R. I. Tyshkevich, Commutative Matrices, Nauka I Tekhnika, 

Minsk, 1966. 

37. B. V. Bulgakov, Kolebaniya (Vibrations), Gostekhizdat, Moscow, 1954. 

38. F. R. Gantmakher, Theory of Matrices, Nauka, Moscow, 1988. 

39. C. F. van Loan, The ubiquitous Kronecker product, Journal of Computational 

and Applied Mathematics 123 (2000) 85-100. 

40. R. G. Cooke, Infinite Matrices and Sequence Spaces, Fizmatgiz, Moscow, 1960. 

41. M. D. Ortigueira, Riesz potential operators and inverses via fractional centred 

derivatives, International Journal of Mathematics and Mathematical Sciences 

Article ID 48391 (2006) 1-12. 

42. M. D. Ortigueira, A. G. Batista, On the relation between the fractional Brownian 

motion and the fractional derivatives, Physics Letters A 372 (2008) 958-968. 

43. I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, B. Vinagre Jara, Matrix 

approach to discretization of ODEs and PDEs of arbitrary real order, 

http://www.mathworks.com/matlabcentral/fileexchange/22071 (November 12, 

2008). 

http://www.mathworks.com/matlabcentral/fileexchange/22071

