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Abstract  
In this paper, a new algorithm for accurate optical flow estimation using discrete 
wavelet approximation is proposed. The image sequences are always assumed to 
be noiseless in the computation of optical flow, since there is always a method that 
can perform such task. One of the main application areas of the wavelet 
transform is that of noise reduction in images. The basic technique is to transform 
the noisy input image into a domain, in which the main signal energy is 
concentrated into as few coefficients as possible, while the noise energy is 
distributed more uniformly over all coefficients. The choice of the transform is 
represent an important tool in optical flow estimation. In this paper, several 
algorithms of 1-D, 2-D and 3-D wavelet transforms are adapted for the estimation 
of optical flow for the first time.  

Keyword Optical flow estimation, gradient-based method, 3-D Discrete Wavelet 
Transform (DWT). 

 للاشارة ثلاثية الابعادل المويجة المتقطعةيستخلاص التدفق البصري باستخدام تحوا

  الخلاصة
يفترض . يقَتِّرح في هذ البحث طريقة جديدة لاستخلاص التدفّق البصري باستخدام تحويل المويجة  

حيث توجد . الضوضاء عند حساب التدفق البصريعلى الدوام ان الصور المتتابعة تكون خالية من
. واحد من اهم تطبيقات تحويل المويجة هو خفض مستوى الضوضاء في الصور. طريقة للقيام بذلك

مبدا هذه التقنية هو تحويل الادخال الصاخب الى مجال بحيث ان معظم طاقة الاشارة تتركز في اقل 
حتوي على ضوضاء تتوزع بشكل منتظم اكثر على عدد ممكن من المعاملات، بينما الطاقة التي ت

يقَدم في هذ البحث . ان اختيار نوع التحويل مهم جدا عند حساب التدفق البصري. جميع المعاملات
بعض الخواروميات لحساب تحويل المويجات بالنسبة للاشارات ذات البعد الواحد والبعدين والثلاثة

،  يتم اقتراح طريقة جديدة في حساب التدفق البصري بالاعتماد بالاضافة الى ذلك، ولاول مرة. ابعاد
.على تحويل المويجات للاشارات ثلاثية الابعاد
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Introduction 
Optical flow (OF) estimation is an 

essential problem in motion analysis of 
image sequences. It provides 
information needed for video 
technology, such as object tracking, 
image segmentation, and motion 
compensation. A great number of 
approaches for OF estimation has been 
proposed in the literature, including 
gradient-based, region-based, energy-
based, and wavelet-based techniques 
[1-4]. Practical issues in computing 
optical flow were addressed in [5], in 
which nine techniques are reported 
dating from 1981 to 1990 for accuracy, 
density and reliability of 
measurements. One of the purposes of 
[5] was to analyze the performance of 
different optical flow methods and to 
encourage others to compare numerical 
results with theirs. In addition, some 
experimental work evaluating 
differential techniques has recently 
appeared [6].  

Despite their difference, many of 
these techniques can be viewed 
conceptually in terms of three stages of 
processing [5]: 
Ø Prefiltering or smoothing with low 

pass or band pass filters in order to 
extract signal structures of interest 
and to enhance the signal-to-noise 
ratio. 

Ø Measurement extraction of the basic 
image structures, such as 
spatiotemporal derivatives or local 
correlation surfaces. 

Ø The integration of these 
measurements either by 
regularization, correlation, or a 
least-squares computation to 
produce a 2D flow field, which 

often involves assumptions about 
the smoothness of the underlying 
flow field. 
A typical gradient-based approach 

was proposed by Horn and Schunck 
[1], which is mainly based on 
optimizing an energy function that is a 
function of an image constraint and a 
smoothness constraint 

( ) ( )[ ]dxdyvuIvIuIE tyx∫∫ ∇+∇+++= 222 λ                                                               

                                                   … (1)                      
where 
I    = I(x,y,t)  image brightness function 
at time t. 
[u,v]   = [u(x,y),v(x,y)] the flow vector; 
 ∇    = gradient operator;   λ  > = 0 is 
the regularizing parameters.  
Ix , Iy , It = partial derivatives of I(x,y,t) 
with respect to     the x and y 
coordinates, and time , respectively. 

The first term on the right-hand 
side of equation (1) is the image 
constraint, the second term is the 
smoothness constraint, that is the 
weighting between the two constraints. 
For each pixel (x,y), two variables, u 
and v, need to be solved. With only one 
constraint (the image constraint), the 
solution of u and v cannot be obtained. 
Thus, Horn and Schunck proposed the 
smoothness constraint and added it into 
the objective function shown in 
equation (1). Under these 
circumstances, the flow field can be 
solved by optimizing the objective 
function. It is known that the 
smoothness constraint may be invalid 
across the motion boundary, but this 
problem can be solved by using the 
regularization technique [5]. Another 
major concern is the approximation 
errors that occur when the gradient-
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based approach is adopted. These 
errors are due to inaccurate numerical 
approximation of partial derivatives, as 
well as temporal and spatial aliasing 
during sampling of the image 
brightness function I(x,y,t). In order to 
solve the above-mentioned error 
problem, Barron et al. [5] proposed an 
improved approach based on equation 
(1). They suggested applying a 
spatiotemporal pre-smoothing to the 
target image first. Then, a four-point 
central difference technique is adopted 
to simulate the differentiation 
operation. Their method significantly 
improved the method proposed by 
Horn and Schunck [1] because of 
adding the smoothing step. 
 

1. Discrete Wavelet Transform 
 

The multiresolution idea is better 
understood by using a function 
represented by ( )tΦ and referred to as 
scaling function. A two-dimensional 
family of functions is generated, from 
the basic scaling function by [7]:  

( ) ( )ktt jj
kj −Φ=Φ 2 2 2

,          … (2)                                                                                     

The nesting of the space spanned 
by ( )ktj −Φ 2 is achieved by requiring 

( )tΦ  to be represented by the space 
spanned by ( )t2Φ . In this case, the 
lower resolution function, ( )tΦ , can be 
expressed by a weighted sum of shifted 
version of the same scaling function at 
the next higher resolution, ( )t2Φ , as 
follows: 

( ) ( ) ( )      2 2  ktkht
k

−Φ=Φ ∑  … (3)                                                                       

The set of coefficients 
( )kh being the scaling function 

coefficients and 2  maintains the 
norm of the scaling function with scale 
of two. ( )tΦ , being the scaling 
function which satisfies this equation, 
is sometimes called the refinement 
equation, the dilation equation, or the 
multiresolution analysis equation 
(MRA) [8-9]. 
The important features of a signal can 
be better described or parameterized, 
not by using ( )tkj,Φ  and increasing j 
to increase the size of the subspace 
spanned by the scaling functions, but 
by defining a slightly different set of 
functions ( )tkj,Ψ  that span the 
differences between the spaces 
spanned by the various scales of the 
scaling function [10]. Since it is 
assumed that these wavelets reside in 
the space spanned by the next narrower 
scaling function, they can be 
represented by a weighted sum of 
shifted version of the scaling function 

( )t2Φ as follows: 

( ) ( ) ( )      2 2 ktkgt
k

−Φ=Ψ ∑   … (4)                                                                   

The set of coefficients ( )kg ’s is 
called the wavelet function coefficients 
(or the wavelet filter). It is shown that 
the wavelet coefficients are required by 
orthogonality to be related to the 
scaling function coefficients for a finite 
even length-N, by [8,10]:  

( ) ( ) ( )kNhkg k −−−= 11           … (5)                                                  

Any function ( )tf  could be 
written as a series expansion in terms 
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of the scaling function and wavelets by 
[11]: 

( ) ( ) ( )

( ) ( )∑ ∑

∑
∞

=

∞

−∞=

∞

−∞=

Ψ

+Φ=

0

00

,

,

             
jj k

kjj

k
kjj

tkb

tkatf
      … (6)                                                     

where    N : Length of filter. 
   jo : coarse scale. 
  a j : Scaling coefficients. 
  bj : Wavelet coefficients. 

It is shown that the scaling and wavelet 
coefficients at scale j are related to the 
scaling coefficients at scale (j + 1) by 
the two following relations.
 

( ) ( ) ( )∑ +−=
m

jj makmhka 12  … (7)                                                                       

 
( ) ( ) ( )∑ +−=

m
jj makmgkb 12  … (8)                                                                     

 
 
2. A Proposed Fast 
Computation Method of DWT 
 

For computing fast discrete 
wavelet transform (FDWT), consider 
the following transformation matrix for 
length-2 [12]: 
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and the following transformation 
matrix for length-4: 

( ) ( ) ( ) ( )
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Here blank entries signify zeros. By 
examining the transform matrices of 
the scalar wavelet as shown in 
equations (9) and (10) respectively. 
One can see that, the first row 
generates one component of the data 
convolved with the low-pass filter 
coefficients ( ( )0h , ( )1h ,  …), likewise 
the second, third, and other upper half 
rows. The lower half rows perform a 
different convolution, with high pass 
filter coefficients ( ( )0g , ( )1g , …). 
Thus overall action of the matrix, is to 
perform two related convolutions, then 
to decimate each of them by half 
(throw away half the values), and 
interleave the remaining halves.  
By using equation (5), the transform 
matrices become: 
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For such characterization to be useful, 
it must be possible to reconstruct the 
original data vector of length N from  
 

 
its N/2 smooth and its N/2 detail, that 
is effected by requiring the matrices to 
be orthogonal, so that its inverse is just 
the transposed matrix: 
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2.1  Computation of FDWT for 1-D  
Signal 

 
To compute a single level FDWT 

for 1-D signal the next steps should be 
followed: 
1. Checking input dimensions: Input 

vector should be of length N, where 
N must be power of two. 

2. Construct a transformation matrix: 
using transformation matrices given 
in (11) and (12).  

3. Transformation of input vector, 
which can be performed by 
applying matrix multiplication of 
the NxN constructed transformation 
matrix by the Nx1 input vector. 

 
2.2  Computation of FDWT for 2-D  
Signal 

To compute a single level 
orthogonal-based FDWT for 2-D 
signal the next steps should be 
followed: 
1. Checking input dimensions: Input 

matrix, X, should be of length NxN, 
where N must be power of two. 

 
 
2. For an NxN matrix input 2-D 

signal, X, construct a NxN 
transformation matrix, T, using 
transformation matrices given in 
eqns. (11) and (12).  

3. Apply Transformation by 
multiplying the transformation 
matrix by the input matrix, and by 
the transpose of the transformation 
matrix.  

tTXTY ⋅⋅=                       … (15)                                                    
This multiplication of the three 
matrices results in the final discrete 
wavelet transformed matrix. 

2.2  Computation of FDWT for 3-D  
Signal 

The new proposed fast 3-D 
wavelet transform (FDWT) algorithm 
reduces heavily the processing time for 
decomposition of video sequences 
keeping or overcoming the quality of 
reconstructed sequences In addition, it 
cuts heavily the memory demands.  

Let’s take a general 3-D signal, 
for example any NxNxM matrix, and 
apply the following steps 
1. Let X be the NxNxM input 3-D 

signal, 
 
 
 
 

 
 

 
2. Apply 2-D FDWT algorithm to 

each NxN input matrix, which 
results in a NxNxM,  Y matrix. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Y= 
3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

dddd
dddd
dddd
dddd

 
3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

cccc
cccc
cccc
cccc

 
3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

bbbb
bbbb
bbbb
bbbb

 
3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

aaaa
aaaa
aaaa
aaaa

 



Eng. & Technology, Vol.25, Suppl. of No.2, 2007              3D Wavelet-Based Optical Flow Estimation 
 

 305

3. Apply 1-D FDWT algorithm to 
each of the 16 elements in all M 
matrices in z-direction, which can 
be done as follows: 

a. For each i,j , construct the Mx1 
input vector 

( ) [ ]T Mjijijiji dcbajiY
×

= 1,,,,,

      where Nji ,,2,1,0, L=  
b. Construct an MxM transformation 

matrix; using transformation 
matrices given in eqns.  (11) and 
(12).  

c. Apply matrix multiplication to the 
MxM constructed transformation 
matrix by the Mx1 input vector.  

4. Repeat step 3 for all i, j  to get YY 
matrix (NxNxM matrix). 

 
 
3. 3D Wavelets-Based OF Estimation 

 
Smoothing filters are used for 

blurring and for noise reduction. 
Blurring is used in preprocessing steps, 
such as removal of small details from 
an image prior to object extraction, and 
bridging of small gaps in lines or 
curves. Noise reduction can be 
accomplished by blurring with a linear 
filter and also by nonlinear filtering. 
Due to the sparseness of wavelet 
coefficients, the potential in denoising 
has been studied extensively over the 
last decade [13]. The energy of the 
signal is concentrated in a small 

number of wavelet coefficients. Thus, 
magnitudes of the coefficients are 
relatively large compared to noise 
which spreads over a large number of 
coefficients.  

In this work, a new optical flow 
estimation approach is employed in the 
wavelet domain. These steps outline 
the computation of image velocity 
using 2x2x2 spatiotemporal derivative 
filter: 
Step 1: Prefiltering: Presmoothing the 
images to reduce noise and aliasing 
effect using 3-D fast discrete wavelet 
transform algorithm stated in  section 
3.3. Only 5 input images are required, 
as shown in Fig. (1). When a data set is 
decomposed using wavelets, filters are 
used that act as averaging filters and 
other produce details. Some of the 
resulting wavelet coefficients 
correspond to details in the data set. If 
the details are small, they might be 
omitted without substantially affecting 
the main features of the data set. 
Step 2: Estimating the partial 
derivatives: There are two images to 
estimate spatio-temporal derivatives 
for. A 2x2x2 spatiotemporal 
neighborhood, shown in Fig. (2), for 
estimation of partial derivatives Ix , Iy , 
and It  is used. Each of the estimates is 
the average of four first differences 
taken over adjacent measurements in 
the cube: 
 

 

( ) ( )[ ] ( ) ( )[ ]{

( ) ( )[ ] ( ) ( )[ ]}1,1,1,1,1,1,,1,1

1,,1,,1,,,,1
4
1

++−+++++−++

++−+++−+=

tyxItyxItyxItyxI

tyxItyxItyxItyxII x               …(16)                                                     
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( ) ( )[ ] ( ) ( )[ ]{
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4
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( ) ( )[ ] ( ) ( )[ ]{
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,1,11,1,1,1,1,1,
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4
1
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         … (18) 

 
Step 3: Initialize u(x,y) and v(x,y) for 
all (x,y) pixel. 
Step 4: Iterative Algorithm: For each 
iteration, the algorithm is outlined as 
follows: 
a. Initialize ux,y and vx,y for all (x,y) 

pixel. 
b. Estimate the Laplacian of the flow 

velocities: The Laplacian of u and 
v are approximated by: 

      
( ) ( )
( ) ( )yxvyxvv

yxuyxuu

,,

,,
2

2

−=∇

−=∇
  … (19)                                                                               

Where ( )kk vu ,  are the 
neighborhood averages of ( )kk v,u  

Equivalently, the Laplacian of u, v, 
vu 22  and ∇∇ , can be obtained by 

applying a 3x3 window operator, 
shown in Fig. (3), to each point in 
the u and v planes, respectively.  

c. Given the spatio-temporal 
derivatives, Ix, Iy and It, computed 
as described in step 1, a new set of 
velocity estimates ( )11, ++ kk vu  can 
be computed from the estimated 
derivatives and the average of the 
previous velocity estimates 
( )kk vu ,  by:  
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+
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λ
   

                                            … (20) 
d. Repeat until a solution is steady: 

there are two different ways to 
iterate, one is to iterate at a pixel 
until a solution is steady. Another 
way is to iterate only once for each 
pixel. In the latter case a good 
initial flow vector is required and 
is usually derived from the 
previous pixel. 

Step 5: Thresholding: Threshold 
the computed velocities on the basis 
of the spatial intensity gradient. The 
typical threshold rules are to set the 
computed velocities smaller in 
absolute value than a fixed non-
negative number (the threshold 
value, tau) to zero. 
 

( ) ( )



>
<

=
tauyxMif,vu
tauyxMif

,vu
x,yx,y

x,yx,y  ),( 
 ),( 0.0                                                          

                                              … (21)                       
where  
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22),(),( yx IIyxIyxM +=∇=                                                          

                                              … (22)  
 
4.  Experimental Results 

 
Algorithm developed in the 

previous sections are utilized and 
organized to be implemented in a 
computer package OFEM (Optical 
Flow Estimation Methods). The 
package was written in Borland C++ 
V.5.0, and it is developed on Pentium 
4,  2.4 GHz, 128 Mbyte RAM 
computer. The proposed methods in 
this paper are applied to estimate the 
optical flow on real sequences and 
synthetic sequences. The regularizing 
parameter (λ) is set to 0.5 for all 
experiments in this work.  Most image 
sequences are downloaded from 
ftp.csd.uwo.ca. 

 
4.1 Synthetic Image Sequences  
Sinusoidal Inputs: This consists of the 
superposition of two sinsoidal plane 
waves 
 

( ) ( )twxktwxk 2211 sinsin +⋅++⋅                                                                     
                                                   … (23) 
 
The results reported are based on 
spatial wavelengths of 6 pixels, with 
orientations of 54º and –27º, and 
speeds of 1.63 and 1.02 pixel/frame 
respectively, which is called Sinsoidal1 
as shown in Fig. (4). The resulting 
plaid pattern translates with velocity 
v=(1.5539,0.7837) pixel/frame. 
Translating Squares: Other simple   
test case involves a translating dark 
square (with a width of 40 pixels) over 

a bright background as shown in Fig. 
(5). 

 
4.2 Real Image Sequences 

Two real image sequences, shown 
in Fig. (6) and Fig. (7), were also used: 
Rotating Rubik Cube: In this image 
sequence a rubic’s cube is rotating 
counterclockwise on a turntable. The 
motion field induced by the rotation of 
the cube includes velocities less than 2 
pixel/frame 
Hamburg Taxi Sequences: In this street 
scene there were four moving 
objects:1) the taxi turning the corner; 
2) a car in the lower left, driving from 
left to right; 3) a van in the lower right 
driving right to left; and 4) a pedestrian 
in the upper left.  

 
5. Conclusions 

In this paper a new method for 
computing wavelet transforms is given. 
These transforms are used in several 
methods of optical flow estimation. On 
the strength of the favorable results 
reported by previous investigation [12-
13] to apply wavelets to the denoising 
of 1-D and 2-D signals, combined with 
the success shown here for 3-D 
wavelets transform, it seems likely that 
wavelets may work well for optical 
flow estimation. The proposed 
wavelet-based optical flow estimation 
framework benefits from the following 
useful features:  
a. Low computational complexity: 

Although the convolution method 
leads to full reconstruction 
computation, it gives also less 
complexity. The scalar methods 
have (32) multiplications and (18) 
additions for transforming a signal 
of four input data (N=4), while the 

ftp://ftp.csd.uwo.ca
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proposed method gives  (16) 
multiplications and 12 addition 
operations for the same input size.   

b. Low memory requirement:  A 
Gaussian 1.5 filter requires the 
explicit storage of 15 frames to 
compute flow. Concerns arise for 
real-time use when considering the 
computational costs and seven 
frame delay of the Gaussian 1.5 
filter. Temporal delay and storage 
requirements are improved 
significantly for wavelet filter, 
giving two frame latency as given 
in Table (1). 

c.  Since a significant number of 
motion vectors in the high 
frequency subbands can be zero 
(due to the sparse wavelets 
coefficients in these subbands), no 
motion vectors are generated for 
these blocks. 
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Fig. 1 Presmoothing images using 3D wavelet transform. 
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Filter 
Support 

(frames) 

Latency 

(frames) 

Gaussian 1.5 15 7 

3D Derivative /Prefilter  7 3 

2D-Wavelets 2 1 

3D-Wavelets 5 2 

 

Table (1): Efficiency data for temporal filters.   
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Fig. 2 Estimating Ix , Iy , and It  using 

2x2x2 spatiotemporal derivative filter 
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Fig. 3 A 3x3 window 
operation for estimation of the 
Laplacian of the flow vector 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4 Estimated optical flow obtained from the Sinusoidal image sequences 

 

  

Fig. 5 Estimated optical flow obtained from the Square image sequences 
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Fig. 6 Estimated optical flow obtained from the Taxi image sequences 

 

 
 

Fig. 7 Estimated optical flow obtained from the Rubic's cube image sequences 

 

 

 


