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Abstract

In this paper, a new algorithm for accurate optical flow estimation using discrete
wavelet approximation is proposed. The image sequences are always assumed to
be noiseless in the computation of optical flow, sincether e isalwaysa method that
can perform such task. One of the main application areas of the wavelet
transform isthat of noise reduction in images. The basic techniqueisto transform
the noisy input image into a domain, in which the main signal energy is
concentrated into as few coefficients as possible, while the noise energy is
distributed more uniformly over all coefficients. The choice of the transform is
represent an important tool in optical flow estimation. In this paper, several
algorithms of 1-D, 2-D and 3-D wavelet transfor ms ar e adapted for the estimation
of optical flow for thefirst time.

Keyword Optical flow estimation, gradient-based method, 3-D Discrete Wavelet
Transform (DWT).
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I ntroduction
Optical flow (OF) estimation is an

essential problem in motion analysis of

image  sequences. It provides
infformation  needed for  video
technology, such as abject tracking,
image segmentation, and motion
compensation. A great number of
approaches for OF estimation has been
proposed in the literature, including
gradient-based, region-based, energy-
based, and waveet-based techniques
[1-4]. Practical issues in computing
optical flow were addressed in [5], in
which nine techniques are reported
dating from 1981 to 1990 for accuracy,
density and reliability of
measurements. One of the purposes of
[5] was to analyze the performance of
different optical flow methods and to
encourage others to compare numerical
results with theirs. In addition, some
experimental work evaluating
differential techniques has recently

appeared [6].

Despite their difference, many of
these techniques can be viewed
conceptually in terms of three stages of
processing [5]:

@ Prefiltering or smoothing with low
pass or band pass filters in order to
extract signal structures of interest
and to enhance the signal-to-noise
ratio.

M easurement extraction of the basic
image  structures, such  as
spatiotemporal derivatives or local
correlation surfaces.

@ The  integration
measurements
regularization, correlation, or a
least-squares  computation  to
produce a 2D flow fied, which

%)

these
by

of
either
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often involves assumptions about

the smoothness of the underlying

flow field.

A typical gradient-based approach
was proposed by Horn and Schunck
[1], which is mainly based on
optimizing an energy function that is a
function of an image constraint and a
smoothness constraint

E=giliu+r v f+1 (Ruf + R Jpxay
. (D)

where
I =1(xyt) image brightnessfunction
a timet.
[uv] =[u(xy),v(xy)] theflow vector;
N = gradient operator; | >=0is
the regularizing parameters.
Iy, ly, It = partial derivatives of 1(x,y,t)
with respect to the x and vy
coordinates, and time , respectively.
The first term on the right-hand
side of eguation (1) is the image
constraint, the second term is the
smoothness constraint, that is the
weighting between the two constraints.
For each pixd (xy), two variables, u
and v, need to be solved. With only one
constraint (the image constraint), the
solution of u and v cannot be obtained.
Thus, Horn and Schunck proposed the
smoothness constraint and added it into
the objective function shown in
equation D. Under these
circumstances, the flow field can be
solved by optimizing the objective
function. It is known that the
smoothness constraint may be invalid
across the motion boundary, but this
problem can be solved by using the
regularization technique [5]. Another
major concern is the approximation
errors that occur when the gradient-
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based approach is adopted. These
errors are due to inaccurate numerical
approximation of partial derivatives, as
well as temporal and spatial aiasing
during sampling of the image
brightness function 1(x,y,t). In order to
solve the above-mentioned error
problem, Barron et al. [5] proposed an
improved approach based on eguation
(1). They suggested applying a
spatiotemporal pre-smoothing to the
target image first. Then, a four-point
central difference technique is adopted
to dmulate the differentiation
operation. Their method significantly
improved the method proposed by
Horn and Schunck [1] because of
adding the smoothing step.

Discrete Wavelet Transform

The multiresolution idea is better
understood by using a function

represented by F (t)and referred to as

scaling function. A two-dimensional
family of functions is generated, from
the basic scaling function by [7]:

F)=22Ft-k)  ..@

The nesting of the space spanned
by F (th - k)is achieved by requiring
F (t) to be represented by the space
spanned byF(2t). In this case, the

lower resolution function, F (t) can be

expressed by a weighted sum of shifted
version of the same scaling function at

the next higher resolution, F(2t) as
follows:

Fit)=& hlk)vV2F(2t-k) ...(@3)
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The st of  coefficients
h(k) being the scaling function

coefficients and +/2 maintains the
norm of the scaling function with scale
of two. F(t) , being the scaling
function which satisfies this equation,
is sometimes called the refinement
equation, the dilation equation, or the
multiresolution  analysis  equation
(MRA) [8-9].

The important features of a signal can
be better described or parameterized,

not by using F ; (t) and increasing |
to increase the size of the subspace
spanned by the scaling functions, but
by defining a dlightly different set of
functions Y, (t) that span the

differences between the spaces
spanned by the various scales of the
scaling function [10]. Since it is
assumed that these wavelets reside in
the space spanned by the next narrower
scaling function, they can be
represented by a weighted sum of
shifted version of the scaling function
F (2t)asfo||ows:

Y(t):%g(k)\/EF(Zt- K .4

The set of coefficients g(k)’s is

called the waved et function coefficients
(or the wavelet filter). It is shown that
the wavelet coefficients are required by
orthogonality to be related to the
scaling function coefficients for a finite
even length-N, by [8,10]:

ok)=(-h(N-1-k)  ..(5)

Any function f(t) could be
written as a series expansion in terms
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of the scaling function and wavelets by
[11]:

ft)=

ajo
k

(k)F 5, )+

b; (k)Y ;.. (t)

k=-

.. (6)

Qox

¥
[o]
j -¥

¥
3
a
=

where N : Length of filter.

jo: coarse scale.

a; : Scaling coefficients.

by : Wavelet coefficients.
It is shown that the scaling and wavelet
coefficients at scale | are related to the
scaling coefficients at scale (j + 1) by
the  two following relations.
aj(k)

& h(m- 2k) aju(m)... ()

m

b (k) =8 g(m- 2k) aj+1(m)... (8)

m

2 A

. Proposed
Computation

Method of DWT

Fast

For computing fast discrete
wavelet transform (FDWT), consider
the following transformation matrix for
length-2 [12]:

é(0) hl) o o L L 0

e
g0 0 h(0) n) L L i
el N0 N L L a
T:go 0 0 0 L L hd h(1)3
&0 o) 0 o L L a
c0 0 g0 o) L L W Uy
€y v W ¥ L L u
e u
g0 0 0 0 L L g0 g0
... (9)
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and the following transformation

matrix for length-4:
¢n(0) h(t) h(2) h(e o o L o
g0 0 h(0) h@ h@2) h@E L o
(:EM l l l l e
g he o o o o L o
T=%(0) ot) o2 o ¥ ¥ L o
0 0 g0 o) 92 ¢ld L o
gM l l l l LI S
60 0 0 0 0 0 L g0
&0 938) 0 o 0o o0 L o0
... (10)

Here blank entries signify zeros. By
examining the transform matrices of
the scalar wavelet as shown in
equations (9) and (10) respectively.
One can see that, the first row
generates one component of the data
convolved with the low-pass filter
coefficients (h(0), h(1), ...), likewise
the second, third, and other upper half
rows. The lower half rows perform a
different convolution, with high pass
filter coefficients ( g(0), g1), ...).
Thus overal action of the matrix, is to
perform two related convolutions, then
to decimate each of them by half
(throw away haf the values), and
interleave the remaining halves.

By using equation (5), the transform
matrices become:

&
=
=X
=
=

: 0 0 L L 0
g0 0 h(o) np) L L i
&N 0 W N L L u

T:go 0 0 0 L L h0 h(1)3
én) -h0) o0 o0 L L u
0 0 h{) -hO) L L 1 W g
&y w0 L oL d
e u
60 0 0 0 L L h@ -h0)

.. (12)
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.. (12)
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its N/2 smooth and its N/2 detail, that

For such characterization to be useful,

is effected by requiring the matrices to

it must be possible to reconstruct the
original data vector of length N from

be orthogonal, so that its inverse is just

the transposed matrix:

>

o
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o
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—

i
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2.1 Computation of FDWT for 1-D
Signal

To compute a single level FDWT
for 1-D signal the next steps should be
followed:

1. Checking input dimensions: Input
vector should be of length N, where
N must be power of two.

Congtruct a transformation matrix:
using transformation matrices given
in (11) and (12).

Transformation of input vector,
which can be performed by
applying matrix multiplication of
the NxN constructed transformation
matrix by the Nx1 input vector.

2.2 Computation of FDWT for 2-D
Signal
To compute a single leve
orthogonal-based FDWT for 2-D
signal the next steps should be
followed:
1. Checking input dimensions: Input
matrix, X, should be of length NxN,
where N must be power of two.

2. For an NxN matrix input 2-D
signal, X, construct a NxN
transformation matrix, T, using
transformation matrices given in
egns. (11) and (12).

3. Apply Transformation by
multiplying the transformation

matrix by the input matrix, and by

the transpose of the transformation

matrix.

Y=T>X>T' ... (15)
This multiplication of the three
matrices results in the final discrete
wavelet transformed matrix.

3D Waveet-Based Optical Flow Estimation

2.2 Computation of FDWT for 3-D
Signal

The new proposed fast 3-D
wavelet transform (FDWT) algorithm
reduces heavily the processing time for
decomposition of video sequences
keeping or overcoming the quality of
reconstructed sequences In addition, it
cuts heavily the memory demands.

Let’s take a general 3-D signal,

for example any NxNxM matrix, and
apply thefollowing steps
1. Let X be the NxNxM input 3-D

signal,

Woo Woi Wp2 Wo3
Wy
200 Z01 202 203 3
= 713 Wa3
- Yoo Yoi Y02 Yog3 " was
223 !
X00 Xo1 Xo2 Xo3 | Y13 233
xto x1 x2 xi3 | Y23 7
X20 X1 X22 Xp3 | Y33
X30 X31 X32 X33
2. Apply 2-D FDWT algorithm to
each NxN input matrix, which
resultsin aNxNxM, Y matrix.
d0,0 d0,1 d0,2 d0,3
d
Coo Co1 Co2 Coz d1’3
Y= 2,3
boo bos bz bos |2 |4
bl 02’3 33
A0 81 o2 Qo3 -3 c
3,3
o Q3 p Q3 b2
Q0 A1 Ap A3 b33
839 3837 dzp dz3
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3. Apply 1-D FDWT algorithm to
each of the 16 elements in all M
matrices in z-direction, which can
be done asfollows:

a. For each ij , congtruct the Mx1
input vector

Vi.)=l; by oy dgly,
where i, ] =01,2,L_,N

b. Construct an MxM transformation
matrix;  using transformation
matrices given in egns. (11) and
(12).

C. Apply matrix multiplication to the
MxM constructed transformation
matrix by the Mx1 input vector.

4. Repesat step 3 for al i, ] toget YY
matrix (NXNxM matrix).

3. 3D Wavelets-Based OF Estimation

Smoothing filters are used for
blurring and for noise reduction.
Blurring is used in preprocessing steps,
such as removal of small details from
an image prior to object extraction, and
bridging of small gaps in lines or
curves. Noise reduction can be
accomplished by blurring with a linear
filter and aso by nonlinear filtering.
Due to the sparseness of wavelet
coefficients, the potential in denoising
has been studied extensively over the
last decade [13]. The energy of the
signal is concentrated in a small

3D Waveet-Based Optical Flow Estimation

number of wavelet coefficients. Thus,
magnitudes of the coefficients are
relatively large compared to noise
which spreads over a large number of
coefficients.

In this work, a new optical flow
estimation approach is employed in the
wavdet domain. These steps outline
the computation of image velocity
using 2x2x2 spatiotemporal derivative
filter:

Step 1: Prefiltering: Presmoothing the
images to reduce noise and aliasing
effect using 3-D fast discrete wavelet
transform algorithm stated in  section
3.3. Only 5 input images are required,
as shown in Fig. (1). When adata set is
decomposed using wavelets, filters are
used that act as averaging filters and
other produce details. Some of the
resulting wavelet coefficients
correspond to details in the data set. If
the details are small, they might be
omitted without substantially affecting
the main features of the data set.

Step 2: Estimating the partial
derivatives. There are two images to
estimate spatio-temporal  derivatives
for. A 2x2x2  spatiotemporal
neighborhood, shown in Fig. (2), for
estimation of partial derivativesIx , ly,
and It isused. Each of the estimates is
the average of four first differences
taken over adjacent measurements in
the cube:

l =;11{[I (x+1y,0)- 106y, ] +[1(x+ 2y, t+2)- 1(x, y, t+2)]+ .(16)
[1(x+2y+21)- 10 y+ L)+ [ (x+ Ly +1t+1)- 1(x y +Lt+1)}
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ly :%{[l (x, y+1t)- 1(x y,t)]+[I(x+1Ly+1t)- 1(x+1y,t)]+

3D Waveet-Based Optical Flow Estimation

..(17)

[1Oy+1t+2)- 1(x yt+ 1] +[1(x+Ly+1t+1)- 1(x+1y,t+1)}

l =;11{[l (% y.t+2)- 1(x,y, )] +[1 (x+ 1 y,t +2)- 1 (x+1 y, )]+

.. (18)

[1Oy+1t+2)- 10 y+Lt)] +[1(x+Ly+1t+1)- 1(x+1y+Lt)]

Step 3: Initialize u(x,y) and v(x,y) for
al (x,y) pixd.

Step 4: Iterative Algorithm: For each
iteration, the algorithm is outlined as
follows:

a. Initialize ux,y and vx,y for al (x,y)

b.

. Given

pixe.

Estimate the Laplacian of the flow
velocities: The Laplacian of u and
v are gpproximated by:

. ]
W% = 0(ey)-uley) oo
N2v=9(xy)- v(x,y)

Where (Uk vk ) the
neighborhood averages of (uk ,vk)

are

Equivalently, the Laplacian of u, v,
N?uandN?v, can be obtained by
applying a 3x3 window operator,
shown in Fig. (3), to each point in
theu and v planes, respectively.

the spatio-temporal
derivatives, Iy, |, and I, computed
as described in step 1, anew set of
velocity estimates (u"*l,v""l) can
be computed from the estimated
derivatives and the average of the
previous  velocity — estimates

(U",\‘/") by:
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kK gk
[+ 1%+
|2

uk+l — Uk _

+1Z+1]

k+1 k

| [l u  +1 vk+It]
vit=gl. Y

[ 2

+1E+12

.. (20)

. Repeat until a solution is steady:

there are two different ways to
iterate, one is to iterate at a pixel
until a solution is steady. Another
way isto iterate only once for each
pixel. In the latter case a good
initial flow vector is required and
is usualy derived from the
previous pixd.
Step 5: Thresholding: Threshold
the computed velocities on the basis
of the spatial intensity gradient. The
typical threshold rules are to set the
computed velocities smaller in
absolute value than a fixed non-
negative number (the threshold
value, tau) to zero.

)], 80 i MG <t
ooy v ) i M(x,y) >tau

.. (21)
where
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M(x,y) =[NI(x, y)| =17 +12

.. (22)

4. Experimental Results

Algorithm  developed in the
previous sections are utilized and
organized to be implemented in a
computer package OFEM (Optical
Flow Estimation Methods). The
package was written in Borland C++
V.5.0, and it is developed on Pentium
4, 24 GHz, 128 Mbyte RAM
computer. The proposed methods in
this paper are applied to estimate the
optical flow on real sequences and
synthetic sequences. The regularizing
parameter (1) is set to 0.5 for all
experiments in this work. Most image
sequences  are  downloaded from

ftp.csd.uwo.ca.

4.1 Synthetic | mage Sequences
Sinusoidal Inputs: This consists of the
superposition of two sinsoidal plane
waves

sin(k, >x+wt) +sin(k, 3¢+ w,t)
.. (23)

The results reported are based on
spatial wavelengths of 6 pixels, with
orientations of 54° and -27°, and
speeds of 1.63 and 1.02 pixel/frame
respectively, which is called Sinsoidal 1
as shown in Fig. (4). The resulting
plaid pattern translates with velocity
v=(1.5539,0.7837) pixel/frame.

Translating Sguares. Other simple
test case involves a translating dark
square (with a width of 40 pixels) over
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a bright background as shown in Fig.
(5).

4.2 Real I mage Sequences

Two real image sequences, shown
inFig. (6) and Fig. (7), were also used:
Rotating Rubik Cube: In this image
sequence a rubic’s cube is rotating
counterclockwise on a turntable. The
motion field induced by the rotation of
the cube includes velocities less than 2

pixel/frame
Hamburg Taxi Sequences:. In this street
scene there were four moving

objects:1) the taxi turning the corner;
2) acar in the lower |€eft, driving from
left to right; 3) a van in the lower right
driving right to |eft; and 4) a pedestrian
in the upper left.

5. Conclusions

In this paper a new method for
computing wavelet transforms is given.
These transforms are used in severd
methods of optical flow estimation. On
the strength of the favorable results
reported by previous investigation [12-
13] to apply wavelets to the denoising
of 1-D and 2-D signals, combined with
the success shown here for 3-D
wavd ets transform, it seems likely that
wavelets may work well for optical
flow estimation. The proposed
wavelet-based optical flow estimation
framework benefits from the following
useful features:

a. Low computational complexity:
Although the convolution method
leads to full reconstruction
computation, it gives also less
complexity. The scalar methods
have (32) multiplications and (18)
additions for transforming a signal
of four input data (N=4), while the


ftp://ftp.csd.uwo.ca
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proposed method gives  (16)
multiplications and 12 addition
operations for the same input size.

. Low memory requirement: A
Gaussan 15 filter requires the
explicit storage of 15 frames to
compute flow. Concerns arise for
real-time use when considering the
computational costs and seven
frame delay of the Gaussian 1.5
filter. Temporal delay and storage
requirements are  improved
significantly for wavelet filter,
giving two frame latency as given
in Table (1).

C. Since a significant number of

motion vectors in the high
frequency subbands can be zero
(due to the sparse wavelets
coefficients in these subbands), no
motion vectors are generated for
these blocks.
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Table (1): Efficiency data for tempord filters.

i L atency
Filter
Gaussian 1.5 15 7
3D Derivative /Prefilter 7 3
2D-Wavelets 2 1
3D-Wavelets 5 2
Frame 4
_ I 3-D FDWT Take LL
Framei-2 >
ana rrom
the 1% frame
Framei+2
Framei+1
3-D FDWT R ar:;ai“ez Take LL

V/-
Fig. 1 Presmoothing images using 3D wavelet transform.

and from
the 1% frame
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I Iy Iy
e - [ - " o v
y I:l (+) inthe averaging V12 16 v12

t
i [] © inthe averaging Fig. 3 A 3x3 window

Fig. 2 Estimating Ix, ly, and It using operation for estimation of the
Laplacian of the flow vector

Fig. 5 Estimated optical flow obtained from the Square image sequences
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Fig. 6 Estimated optical flow obtained from the Taxi image sequences

Fig. 7 Estimated optical flow obtained from the Rubic's cube image sequences

311




