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Abstract The aim of this paper is to obtain of the degree of the best multiplier approximation unbounded monotone functions f € L, ; [-1,1] in
terms of averaged multiplier modulus smoothness ©(f, ), 4, -
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1. Introduction

Many researchers and specialists have worked in the field of approximation theory for example; In 1995 [1] , Kopotun,
Kirill A., introduced a paper on k —monotone polynomial and spline approximation L,, , 0 < p < oo quasi horm. Also, 2001 [2],
Kopotun, K.A., had studied and got several results about approximations of bounded functions in L,(X) —space, where X =
[a,b],and p = 1 by utilizing Whitny’s theorem. In 2004 [3] N.M.Kassim had studied the monotone and comonotone approximation.
.In 2013 [4] , Eman Samir Bhaya and Munther Salman Al-Lami have obtained the degree of comonotone polynomials approximation
of continuous functions f in L,[—1,1] —space. In 2014 [5] , Hadi, J.M., obtained some results of Bivariate monotone and
comonotone approximation of function. In 2015 [6] Saheb Al-Saidy and Noor Saad have studied k —monotone approximation of
unbounded functions in L, — space s. In our research we will find degree of the best multiplier approximation unbounded
monotone functions, f € L, ; — space .

2. Definitions and Concepts

Definition (2.1) [ 8]

0
A series z a, is called a multiplier convergent series if there is a convergent sequence of real numbers {ln}fzo such that
n=0

Z a,A, <ooand {4}, is called multiplier for the convergence.
=0

Definition (2.2)
For any real valued function f € L, ; (X), where X = [—1,1],if there is a sequence {A,,};-,,such that:

[, FO)Andx < oo, 2.1)
then f is called a Multiplier integrable function, 4,,is called a Multiplier integrable sequence.

Definition (2.3)
A [7]1Let f el [ab], where 1< p<oo,be the space of all bounded funaction with the norm
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I £l,= [ [FOPdx]p < oo (22)

B. Let f € Lpy,(X),where X = [-1,1] then: |l fli,; ,is given by the below definite Multiplier integral norm :
1
I f llpa,= [, 1D EIPAXP. 2.3)

Definition (2.4)
A[7]Let f el [ab], where 1< p<oo, thenthe integral modulus( L, -modulus or p -modulus) of order k of the function
f is the following function of & €[0,(b—a)/k]:
b—kh

A (1:0), =Pl | |81 1) gy 4

B. The Multiplier integral modulus of order k of the function f € L, (X), where
X=[-11],1 <p <o isdefined by:

1
PR AR (A f)(0)|Pdx)P, 0 < & < b — ak, (2.5)

wi(f, )pa, = sup (f
where

AR Anf)() = Tmi (CD™H G A f) (x + mh); () = (2.6)

m'(k m)'

Definition (2.5)
A[7]Let f el (X); where X =[a,b] and 1< p <co. The local modulus of smoothness of the function  f of order k
atapoint X €[a,b] is the following function of & €[0,(b—a)/k]:

o (f,%6) =sup{Asf (1)|: tt+khe[x——5 x+—]ﬂ[a b]}(2.7)

B. The multiplier local modulus of smoothness of a function f of order k at a point
€ [a, b],
0<o<=%
is defined by:
W (f, %, 8)p 1, = Sup ]{A’,g Anf)(®): Lt +kh € [x =2, x + 2] 0 [a, b]}. (2.8)

Definition (2.6)
A.[7] The averaged modulus of smoothness of order K (or 7 -modulus) of the function f € M[a,b] is the following
function of & €[0,(b—a)/K]:

7,(£:8), =|a(f..; 0] =[j(wk(f,x;5))pdx]% 2.9)

B. The multiplier averaged modulus of smoothness of order k of f € L, (X), where
X = [—1,1], is defined by:

T, )p iy =N 0 (Fr,8) lpa, = (J) [0 (Anf, %, 6)]Pdx)P. (2.10)

Definition (2.7)[ 9]
Let f € Lp,, (X),where X = [—1,1], then the Ditzian-Totic moduli of smoothness of the function f is defined by:
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O Opay = | _SUD ARy (oK) (2.11)
where
¢(x) =vV1—x2%,x € [-1,1]. (2.12)
Then Aﬁd,(x) f(x) is given by the below finite summation:
Bripeo FOO) = o DO Anf (e + (0 - S)hqﬁ(x)], (2.13)
provided that:
x = Zhp(x), x + S he(x) € [-1,1]. (2.14)

Definition (2.8)
A[7]Let f €Ly, (X),X = [ab], then:

E,(f), =inf{|f R :P, eP} (2.15)
Suchthat E (f), iscalled the degree of the best monotone multiplier approximationof f by polynomial P, .
B. Let f € Lp,,(X),X = [-1,1], then:

E,(),,, =inf{f —5n||M :S, P} (2.16)

Suchthat E,(f), , iscalled the degree of the bestmonotone multiplier approximationof f by polynomial S, .

Definition (2.9)
A[7]Let f € Ly(X), the best one-sided approximation of f by means of trigonometric polynomails of order N in L,(X) is
given by:

E(f), =inf{|P —Q||LP 'P,QeT,Q(x) < f(x)<P(X); vx} (2.17)

B. Let f € Ly, (X), X =[—1,1], then:
En(F)pa, =InF{]S, _Gn”mn :S,,G, €T,G, (xX) < f(X)<S, (X); Vx} (2.18)

Such that En(f)p,an is called the degree of the best one-sided monotone multiplier approximation of f by polynomials S, and
G

o
Definition (2.10)[ 11]
A funtion f: [a,b] — R is said to be k —monotone, k = 1, on [a,b] if and only if for all choices of (k + 1) distinct, xq, Xy, ..., Xk,
in [a,b] the inequality

[xO,xl,...,xk]f = 0, (219)
holds. Where
f .
o, = Eheo (Z22), (2.20)
denotes the k-th divided difference of the funtion f at x,, x4, ..., x,, and
m(x) = Hf:o (x — xj). (2. 21)

Moreover, let f € L, ;,,1 < p < oo, f isany real valued function and let
N=X=[-11cR.

Define N*(6,x) to be:

N*(8,x) = 6N(x) + 62, (2.22)
where N(x) is given by the piecewise function:

1
2\7 i —

N@) = {0 0 acto) - (2.23)

Assume that

Z={01,2,..,N —1}. (2.24)
z, = cos@; v=12,..,N. (2.25)
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Suppose that
Z_1=2Zy = _1;ZN+1 =Zy = 1.
For j € Z, put:
Q = [7,7j4]-
Forv=0,12,..,N — 1. Put:
_ Qv+)m

U, =1
v 2N

’

and

_ o4 [Sin4N(u—u )] [sin4N(u+u )]
¢V - (pV(u’) =sin (E) [sin‘}(u—uV;,] + [sin4(u+uv;’] .
2

2

(2.26)

(2.27)

(2.28)

(2.29)

Nz v

Thus ¢, are all even trigonometric polynomials of degree 4N — 2 and ¢, (u) =1 for u € [n - (u + T F)] Now let

u = arccosv; v € [—1,1],
then
F,(u) = F,y(w) = @, (arccosv).

By Jensen inequality, and for a; = 0, € Z, it is obtained that:
1

) 1
I Zjez aibjn lp)= c[Xjez a; meas Q).

Definition (2.11)[ 10]

Let R, be an algebraic monotone polynomial which is the best approximation polynomial of f € Ly

QG(fx) =Ry * ZjeZ ¢j,m(X) Il f(x) — Ry(%) ”oo(Q.j)'
It is clear that Q& (f,x) are algebraic monotone polynomial of degree less than or equal to n.
In the next section, significant lemmas will be proved.

3. Necessary Lemmas

Lemma (3.1)[ 10]
Let fe€ L, (X),X=[-1,1], then Q () <f<Qi(H. (3.1)

Proof
Start the proof with the below algebraic equation given by:

Qn (fs %) = Rp(x) + Xjez $jm(X) I f(X) = Ru (%) lleo(a))s
Qr (f, %) Z Ry()+1 () = Rp(2) Nloo(a))s

Qr-:(f:x) 2 Rn(x) + |f(X) - Rn(X)l,
Qn (f, %) = Rp(x) + f(x) — Ry (%),

Qn (f, ) = f ().
Then Q; (f,x) = f(x). Similarly,
Qi (F %) = Ra(0) = Ejez ®jm () I £G) = Ra(3) llan(a

and then

0 (f, %) < Ry =1l () = Ru(0) N,

Qn (f, %) < Ry (%) — [f (x) = Ry ()],
Qn (f, %) = Ry (x) — f(x) = Ry (%),
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n

such that for N = .
(2.31)

(3.2)
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and then

Qn(frx) = —=f(x) < f(x) = Qr (f, %) < f(x).
(N =f=Qu(N.

From (3.2) and (3.3) we get:

Lemma (3.2)
Let fe L,y (X),X=[-1,1]and f €A% (x) then: w,4(f,8)12, < C8% Il fllyy,; Cis constant.
Proof.

By using definition (2.7)
Wi (f18)pa, = hzl(l()%] ||Aﬁ¢ > X) llpa,
Where k =2,p = 1.
wa(f, )12, = hi?()ps] Ia%se) (Fren XD iy,

w4 (f Oray = SUP J2 182 FOO 2, (x0)dx,

W36 1 = I23 Sietor &) (D> Auf (x = hp(x) + i (1)) (x — h (x) + thp (%)) ) dx

And
0200812, = I, (B (1 Anf (6 — h§))(x — hp(x)))
+(@) (D72 f (x = hdp () + hp (@) (x — hp(x) + hp ()
o HB D Auf (2 — hp(x) + 2h$ () (x — heb(x) + Zh (1))},

W26(f )12, = J2, {0 f (x — R () (x — hp(x))
—2(An () (x + Anf (x + P (X)) (x + hp (x)))}dx.

By Whitney’s theorem [ 7 ]( for any continuous function f on [ a,b ] and for each integer n
polynomial P of degreenn — 1 such that :
|f (%) = P(X)| <wyw,(f,[a, b]) , Where w, is Whitney's constant ) , we get:

w20 (F, 81, = [ (fan) ®) (- yh(h +1-y?) D)dy

—2 f (lnf ) (n)dy

+ ffu%hz(anf) ) — (1 +yh(h? + 1 - y?) 2)dy.
Then
h2 2
w2, (f, 810, < CH2 1l £() ||Mn+f W S ()l dy.

Finally,

Wz, (f18)12, < CR* I () NIy,
Since h? < 62, then

w26 (f, )12, < CE2 N f Ny,
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(3.4)

(3.5)

(3.6)

> . There is a number w, and a

(3.7)

(3.8)
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The proof is completed.
Lemma (3.3)

Let f,f® €Ly, (X),X=[-11], p=1, then: Ty(f,8)pa, < 85 Il & II,5 .

Proof
To show that holds, start with the below inequality:

T (f3 8)pay, < 61 ((Anf)' k(k = 1)8)y,

< 8212 ((An )", (k = D (k = 2)8),,

< 81 ((AH*, 8),

From
Tl(f; 6)p,/1n <4él f, ”p,/ln:

then:

T (f58)pa, < 81N F® U, 0,

=C8 I F® 1,0,

and then:

T (f3 Opa, < Ce8F N FE 1,5, (3.16)
The proof is completed.
Lemma (3.4)
Iff € L,,,(X), X =[-1,1] then:

En(f)p,ln < En(f)p,ln- (3.17)

Proof.
Let 6 is the best multiplier approximation of the function f and suppose that 6, and 6, are best one-sided multiplier
approximations of f such that:

0, <f <0, (3.18)

Ea(pa, =1 f = 0 pz = U, |(f — 6)AuPd)?; p = 1,
< (J, (8, — 692, Pd)? =1l 6, — 6, Iy = En(f), (3.19)

Finally,

En(f)p,/ln < En(f)p,/ln-
The proof is done.

4. Main Results

We introduce our main theorems in what follows:
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Theorem (4.1)

For f€ L, , and for f is monotone, 1 < p < o, then:
P:An

En(Npa, < T2 8)pa,- (4.1)
Proof

Starting with the below inequality, Q& (f,x) are algebraic monotone polynomial of degree < n

En(Fpa, I Qn = Qn 2, =2 1 Zjez $jn GO I f = Ry lloo(a)llp,
< c[Yjez meas Qi | f — Ry ||fo(ﬂj)]5,
< C[ZjEZ fﬂj ” f - Rn ||Z(Q]) dx]zl

1

j
1
< C[fnj sup |f (%) = f(x+)|Pdx]P = CyT(f, 8)p,a,,- (4.2)
The proof is completed .

Notice that from lemma 3.4 and the theorem above , we get: E,(f)p 1, < T(f, 0)pa,-

Theorem (4.2)

1
For f € Lyp,then ©(8,2)p, < ~Zite1 Ex(Mpa,e  (48)
Proof
Starting with the below inequality:

1 1 1
(fin Dpa, S T2(f = Run 2)p, + 12(Ron 2)p (4.9)

By lemma (3.3) we get:
1
Tz(fl n_E)p‘}_n S [ " f - Rn ”p’ﬂn-l_ Cc ” AnR” "pjln;

c

c
S ;ngkSn " Rk - f ”p,ln+ ;Z’;{l=1 ” Rk - f "p,/ln,

< Tt DR = f lpa,= 28kt Ec(Ppay: (4.10)
The proof is completed.

5. Conclusion

The aim of this paper is to obtain of the degree of the best multiplier approximation unbounded monotone functions, f €
Ly 2,(X),where X = [—1, 1] in terms of averaged multiplier modulus smoothness (f, §)y 4,
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