The Best Multiplier approximation of k-Monotone of $f \in L_{p,\lambda_n}(X)$

Saheb K. Al-Saidy 1*, Hasan W. Maktoof 2, Abdul khaleq owaid mazeel

 $\mathbf{1}_{Department}$ of Communcation, College of Engineering, Uruk University, Baghdad, Iraq

Abstract The aim of this paper is to obtain of the degree of the best multiplier approximation unbounded monotone functions $f \in L_{p,\lambda_n}$ [-1,1] in terms of averaged multiplier modulus smoothness $\tau(f,\delta)_{p,\lambda_n}$.

Keywords: Multiplier Integral, Multiplier Averaged Modulus of Smoothness, Multiplier Norm.

1. Introduction

Many researchers and specialists have worked in the field of approximation theory for example; In 1995 [1], Kopotun, Kirill A., introduced a paper on k -monotone polynomial and spline approximation L_p , 0 quasi norm. Also, 2001 [2],Kopotun, K.A., had studied and got several results about approximations of bounded functions in $L_p(X)$ -space, where X =[a, b] and $p \ge 1$ by utilizing Whitny's theorem. In 2004 [3] N.M.Kassim had studied the monotone and comonotone approximation. . In 2013 [4], Eman Samir Bhaya and Munther Salman Al-Lami have obtained the degree of comonotone polynomials approximation of continuous functions f in $L_p[-1,1]$ -space. In 2014 [5], Hadi, J.M., obtained some results of Bivariate monotone and comonotone approximation of function. In 2015 [6] Saheb Al-Saidy and Noor Saad have studied k -monotone approximation of unbounded functions in $L_{p,w_{\alpha}}$ - space s. In our research we will find degree of the best multiplier approximation unbounded monotone functions, $f \in L_{p,\lambda_n} - space$.

2. Definitions and Concepts

Definition (2.1) [8]

A series $\sum_{n=0}^{\infty} a_n$ is called a multiplier convergent series if there is a convergent sequence of real numbers $\{\lambda_n\}_{n=0}^{\infty}$ such that

 $\sum_{n=0}^{\infty} a_n \lambda_n \leq \infty \text{ and } \{\lambda_n\}_{n=0}^{\infty} \text{ is called multiplier for the convergence.}$

Definition (2.2)

For any real valued function $f \in L_{p,\lambda_n}(X)$, where X = [-1,1], if there is a sequence $\{\lambda_n\}_{n=0}^{\infty}$, such that: $\int_{-1}^{1} f(x) \lambda_n dx < \infty,$ then f is called a Multiplier integrable function, λ_n , is called a Multiplier integrable sequence. (2.1)

Definition (2.3)

A. [7] Let $f \in L_n[a,b]$, where $1 \le p \le \infty$, be the space of all bounded function with the norm

² Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

 $³_{\rm Department}$ of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

 $¹_{sahebalsaidy@gmail.com} 2_{hasan2017@uomustansiriyah.edu.iq}, 3_{khaleqmazeel@uomustansiriyah.edu.iq}$

$$\| f \|_{p} = \left[\int_{a}^{b} |f(x)|^{p} dx \right]^{\frac{1}{p}} < \infty$$
 (2.2)

B. Let $f \in L_{p,\lambda_n}(X)$, where X = [-1,1] then: $\| f \|_{p,\lambda_n}$, is given by the below definite Multiplier integral norm:

$$\| f \|_{p,\lambda_n} = \left[\int_{-1}^1 |(\lambda_n f)(x)|^p dx \right]^{\frac{1}{p}}. \tag{2.3}$$

Definition (2.4)

A.[7] Let $f \in L_p[a,b]$, where $1 \le p \le \infty$, then the integral modulus $(L_p$ -modulus or p-modulus) of order k of the function f is the following function of $\delta \in [0,(b-a)/k]$:

$$\omega_k(f;\delta)_{L_p} = \sup_{0 \le h \le \delta} \left\{ \int_a^{b-kh} \left| \Delta_h^k f(x) \right|^p dx \right\}^{1/p}$$
 (2.4)

B. The Multiplier integral modulus of order k of the function $f \in L_{p,\lambda_n}(X)$, where

 $X = [-1,1], 1 \le p < \infty$ is defined by:

$$\omega_k(f,\delta)_{p,\lambda_n} = \sup_{h \in [0,\delta]} \left(\int_a^{b-kh} |\Delta_h^k(\lambda_n f)(x)|^p dx \right)^{\frac{1}{p}}, \ 0 \le \delta \le b - ak, \tag{2.5}$$

where

$$\Delta_h^k(\lambda_n f)(x) = \sum_{m=1}^k (-1)^{m+k} {k \choose m} (\lambda_n f)(x+mh); {k \choose m} = \frac{k!}{m!(k-m)!}.$$
 (2.6)

Definition (2.5)

A.[7] Let $f \in L_p(X)$; where X = [a,b] and $1 \le p \le \infty$. The local modulus of smoothness of the function f of order k at a point $x \in [a,b]$ is the following function of $\delta \in [0,(b-a)/k]$:

$$\omega_k(f,x;\delta) = \sup\{\left|\Delta_h^k f(t)\right| : t, t+kh \in \left[x - \frac{k\delta}{2}, x + \frac{k\delta}{2}\right] \cap [a,b]\}$$
(2.7)

B. The multiplier local modulus of smoothness of a function f of order k at a point $x \in [a, b]$,

$$0 \le \delta \le \frac{b-a}{b}$$

is defined by:

$$\omega_k(f, x, \delta)_{p, \lambda_n} = \sup_{h \in [0, \delta]} \{ \Delta_h^k(\lambda_n f)(t) : t, t + kh \in [x - \frac{k\delta}{2}, x + \frac{k\delta}{2}] \cap [a, b] \}. \tag{2.8}$$

Definition (2.6)

A. [7] The averaged modulus of smoothness of order k (or τ -modulus) of the function $f \in M[a,b]$ is the following function of $\delta \in [0,(b-a)/k]$:

$$\tau_{k}(f;\delta)_{p} = \|\omega_{k}(f,..,\delta)\|_{L_{p}} = \left[\int_{a}^{b} (\omega_{k}(f,x;\delta))^{p} dx\right]^{\frac{1}{p}}$$
(2.9)

B. The multiplier averaged modulus of smoothness of order k of $f \in L_{p,\lambda_n}(X)$, where X = [-1,1], is defined by:

$$\tau_k(f,\delta)_{p,\lambda_n} = \|\omega_k(f,.,\delta)\|_{p,\lambda_n} = \left(\int_a^b \left[\omega_k(\lambda_n f, x, \delta)\right]^p dx\right)^{\frac{1}{p}}.$$
 (2.10)

Definition (2.7)[9]

Let $f \in L_{p,\lambda_n}(X)$, where X = [-1,1], then the Ditzian-Totic moduli of smoothness of the function f is defined by:

$$\omega_{k,\phi(x)}(f,\delta)_{p,\lambda_n} = \sup_{h \in [0,\delta], \delta > 0} \|\Delta_{h\phi(.)}^k(f,.,X)\|_{p,\lambda_n}, \tag{2.11}$$

where

$$\phi(x) = \sqrt{1 - x^2}, x \in [-1, 1]. \tag{2.12}$$

Then $\Delta_{h\phi(x)}^k f(x)$ is given by the below finite summation:

$$\Delta_{h\phi(x)}^{k} f(x) = \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} [\lambda_n f(x + (i - \frac{k}{2})h\phi(x))], \tag{2.13}$$

provided that:

$$x - \frac{k}{2}h\phi(x), x + \frac{k}{2}h\phi(x) \in [-1,1]. \tag{2.14}$$

Definition (2.8)

A.[7] Let $f \in L_{p,\lambda_n}(X)$, X = [a, b], then:

$$E_n(f)_p = \inf\{\|f - P_n\|_p : P_n \in P\}$$
(2.15)

Such that $E_n(f)_p$ is called the degree of the best monotone multiplier approximation of f by polynomial P_n .

B. Let $f \in L_{p,\lambda_n}(X), X = [-1, 1]$, then:

$$E_n(f)_{p,\lambda_n} = \inf\{ \|f - S_n\|_{p,\lambda_n} : S_n \in P\}$$
(2.16)

Such that $E_n(f)_{p,\lambda_n}$ is called the degree of the bestmonotone multiplier approximation of f by polynomial S_n .

Definition (2.9)

A.[7] Let $f \in L_p(X)$, the best one-sided approximation of f by means of trigonometric polynomails of order n in $L_p(X)$ is given by:

$$\tilde{E}_n(f)_p = \inf\{\|P - Q\|_{L_p} : P, Q \in T, Q(x) \le f(x) \le P(x); \forall x\}$$
(2.17)

B. Let $f \in L_{p,\lambda_n}(X)$, X = [-1,1], then:

$$\tilde{E}_n(f)_{p,\lambda_n} = \inf\{\|S_n - G_n\|_{p_{\lambda}} : S_n, G_n \in T, G_n(x) \le f(x) \le S_n(x); \forall x\}$$
(2.18)

Such that $\tilde{E}_n(f)_{p,\lambda_n}$ is called the degree of the best one-sided monotone multiplier approximation of f by polynomials S_n and G_n .

Definition (2.10)[11]

A funtion $f: [a, b] \to \mathbb{R}$ is said to be k -monotone, $k \ge 1$, on [a, b] if and only if for all choices of (k + 1) distinct, $x_0, x_1, ..., x_k$, in [a, b] the inequality

$$[x_0, x_1, ..., x_k] f \ge 0,$$
 (2.19)

holds. Where

$$[x_0, x_1, \dots, x_k]f = \sum_{j=0}^k \left(\frac{f(x_j)}{m'(x_j)}\right), \tag{2.20}$$

denotes the k-th divided difference of the funtion f at $x_0, x_1, ..., x_k$, and

$$m(x) = \prod_{j=0}^{k} (x - x_j).$$
 (2. 21)

Moreover, let $f \in L_{p,\lambda_n}$, $1 \le p \le \infty$, f is any real valued function and let

$$\Omega = X = [-1,1] \subset \mathbb{R}$$
.

Define $N^*(\delta, x)$ to be:

$$N^{\star}(\delta, x) = \delta N(x) + \delta^{2}, \tag{2.22}$$

where N(x) is given by the piecewise function:

$$N(x) = \begin{cases} (1-x^2)^{\frac{1}{2}} if \ \Omega = [-1,1] \\ x(1-x^2) if \ \Omega = [0,1] \end{cases}$$
 (2.23)

Assume that

$$Z = \{0, 1, 2, \dots, N - 1\}. \tag{2.24}$$

$$z_{\nu} = \cos\frac{(\pi - \pi \nu)}{N}; \ \nu = 1, 2, ..., N.$$
 (2.25)

Suppose that

$$z_{-1} = z_0 = -1; z_{N+1} = z_N = 1.$$
 (2.26)

For $j \in \mathbb{Z}$, put:

$$\Omega_i = \left[z_i, z_{i+1} \right]. \tag{2.27}$$

For $\nu = 0,1,2,...,N-1$. Put:

$$u_{\nu} = \pi - \frac{(2\nu + 1)\pi}{2N},\tag{2.28}$$

and

$$\phi_{\nu} = \phi_{\nu}(u) = \sin^4\left(\frac{\pi}{4N}\right) \left\{ \frac{\left[\sin^4 N(u - u_{\nu})\right]}{\left[\frac{\sin^4 (u - u_{\nu})}{2}\right]} + \frac{\left[\sin^4 N(u + u_{\nu})\right]}{\left[\frac{\sin^4 (u + u_{\nu})}{2}\right]} \right\}. \tag{2.29}$$

Thus ϕ_{ν} are all even trigonometric polynomials of degree 4N-2 and $\phi_{\nu}(u) \ge 1$ for $u \in \left[\pi - \left(u + \frac{\nu\pi}{N}, \pi - \frac{\nu\pi}{N}\right)\right]$. Now let $u = \arccos\nu$; $\nu \in [-1,1]$, (2.30)

then

$$F_{\nu}(u) = F_{\nu,N}(u) = \phi_{\nu}(\arccos\nu). \tag{2.31}$$

By Jensen inequality, and for $\alpha_i \ge 0, j \in Z$, it is obtained that:

$$\|\sum_{j\in\mathbb{Z}}\alpha_j\phi_{j,N}\|_{p(\Omega)} \le c[\sum_{j\in\mathbb{Z}}\alpha_j^p meas \Omega_j]^{\frac{1}{p}}.$$
(2.32)

Definition (2.11)[10]

Let R_n be an algebraic monotone polynomial which is the best approximation polynomial of $f \in L_{p,\lambda_n}$ such that for $N = \frac{n}{4}$

$$Q_n^{\pm}(f, x) = R_n(x) \pm \sum_{j \in Z} \phi_{j,m}(x) \| f(x) - R_n(x) \|_{\infty(\Omega_i)}.$$
 (2.31)

It is clear that $Q_n^{\pm}(f, x)$ are algebraic monotone polynomial of degree less than or equal to n.

In the next section, significant lemmas will be proved.

3. Necessary Lemmas

Lemma (3.1)[10]

Let
$$f \in L_{p,\lambda_n}(X)$$
, $X = [-1,1]$, then $Q_n^-(f) \le f \le Q_n^+(f)$. (3.1)

Proof

Start the proof with the below algebraic equation given by:

$$Q_{n}^{+}(f,x) = R_{n}(x) + \sum_{j \in \mathbb{Z}} \phi_{j,m}(x) \| f(x) - R_{n}(x) \|_{\infty(\Omega_{j})},$$

$$Q_{n}^{+}(f,x) \geq R_{n}(x) + \| f(x) - R_{n}(x) \|_{\infty(\Omega_{j})},$$

$$Q_{n}^{+}(f,x) \geq R_{n}(x) + |f(x) - R_{n}(x)|,$$

$$Q_{n}^{+}(f,x) \geq R_{n}(x) + f(x) - R_{n}(x),$$

$$Q_{n}^{+}(f,x) \geq f(x).$$
(3.2)

and then

Then $Q_n^+(f,x) = f(x)$. Similarly,

$$\begin{split} Q_n^-(f,x) &= R_n(x) - \sum_{j \in \mathbb{Z}} \phi_{j,m}(x) \parallel f(x) - R_n(x) \parallel_{\infty(\Omega_j)}, \\ Q_n^-(f,x) &\leq R_n(x) - \parallel f(x) - R_n(x) \parallel_{\infty(\Omega_j)}, \\ Q_n^-(f,x) &\leq R_n(x) - |f(x) - R_n(x)|, \\ Q_n^-(f,x) &= R_n(x) - f(x) - R_n(x), \end{split}$$

and then

$$Q_n^-(f,x) = -f(x) \le f(x) \Longrightarrow Q_n^-(f,x) \le f(x). \tag{3.3}$$

From (3.2) and (3.3) we get:

$$Q_n^-(f) \le f \le Q_n^+(f).$$

Lemma (3.2)

Let
$$f \in L_{p,\lambda_n}(X)$$
, $X = [-1,1]$, and $f \in \Delta^2(x)$ then: $\omega_{2,\varphi}(f,\delta)_{1,\lambda_n} \le C\delta^2 \| f \|_{1,\lambda_n}$; C is constant. (3.4)

Proof.

By using definition (2.7)

$$\omega_{k,\phi}(f,\delta)_{p,\lambda_n} = \sup_{h \in (0,\delta]} \|\Delta_{h\phi}^k(f,X)\|_{p,\lambda_n}$$
(3.5)

Where k = 2, p = 1.

$$\omega_{2,\phi}(f,\delta)_{1,\lambda_n} = \sup_{h \in (0,\delta]} \|\Delta^2_{h\phi(.)}(f,.,X)\|_{1,\lambda_n}$$

$$\omega_{2,\phi}(f,\delta)_{1,\lambda_n} = \sup_{h \in (0,\delta]} \int_{-1}^1 |\Delta_{h\phi}^2 f(x) \lambda_n(x)| dx,$$

$$\omega_{2,\phi}(f,\delta)_{1,\lambda_n} = \int_{-1}^{1} \left(\sum_{i \in [0,2]} {2 \choose i} \left(-1 \right)^{2-i} \lambda_n f(x - h\phi(x) + ih\phi(x)) \right) \left(x - h\phi(x) + ih\phi(x) \right) dx.$$

And

$$\omega_{2,\phi}(f,\delta)_{1,\lambda_n} = \int_{-1}^1 \left\{ (\binom{2}{0}(-1)^2 \lambda_n f(x - h\phi(x))(x - h\phi(x)) \right\}$$

$$+(\binom{2}{1})(-1)^{2-1}\lambda_n f(x-h\phi(x)+h\phi(x))(x-h\phi(x)+h\phi(x))$$

$$+(\binom{2}{2})(-1)^{2-2}\lambda_n f(x-h\phi(x)+2h\phi(x))(x-h\phi(x)+2h\phi(x)))dx$$

then

$$\omega_{2,\phi}(f,\delta)_{1,\lambda_n} = \int_{-1}^1 \left\{ (\lambda_n f(x - h\phi(x))(x - h\phi(x)) \right\}$$

$$-2(\lambda_n f)(x)(x + \lambda_n f(x + h\phi(x))(x + h\phi(x))) dx. \tag{3.6}$$

By Whitney's theorem [7] (for any continuous function f on [a,b] and for each integer $n \ge 1$. There is a number w_n and a polynomial P of degreen n-1 such that:

 $|f(x) - P(x)| \le w_n \omega_n(f, [a, b])$, Where w_n is Whitney's constant), we get:

$$\omega_{2,\phi}(f,\delta)_{1,\lambda_n} = \int_{-1}^{1-\frac{3h^2}{1}+h^2} (f\lambda_n) (y) \frac{1}{1+h^2} (1-yh(h^2+1-y^2)^{-\frac{1}{2}}) dy$$

$$-2 \int_{-1+\frac{h^2}{1}+h^2}^{1-\frac{h^2}{1}+h^2} (\lambda_n f) (y) dy$$

$$+ \int_{-1+\frac{3h^2}{1}+h^2}^{1} (\lambda_n f) y) \frac{1}{1+h^2} (1+yh(h^2+1-y^2)^{-\frac{1}{2}}) dy.$$
(3.7)

Then

$$\omega_{2,\phi}(f,\delta)_{1,\lambda_n} \le Ch^2 \| f(.) \|_{1,\lambda_n} + \int_{-1+\frac{3h^2}{1}+h^2}^{1-\frac{3h^2}{1}+h^2} \frac{2h^2}{1+h^2} |(\lambda_n f)(y)| dy.$$
 (3.8)

Finally,

$$\omega_{2,\phi}(f,\delta)_{1,\lambda_n} \le Ch^2 \| f(.) \|_{1,\lambda_n}.$$
 (3.9)

Since $h^2 \leq \delta^2$, then

$$\omega_{2,\phi}(f,\delta)_{1,\lambda_n} \leq C\delta^2 \parallel f \parallel_{1,\lambda_n}.$$

The proof is completed.

Lemma (3.3)

$$\text{Let } f,f^{(k)} \in L_{p,\lambda_n}(X), X = [-1,1], \ p \geq 1, \text{ then: } \tau_k(f,\delta)_{p,\lambda_n} \leq c_k \delta^k \parallel f^{(k)} \parallel_{p,\lambda_n}.$$

Proof

To show that holds, start with the below inequality:

$$\begin{split} \tau_k(f;\delta)_{p,\lambda_n} &\leq \delta \tau_{k-1}((\lambda_n f)', k(k-1)\delta)_p, \\ &\leq \delta^2 \tau_{k-2}((\lambda_n f)'', (k-1)(k-2)\delta)_p, \\ &\vdots \\ &\vdots \end{split}$$

$$\leq \delta^{k-1}\tau_1((\lambda_n f)^{(k-1)},\delta)_p.$$

From

$$\tau_1(f;\delta)_{p,\lambda_n} \le \delta \parallel f' \parallel_{p,\lambda_n}$$

then:

$$\begin{split} \tau_1(f;\delta)_{p,\lambda_n} &\leq \delta^{k-1}\delta \parallel f^{(k)} \parallel_{p,\lambda_n}, \\ &= C_k \delta^k \parallel f^{(k)} \parallel_{p,\lambda_n}, \end{split}$$

and then:

$$\tau_k(f;\delta)_{p,\lambda_n} \le C_k \delta^k \| f^{(k)} \|_{p,\lambda_n}. \tag{3.16}$$

The proof is completed.

Lemma (3.4)

If
$$f \in L_{p,\lambda_n}(X)$$
, $X = [-1,1]$, then:

$$E_n(f)_{p,\lambda_n} \le \tilde{E}_n(f)_{p,\lambda_n}. \tag{3.17}$$

Proof

Let θ is the best multiplier approximation of the function f and suppose that θ_1 and θ_2 are best one-sided multiplier approximations of f such that:

$$\theta_1 \le f \le \theta_2. \tag{3.18}$$

$$E_n(f)_{p,\lambda_n} = \| f - \theta \|_{p,\lambda_n} = \left(\int_X |(f - \theta)\lambda_n|^p dx \right)^{\frac{1}{p}}; \ p \ge 1,$$

$$\leq (\int_{X} |(\theta_{2} - \theta_{1})\lambda_{n}|^{p} dx)^{\frac{1}{p}} = \|\theta_{2} - \theta_{1}\|_{p,\lambda_{n}} = \tilde{E}_{n}(f), \tag{3.19}$$

Finally,

$$E_n(f)_{p,\lambda_n} \leq \tilde{E}_n(f)_{p,\lambda_n}$$
.

The proof is done.

4. Main Results

We introduce our main theorems in what follows:

Theorem (4.1)

For $f \in L_{p,\lambda_n}$, and for f is monotone, $1 \le p \le \infty$, then:

$$\widetilde{E}_{n}(f)_{p,\lambda_{n}} \le \tau(f,\delta)_{p,\lambda_{n}}.$$
(4.1)

Proof

Starting with the below inequality, $Q_n^{\pm}(f, x)$ are algebraic monotone polynomial of degree $\leq n$

$$\tilde{E}_{n}(f)_{p,\lambda_{n}} \leq \|Q_{n}^{+} - Q_{n}^{-}\|_{p,\lambda_{n}} = 2 \|\sum_{j \in \mathbb{Z}} \phi_{j,N}(x) \|f - R_{n}\|_{\infty(\Omega_{j})}\|_{p},$$

$$\leq c [\sum_{j \in \mathbb{Z}} meas \Omega_{j} \|f - R_{n}\|_{\infty(\Omega_{j})}^{p} dx]^{\frac{1}{p}},$$

$$\leq c [\sum_{j \in \mathbb{Z}} \int_{\Omega_{j}} \|f - R_{n}\|_{\infty(N(x,\delta))}^{p} dx]^{\frac{1}{p}},$$

$$\leq c [\int_{\Omega_{j}} \|f - R_{n}\|_{\infty(N(x,\delta))}^{p} dx]^{\frac{1}{p}},$$

$$\leq c [\int_{\Omega_{j}} \sup |f(x_{j}) - f(x_{j+1})|^{p} dx]^{\frac{1}{p}} = C_{p} \tau(f,\delta)_{p,\lambda_{n}}.$$
(4.2)

The proof is completed.

Notice that from lemma 3.4 and the theorem above , we get: $E_n(f)_{p,\lambda_n} \le \tau(f,\delta)_{p,\lambda_n}$.

Theorem (4.2)

For $f \in L_{p,\lambda_n}$, then $\tau(\delta, \frac{1}{n})_{p,\lambda_n} \le \frac{c}{n} \sum_{k=1}^n E_k(f)_{p,\lambda_n}$. (4.8)

Proof

Starting with the below inequality:

$$\tau_2(f, n^{-\frac{1}{2}})_{p,\lambda_n} \le \tau_2(f - R_n, n^{-\frac{1}{2}})_{p,\lambda_n} + \tau_2(R_n, n^{-\frac{1}{2}})_{p,\lambda_n}. \tag{4.9}$$

By lemma (3.3) we get:

$$\tau_{2}(f, n^{-\frac{1}{2}})_{p,\lambda_{n}} \leq c \| f - R_{n} \|_{p,\lambda_{n}} + c \| \lambda_{n}R'' \|_{p,\lambda_{n}},$$

$$\leq \frac{c}{n} \sum_{1 \leq k \leq n} \| R_{k} - f \|_{p,\lambda_{n}} + \frac{c}{n} \sum_{k=1}^{n} \| R_{k} - f \|_{p,\lambda_{n}},$$

$$\leq \frac{c}{n} \sum_{k=1}^{n} \| R_{k} - f \|_{p,\lambda_{n}} = \frac{c}{n} \sum_{k=1}^{n} E_{k}(f)_{p,\lambda_{n}}.$$
(4.10)

The proof is completed.

5. Conclusion

The aim of this paper is to obtain of the degree of the best multiplier approximation unbounded monotone functions, $f \in L_{p,\lambda_n}(X)$, where X = [-1, 1] in terms of averaged multiplier modulus smoothness $\tau(f, \delta)_{p,\lambda_n}$.

References

- [1], Kopotun, Kirill A., "On k —monotone polynomial and spline approximation L_p , 0 , quasi norm", J Approx. Theory, (295-302), (1995)
- [2] Kopotun, K.A., "Whitny's Theorem of Interpolatory Type for k- Monotone Function", const. Approx., 17:307-317 (2001).

- [3] N.M. Kassim (2004), "On the Monotone and Comonotone Approximation", M. Sc thesis, Kufa University, Mathematical Department, College of Eduction.
- [4] Eman Samir Bhaya and Munther Salman Al-Lami," Positive and Negative Results for Comonotone Approximation", M.Sc thesis, Babylon University, Department of Mathemaics, College of Education for Pure Sciences (2013).
- [5] Hadi, J. M., "Bivariate Monotone and Comonotone Approximation", M.Sc thesis, Babylon University, Department of Mathemaics, College of Science (2014).
- [6] Saheb Al-Saidy and Noor Saad, "On Some Monotone Approximation", M.Sc thesis, AlMustansiriyha University, Department of Mathemaics, College of Science (2015).
- [7] Sendov. B.C., Popov, V.A (1988), "The Averaged Modulus of Smoothness", Publ. House of the Bulg. Acad. Of Science, Sofia.
- [8] Hardy G., "Divergent Series" Clarendon Press, Oxford, First Ed. (1949).
- [9] DitzianZ., Totik V., "Moduli of smoothness", Springer Verlag, New York, (1987).
- [10] Jassim, S.K. (1991), "Direct and inverse inequalities for some discrete operators of bounded measurable function", Serdica, Bulgoarica, Mathematics Publications.
- [11] Koptun, K.A., "On Moduli of Smoothness of k –Monotone Function and Applications", Math. Proc. Camb. Phil. Soc. : 146,213, (2009).