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Abstract The aim of this paper is to obtain of the degree of the best multiplier approximation unbounded monotone functions 𝑓 ∈ 𝐿𝑝,𝜆𝑛

 [−1,1]  in 

terms of averaged multiplier modulus smoothness 𝜏(𝑓, 𝛿)𝑝,𝜆𝑛
. 
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1. Introduction 

 
Many researchers and specialists have worked in the field of approximation theory for example; In 1995 [1] , Kopotun, 

Kirill A. , introduced a paper on 𝑘 −monotone polynomial and spline approximation 𝐿𝑝 , 0 < p < ∞ quasi norm. Also, 2001 [2], 

Kopotun, K.A., had studied and got several results about approximations of bounded functions in 𝐿𝑝(𝑋) −space, where 𝑋 =
[𝑎, 𝑏],and 𝑝 ≥ 1 by utilizing Whitny’s theorem. In 2004 [3] N.M.Kassim had studied the monotone and comonotone approximation. 

. In 2013 [4] , Eman Samir Bhaya and Munther Salman Al-Lami have obtained the degree of comonotone polynomials approximation 

of continuous functions 𝑓  in 𝐿𝑝[−1,1] −space. In 2014 [5] , Hadi, J.M., obtained some results of Bivariate monotone and 

comonotone approximation of function. In 2015 [6] Saheb Al-Saidy and Noor Saad have studied 𝑘 −monotone approximation of 

unbounded functions in 𝐿𝑝,𝑤𝛼
− space s. In our research we will find degree of the best multiplier approximation unbounded 

monotone functions, 𝑓 ∈ 𝐿𝑝,𝜆𝑛
− 𝑠𝑝𝑎𝑐𝑒 . 

 

 

2. Definitions and Concepts 

 
 Definition (2.1) [ 8 ] 

 A series

0

n

n

a




 is called a multiplier convergent series if there is a convergent sequence of real numbers 
0{ }n n 


such that 

0

n n

n

a 




  and 
0{ }n n 


 is called multiplier for the convergence.  

 

 

Definition (2.2) 

For any real valued function 𝑓 ∈ 𝐿𝑝,𝜆𝑛
(𝑋), where 𝑋 = [−1,1],if there is a sequence {𝜆𝑛}𝑛=0

∞ ,such that:  

 ∫  
1

−1
𝑓(𝑥)𝜆𝑛𝑑𝑥 < ∞, (2.1) 

 then 𝑓 is called a Multiplier integrable function, 𝜆𝑛,is called a Multiplier integrable sequence.   

 

 

Definition (2.3) 

A. [ 7 ] Let [ , ]pf L a b , where 1 p  , be the space of all bounded funaction with the norm 
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∥ f ∥p= [∫  
b

a
|f(x)|pdx]

1

p  < ∞                                                                                                    (2.2) 

 

B. Let 𝑓 ∈ Lp,λn
(X),where X = [−1,1] then:  ∥ f ∥p,λn

,is given by the below definite Multiplier integral norm :  

 ∥ f ∥p,λn
= [∫  

1

−1
|(λnf)(x)|pdx]

1

p. (2.3) 

 

Definition (2.4)  

A.[ 7 ] Let [ , ]pf L a b , where 1 p  , then the integral modulus(
pL -modulus or p -modulus)  of order k  of the function 

f  is the following function of [0,( ) / ]:b a k    

 
1

0( ; ) sup { ( ) }
p

pb kh

k p

k L h h

a

f f x dx 


                     (2.4)                          

B. The Multiplier integral modulus of order 𝑘 of the function 𝑓 ∈ Lp,λn
(X), where 

 X = [−1,1], 1 ≤ p < ∞   is defined by:  

 

 𝜔𝑘(𝑓, 𝛿)𝑝,𝜆𝑛
= sup

ℎ∈[0,𝛿]
(∫  

𝑏−𝑘ℎ

𝑎
| △ℎ

𝑘 (𝜆𝑛𝑓)(𝑥)|𝑝𝑑𝑥)
1

𝑝, 0 ≤ 𝛿 ≤ 𝑏 − 𝑎𝑘, (2.5) 

 where  

 △ℎ
𝑘 (𝜆𝑛𝑓)(𝑥) = ∑  𝑘

𝑚=𝑖 (−1)𝑚+𝑘(𝑚
𝑘 )(𝜆𝑛𝑓)(𝑥 + 𝑚ℎ); (𝑚

𝑘 ) =
𝑘!

𝑚!(𝑘−𝑚)!
. (2.6) 

 

 

 

 

Definition (2.5)  

A.[ 7 ] Let ( );pf L X  where [ , ]X a b  and 1 p  . The local modulus of smoothness of the function  f of order k  

at a point [ , ]x a b  is the following function of [0,( ) / ]:b a k    

 ( , ; ) sup{ ( ) : , [ , ] [ , ]}
2 2

k

k h

k k
f x f t t t kh x x a b

 
        (2.7) 

 

B. The multiplier local modulus of smoothness of a function 𝑓 of order 𝑘 at a point 

𝑥 ∈ [𝑎, 𝑏],     

 0 ≤ 𝛿 ≤
𝑏−𝑎

𝑘
, 

is defined by:  

 𝜔𝑘(𝑓, 𝑥, 𝛿)𝑝,𝜆𝑛
= sup

ℎ∈[0,𝛿]
{△ℎ

𝑘 (𝜆𝑛𝑓)(𝑡): 𝑡, 𝑡 + 𝑘ℎ ∈ [𝑥 −
𝑘𝛿

2
, 𝑥 +

𝑘𝛿

2
] ∩ [𝑎, 𝑏]}. (2.8) 

 

Definition (2.6)  

A. [ 7 ]  The averaged modulus of smoothness of order k  ( or  -modulus) of the function [ , ]f M a b  is the following 

function of [0,( ) / ]:b a k    

 
1

( ; ) ( ,.,; ) [ ( ( , ; )) ]
p

b

p p

k p k kL

a

f f f x dx                                                 (2.9) 

 

B. The multiplier averaged modulus of smoothness of order 𝑘 of 𝑓 ∈ 𝐿𝑝,𝜆𝑛
(𝑋), where 

 𝑋 = [−1,1], is defined by:  

 𝜏𝑘(𝑓, 𝛿)𝑝,𝜆𝑛
=∥ 𝜔𝑘(𝑓, . , 𝛿) ∥𝑝,𝜆𝑛

= (∫  
𝑏

𝑎
[𝜔𝑘(𝜆𝑛𝑓, 𝑥, 𝛿)]𝑝𝑑𝑥)

1

𝑝. (2.10) 

 

 

Definition (2.7)[ 9 ] 

Let  𝑓 ∈ Lp,λn
(X),where X = [−1,1], then the Ditzian-Totic moduli of smoothness of the function f is defined by:  
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 𝜔𝑘,𝜙(𝑥)(𝑓, 𝛿)𝑝,𝜆𝑛
= sup

ℎ∈[0,𝛿],𝛿>0
∥△ℎ𝜙(.)

𝑘 (𝑓, . , 𝑋) ∥𝑝,𝜆𝑛
, (2.11) 

 where  

 𝜙(𝑥) = √1 − 𝑥2, 𝑥 ∈ [−1,1]. (2.12) 

 Then △ℎ𝜙(𝑥)
𝑘 𝑓(𝑥) is given by the below finite summation:  

 △ℎ𝜙(𝑥)
𝑘 𝑓(𝑥) = ∑  𝑘

𝑖=0 (−1)𝑘−𝑖(𝑖
𝑘)[𝜆𝑛𝑓(𝑥 + (𝑖 −

𝑘

2
)ℎ𝜙(𝑥)], (2.13) 

 provided that: 

 𝑥 −
𝑘

2
ℎ𝜙(𝑥), 𝑥 +

𝑘

2
ℎ𝜙(𝑥) ∈ [−1,1]. (2.14) 

 

Definition (2.8) 

A.[ 7 ] Let 𝑓 ∈ Lp,λn
(X), X = [a, b], then:  

 ( ) inf{ : }n p n np
E f f P P P                                                             (2.15) 

Such that ( )n pE f  is called the degree of the best monotone multiplier approximationof f  by polynomial 
nP . 

B. Let 𝑓 ∈ Lp,λn
(X), X = [−𝟏, 𝟏], then:  

  

, ,
( ) inf{ : }

n n
n p n np

E f f S S P 
                                                         (2.16)       

Such that 
,( )

nn pE f   is called the degree of the bestmonotone multiplier approximationof f  by polynomial 
nS . 

 

Definition (2.9)  

A.[ 7 ] Let 𝑓 ∈ Lp(X), the best one-sided approximation of f  by means of trigonometric polynomails of order n  in Lp(X) is 

given by:  

 �̃�𝑛(𝑓)𝑝 inf{ : , , ( ) ( ) ( ); }
PL

P Q P Q T Q x f x P x x                                     (2.17) 

  

B. Let 𝑓 ∈ Lp,λn
(X), X = [−𝟏, 𝟏], then:  

�̃�𝑛(𝑓)𝑝,𝜆𝑛 ,
inf{ : , , ( ) ( ) ( ); }

n
n n n n n nP

S G S G T G x f x S x x


                         (2.18) 

Such that �̃�𝑛(𝑓)𝑝,𝜆𝑛
 is called the degree of the best one-sided monotone multiplier approximation of f  by polynomials 

nS  and 

nG .  

 

Definition (2.10)[ 11 ] 

A funtion f: [a, b] ⟶ ℝ is said to be k −monotone, k ≥ 1, on [a, b] if and only if for all choices of (k + 1) distinct, x0, x1, … , xk, 
in [a, b] the inequality  

 [𝑥0, 𝑥1, … , 𝑥𝑘]𝑓 ≥ 0, (2.19) 

 holds. Where  

 [𝑥0, 𝑥1, … , 𝑥𝑘]𝑓 = ∑  𝑘
𝑗=0 (

𝑓(𝑥𝑗)

𝑚′(𝑥𝑗)
), (2.20) 

 denotes the 𝑘-th divided difference of the funtion 𝑓 at 𝑥0, 𝑥1, … , 𝑥𝑘 , and  

 𝑚(𝑥) = ∏  𝑘
𝑗=0 (𝑥 − 𝑥𝑗). (2. 21) 

 Moreover, let 𝑓 ∈ 𝐿𝑝,𝜆𝑛
, 1 ≤ 𝑝 ≤ ∞, 𝑓 is any real valued function and let  

 𝛺 = X = [−1,1] ⊂ ℝ. 
Define 𝑁⋆(𝛿, 𝑥) to be:  

 𝑁⋆(𝛿, 𝑥) = 𝛿𝑁(𝑥) + 𝛿2, (2.22) 

 where 𝑁(𝑥) is given by the piecewise function:  

 𝑁(𝑥) = {
𝑥(1−𝑥2)𝑖𝑓 Ω=[0,1]

(1−𝑥2)
1
2 𝑖𝑓 Ω=[−1,1]

. (2.23) 

 Assume that  

 𝑍 = {0,1,2, … , 𝑁 − 1}. (2.24) 

 

 𝑧𝜈 = cos
(𝜋−𝜋𝜈)

𝑁
;  𝜈 = 1,2, … , 𝑁. (2.25) 
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 Suppose that  

 𝑧−1 = 𝑧0 = −1; 𝑧𝑁+1 = 𝑧𝑁 = 1. (2.26) 

 For 𝑗 ∈ 𝑍, put:  

 Ω𝑗 = [𝑧𝑗, 𝑧𝑗+1]. (2.27) 

 For 𝜈 = 0,1,2, … , 𝑁 − 1. Put:  

 𝑢𝜈 = 𝜋 −
(2𝜈+1)𝜋

2𝑁
, (2.28) 

 and  

 𝜙𝜈 = 𝜙𝜈(𝑢) = sin4 (
𝜋

4𝑁
) {

[sin4𝑁(𝑢−𝑢𝜈)]

[
sin4(𝑢−𝑢𝜈)

2
]

+
[sin4𝑁(𝑢+𝑢𝜈)]

[
sin4(𝑢+𝑢𝜈)

2
]

}. (2.29) 

 Thus 𝜙𝜈 are all even trigonometric polynomials of degree 4𝑁 − 2 and 𝜙𝜈(𝑢) ≥ 1 for 𝑢 ∈ [𝜋 − (𝑢 +
𝜈𝜋

𝑁
, 𝜋 −

𝜈𝜋

𝑁
)]. Now let  

 𝑢 = arccos𝜈;  𝜈 ∈ [−1,1], (2.30) 

 then  

 𝐹𝜈(𝑢) = 𝐹𝜈,𝑁(𝑢) = 𝜙𝜈(arccos𝜈). (2.31) 

 By Jensen inequality, and for 𝛼𝑗 ≥ 0, 𝑗 ∈ 𝑍, it is obtained that:  

 ∥ ∑  𝑗∈𝑍 𝛼𝑗𝜙𝑗,𝑁 ∥𝑝(Ω)≤ 𝑐[∑  𝑗∈𝑍 𝛼𝑗
𝑝

𝑚𝑒𝑎𝑠 Ω𝑗]
1

𝑝. (2.32) 

 

 

Definition (2.11)[ 10 ]  

Let Rn be an algebraic monotone polynomial which is the best approximation polynomial of f ∈ Lp,λn
 such that for N =

n

4
 

 Qn
±(f, x) = Rn(x) ± ∑  j∈Z ϕj,m(x) ∥ f(x) − Rn(x) ∥∞(Ωj). (2.31) 

 It is clear that Qn
±(f, x) are algebraic monotone polynomial of degree less than or equal to n. 

In the next section, significant lemmas will be proved.  

 

 

3. Necessary Lemmas 

 
Lemma (3.1)[ 10 ] 

 

Let f ∈ Lp,λn
(X), X = [−1,1], then  Qn

−(f) ≤ f ≤ Qn
+(f). (3.1) 

 

Proof 

Start the proof with the below algebraic equation given by:  

 

 𝑄𝑛
+(𝑓, 𝑥) = 𝑅𝑛(𝑥) + ∑  𝑗∈𝑍 𝜙𝑗,𝑚(𝑥) ∥ 𝑓(𝑥) − 𝑅𝑛(𝑥) ∥∞(Ω𝑗), 

 

 𝑄𝑛
+(𝑓, 𝑥) ≥ 𝑅𝑛(𝑥)+∥ 𝑓(𝑥) − 𝑅𝑛(𝑥) ∥∞(Ω𝑗), 

 

 𝑄𝑛
+(𝑓, 𝑥) ≥ 𝑅𝑛(𝑥) + |𝑓(𝑥) − 𝑅𝑛(𝑥)|, 

 

 𝑄𝑛
+(𝑓, 𝑥) ≥ 𝑅𝑛(𝑥) + 𝑓(𝑥) − 𝑅𝑛(𝑥), 

and then  

 𝑄𝑛
+(𝑓, 𝑥) ≥ 𝑓(𝑥). (3.2) 

 Then 𝑄𝑛
+(𝑓, 𝑥) = 𝑓(𝑥). Similarly,  

 𝑄𝑛
−(𝑓, 𝑥) = 𝑅𝑛(𝑥) − ∑  𝑗∈𝑍 𝜙𝑗,𝑚(𝑥) ∥ 𝑓(𝑥) − 𝑅𝑛(𝑥) ∥∞(Ω𝑗), 

 

 𝑄𝑛
−(𝑓, 𝑥) ≤ 𝑅𝑛(𝑥)−∥ 𝑓(𝑥) − 𝑅𝑛(𝑥) ∥∞(Ω𝑗), 

 

 𝑄𝑛
−(𝑓, 𝑥) ≤ 𝑅𝑛(𝑥) − |𝑓(𝑥) − 𝑅𝑛(𝑥)|, 

 

 𝑄𝑛
−(𝑓, 𝑥) = 𝑅𝑛(𝑥) − 𝑓(𝑥) − 𝑅𝑛(𝑥), 
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and then  

 𝑄𝑛
−(𝑓, 𝑥) = −𝑓(𝑥) ≤ 𝑓(𝑥) ⟹ 𝑄𝑛

−(𝑓, 𝑥) ≤ 𝑓(𝑥). (3.3) 

 From (3.2) and (3.3) we get:  

 𝑄𝑛
−(𝑓) ≤ 𝑓 ≤ 𝑄𝑛

+(𝑓). 
 

 

 

Lemma (3.2) 

 

Let f ∈ Lp,λn
(X), X = [−1,1],and f ∈△2 (x) then: ω2,ϕ(𝑓, δ)1,λn

≤ Cδ2 ∥ f ∥1,λn
;  C is constant. (3.4) 

 

Proof.  

 

By using definition (2.7) 

 𝜔𝑘,𝜙(𝑓, 𝛿)𝑝,𝜆𝑛
= sup

ℎ∈(0,𝛿]
∥△ℎ𝜙

𝑘 (𝑓, 𝑋) ∥𝑝,𝜆𝑛
 (3.5) 

Where 𝑘 = 2, 𝑝 = 1. 

 𝜔2,𝜙(𝑓, 𝛿)1,𝜆𝑛
= sup

ℎ∈(0,𝛿]
∥△ℎ𝜙(.)

2 (𝑓, . , 𝑋) ∥1,𝜆𝑛
, 

 

 𝜔2,𝜙(𝑓, 𝛿)1,𝜆𝑛
= sup

ℎ∈(0,𝛿]
∫  

1

−1
| △ℎ𝜙

2 𝑓(𝑥)𝜆𝑛(𝑥)|𝑑𝑥, 

 

 𝜔2,𝜙(𝑓, 𝛿)1,𝜆𝑛
= ∫  

1

−1
(∑  𝑖∈[0,2] (𝑖

2) (−1)2−𝑖𝜆𝑛𝑓(𝑥 − ℎ𝜙(𝑥) + 𝑖ℎ𝜙(𝑥))(𝑥 − ℎ𝜙(𝑥) + 𝑖ℎ𝜙(𝑥))) 𝑑𝑥. 

And 

 

 𝜔2,𝜙(𝑓, 𝛿)1,𝜆𝑛
= ∫  

1

−1
{((0

2)(−1)2𝜆𝑛𝑓(𝑥 − ℎ𝜙(𝑥))(𝑥 − ℎ𝜙(𝑥))) 

 

 +((1
2) (−1)2−1𝜆𝑛𝑓(𝑥 − ℎ𝜙(𝑥) + ℎ𝜙(𝑥))(𝑥 − ℎ𝜙(𝑥) + ℎ𝜙(𝑥))) 

 

 +((2
2)(−1)2−2𝜆𝑛𝑓(𝑥 − ℎ𝜙(𝑥) + 2ℎ𝜙(𝑥))(𝑥 − ℎ𝜙(𝑥) + 2ℎ𝜙(𝑥)))}𝑑𝑥, 

then  

 𝜔2,𝜙(𝑓, 𝛿)1,𝜆𝑛
= ∫  

1

−1
{(𝜆𝑛𝑓(𝑥 − ℎ𝜙(𝑥))(𝑥 − ℎ𝜙(𝑥)) 

 

 −2(𝜆𝑛𝑓)(𝑥)(𝑥 + 𝜆𝑛𝑓(𝑥 + ℎ𝜙(𝑥))(𝑥 + ℎ𝜙(𝑥)))}𝑑𝑥. (3.6) 

 

By Whitney’s theorem [ 7 ]( for any continuous function 𝑓 on [ a,b ] and for each integer n  ≥ . There is a number 𝑤n and a 

polynomial P of degreen n − 1 such that : 

|𝑓(𝑥) − P(x)|  ≤ 𝑤n𝜔n(𝑓, [𝑎, 𝑏])  , Where 𝑤n is Whitney's constant ) , we get:  

 

 

 𝜔2,𝜙(𝑓, 𝛿)1,𝜆𝑛
= ∫ (𝑓𝜆𝑛)

1−
3ℎ2

1
+ℎ2

−1
(𝑦)

1

1+ℎ2 (1 − 𝑦ℎ(ℎ2 + 1 − 𝑦2)−
1

2)𝑑𝑦 

 −2 ∫ (𝜆𝑛𝑓)
1−

ℎ2

1
+ℎ2

−1+
ℎ2

1
+ℎ2

(𝑦)𝑑𝑦 

  + ∫ (𝜆𝑛𝑓)
1

−1+
3ℎ2

1
+ℎ2

𝑦)
1

1+ℎ2 (1 + 𝑦ℎ(ℎ2 + 1 − 𝑦2)−
1

2)𝑑𝑦. (3.7) 

 Then  

 𝜔2,𝜙(𝑓, 𝛿)1,𝜆𝑛
≤ 𝐶ℎ2 ∥ 𝑓(. ) ∥1,𝜆𝑛

+ ∫
2ℎ2

1+ℎ2

1−
3ℎ2

1
+ℎ2

−1+
3ℎ2

1
+ℎ2

|(𝜆𝑛𝑓)(𝑦)|𝑑𝑦. (3.8) 

 Finally,  

 𝜔2,𝜙(𝑓, 𝛿)1,𝜆𝑛
≤ 𝐶ℎ2 ∥ 𝑓(. ) ∥1,𝜆𝑛

. (3.9) 

 Since ℎ2 ≤ 𝛿2, then  

 𝜔2,𝜙(𝑓, 𝛿)1,𝜆𝑛
≤ 𝐶𝛿2 ∥ 𝑓 ∥1,𝜆𝑛

. 
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The proof is completed.  

 

Lemma (3.3) 

 

Let 𝑓, 𝑓(k) ∈ Lp,λn
(X), X = [−1,1], p ≥ 1, then:  τk(𝑓, δ)p,λn

≤ ckδk ∥ 𝑓(k) ∥p,λn
. 

 

 

Proof 

To show that holds, start with the below inequality:  

 𝜏𝑘(𝑓; 𝛿)𝑝,𝜆𝑛
≤ 𝛿𝜏𝑘−1((𝜆𝑛𝑓)′, 𝑘(𝑘 − 1)𝛿)𝑝, 

 

 ≤ 𝛿2𝜏𝑘−2((𝜆𝑛𝑓)′′, (𝑘 − 1)(𝑘 − 2)𝛿)𝑝, 

 

 ⋮ 
 

 ⋮ 
 

 ≤ 𝛿𝑘−1𝜏1((𝜆𝑛𝑓)(𝑘−1), 𝛿)𝑝. 

 

From  

 𝜏1(𝑓; 𝛿)𝑝,𝜆𝑛
≤ 𝛿 ∥ 𝑓′ ∥𝑝,𝜆𝑛

, 

 

then:  

 𝜏1(𝑓; 𝛿)𝑝,𝜆𝑛
≤ 𝛿𝑘−1𝛿 ∥ 𝑓(𝑘) ∥𝑝,𝜆𝑛

, 

 

 = 𝐶𝑘𝛿𝑘 ∥ 𝑓(𝑘) ∥𝑝,𝜆𝑛
, 

and then:  

 𝜏𝑘(𝑓; 𝛿)𝑝,𝜆𝑛
≤ 𝐶𝑘𝛿𝑘 ∥ 𝑓(𝑘) ∥𝑝,𝜆𝑛

. (3.16) 

 The proof is completed.  

  

Lemma (3.4) 

 

If 𝑓 ∈ 𝐿𝑝,𝜆𝑛
(𝑋), 𝑋 = [−1,1],then: 

 𝐸𝑛(𝑓)𝑝,𝜆𝑛
≤ �̃�𝑛(𝑓)𝑝,𝜆𝑛

. (3.17) 

 

 

Proof. 

Let 𝜃  is the best multiplier approximation of the function 𝑓  and suppose that 𝜃1  and 𝜃2  are best one-sided multiplier 

approximations of 𝑓 such that:  

 𝜃1 ≤ 𝑓 ≤ 𝜃2. (3.18) 

 𝐸𝑛(𝑓)𝑝,𝜆𝑛
=∥ 𝑓 − 𝜃 ∥𝑝,𝜆𝑛

= (∫  
𝑋

|(𝑓 − 𝜃)𝜆𝑛|𝑝𝑑𝑥)
1

𝑝;  𝑝 ≥ 1, 

 

 ≤ (∫  
𝑋

|(𝜃2 − 𝜃1)𝜆𝑛|𝑝𝑑𝑥)
1

𝑝 =∥ 𝜃2 − 𝜃1 ∥𝑝,𝜆𝑛
= �̃�𝑛(𝑓), (3.19) 

 Finally,  

 𝐸𝑛(𝑓)𝑝,𝜆𝑛
≤ �̃�𝑛(𝑓)𝑝,𝜆𝑛

. 

The proof is done.  

 

 

4. Main Results 

 
We introduce our main theorems in what follows:  
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Theorem (4.1) 

 

For f ∈ Lp,λn
, and for f is monotone, 1 ≤ p ≤ ∞, then:  

 Ẽn(𝑓)p,λn
≤ τ(𝑓, δ)p,λn

. (4.1) 

Proof 

Starting with the below inequality, Qn
±(f, x) are algebraic monotone polynomial of degree ≤ 𝑛   

  
 

 

 �̃�𝑛(𝑓)𝑝,𝜆𝑛
≤∥ 𝑄𝑛

+ − 𝑄𝑛
− ∥𝑝,𝜆𝑛

= 2 ∥ ∑  𝑗∈𝑍 𝜙𝑗,𝑁(𝑥) ∥ 𝑓 − 𝑅𝑛 ∥∞(Ω𝑗)∥𝑝, 

 

 ≤ 𝑐[∑  𝑗∈𝑍 𝑚𝑒𝑎𝑠 Ω𝑗 ∥ 𝑓 − 𝑅𝑛 ∥
∞(Ω𝑗)

𝑝
]

1

𝑝, 

 

 ≤ 𝑐[∑  𝑗∈𝑍 ∫  
Ω𝑗

∥ 𝑓 − 𝑅𝑛 ∥
∞(Ω𝑗)

𝑝
𝑑𝑥]

1

𝑝, 

 

≤ 𝑐[∫  
Ω𝑗

∥ 𝑓 − 𝑅𝑛 ∥
∞(𝑁(𝑥,𝛿))

𝑝
𝑑𝑥]

1

𝑝, 

 

 ≤ 𝑐[∫  
Ω𝑗

sup |𝑓(𝑥𝑗) − 𝑓(𝑥𝑗+1)|𝑝𝑑𝑥]
1

𝑝 = 𝐶𝑝𝜏(𝑓, 𝛿)𝑝,𝜆𝑛
.   (4.2) 

  

The proof is completed . 

 

Notice that from lemma 3.4 and the theorem above , we get:  𝐸𝑛(𝑓)𝑝,𝜆𝑛
≤ 𝜏(𝑓, 𝛿)𝑝,𝜆𝑛

. 

 

 

Theorem (4.2)   

 

For 𝑓 ∈ Lp,λn
,then  τ(δ,

1

n
)𝑝,𝜆𝑛

≤
c

n
∑  𝑛

𝑘=1 Ek(𝑓)𝑝,𝜆𝑛
. (4.8) 

Proof  

Starting with the below inequality:  

 𝜏2(𝑓, 𝑛−
1

2)𝑝,𝜆𝑛
≤ 𝜏2(𝑓 − 𝑅𝑛, 𝑛−

1

2)𝑝,𝜆𝑛
+ 𝜏2(𝑅𝑛, 𝑛−

1

2)𝑝,𝜆𝑛
. (4.9) 

 

By lemma (3.3) we get:  

 𝜏2(𝑓, 𝑛−
1

2)𝑝,𝜆𝑛
≤ 𝑐 ∥ 𝑓 − 𝑅𝑛 ∥𝑝,𝜆𝑛

+ 𝑐 ∥ 𝜆𝑛𝑅′′ ∥𝑝,𝜆𝑛
, 

 

 ≤
𝑐

𝑛
∑  𝑛

2
≤𝑘≤𝑛 ∥ 𝑅𝑘 − 𝑓 ∥𝑝,𝜆𝑛

+
𝑐

𝑛
∑  𝑛

𝑘=1 ∥ 𝑅𝑘 − 𝑓 ∥𝑝,𝜆𝑛, 

 

 ≤
𝑐

𝑛
∑  𝑛

𝑘=1 ∥ 𝑅𝑘 − 𝑓 ∥𝑝,𝜆𝑛
=

𝑐

𝑛
∑  𝑛

𝑘=1 𝐸𝑘(𝑓)𝑝,𝜆𝑛
. (4.10)  

 The proof is completed.  

  

 

5. Conclusion 
The aim of this paper is to obtain of the degree of the best multiplier approximation unbounded monotone functions, 𝑓 ∈
𝐿𝑝,𝜆𝑛

(𝑋), 𝑤ℎ𝑒𝑟𝑒  𝑋 = [−1, 1 ] in terms of averaged multiplier modulus smoothness 𝜏(𝑓, 𝛿)𝑝,𝜆𝑛
. 
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