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ABSTRACT 

In this research, we introduce a modified direction update formula to improve the 

descent features of iterative optimization, therefore presenting a fresh approach to the 

Conjugate Gradient (CG) method. The proposed method adjusts the search direction at 

each iteration by incorporating gradient and step projections, weighted by inner 

products between gradient and step vectors. The modified HS-CG approach seeks to 

decrease the computational cost often associated with conventional approaches and 

speed up convergence by carefully balancing these projections. Experimental results 

demonstrate that our approach outperforms standard CG algorithms in achieving faster 

convergence on a range of benchmark problems, especially in high-dimensional spaces. 

This enhancement makes the method particularly promising for large-scale optimization 

challenges encountered in fields such as machine learning and engineering design. 
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 التذبذبات في التحدين غير الخطي لتجنب  :HS-CGفعال لنظامتحديث 

 خليل حيدر عصام
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 الملخص

 في هذا البحث، نقدم صيغة تحديث اتجاه معدلة لتحدين ميزات الانحدار لمتحدين التكراري، وبالتالي نقدم نهجًا جديدًا لطريقة التدرج

بالسشتجات الداخمية  هزونةتزبط الطريقة السقترحة اتجاه البحث في كل تكرار من خلال دمج إسقاطات التدرج والخطهة الس (CG) .السترافق

السعدل إلى تقميل التكمفة الحدابية السرتبطة غالبًا بالطرق التقميدية وتدريع التقارب من  HS-CGبين متجهات التدرج والخطهة. يدعى نهج 

القياسية في تحقيق تقارب أسرع في  CGمهازنة هذه الإسقاطات بعشاية. تُظهر الشتائج التجريبية أن نهجشا يتفهق عمى خهارزميات  خلال
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مجسهعة من مذاكل السعايير، وخاصة في السداحات عالية الأبعاد. يجعل هذا التحدين الطريقة واعدة بذكل خاص لتحديات التحدين 

 ها مجالات مثل التعمم الآلي وترسيم الهشدسة.واسعة الشطاق التي تهاجه

INTRODUCTION 

Optimization methods play a crucial role in 

numerous applications like machine learning, 

image processing, fluid mechanics, elasticity, 

seismology, medicine, electronic structure 

approximation, traffic management, and 

telecommunication systems, having diverse 

scientific and industrial problems. Due to the 

nonlinearity of these applications, traditional 

optimization methods are not efficient. Therefore, 

various modified and hybrid optimization 

techniques are designed in order to overcome these 

challenges
 (1)

. With the motivation of these, an 

update classical conjugate gradient optimization 

strategy is followed due to its efficiency in solving 

these challenges. These optimization algorithms 

help in improving the convergence rate and 

computational efficiency of the optimization 

methods of different applications. The update 

formula of the optimization methods is very critical 

as the performance of the optimization method is 

based on the update formula 
(2)

. The update 

formula of the optimization methods is a crucial 

factor in balancing different optimization features. 

The main competing factors of the update formula 

are (i) the reduction of function of objective in the 

next iterative point and (ii) the satisfaction of some 

descent-like conditions by the formula. This 

balance is also expressed by diminishing the 

gradient value on the next point, which is 

important for improving the convergence property 

of the algorithm. Motivated by these observations, 

this manuscript’s objective is to analyze the 

balance between the descent of the formula and the 

gradient-specific adjustment conditions in the CG 

and HS-CG update formulas. Moreover, the HS-

CG update formula is considered for its damped 

pattern, which can compete with the descent one. 

In this context, some research questions are raised 

in order to analyze the exact behavior of the HS-

CG in the balance of these different properties. 

This research study’s significant findings are 

expected to help in improving the convergence 

properties of the HS-CG. This document comprises 

five sections, including the literature, introduction 

of key results, definitions, conclusions, etc. 
(3)

  

Conjugate Gradient Method  

The conjugate gradient method was initially 

introduced as an iterative algorithm to solve 

symmetric positive definite (SPD) systems of 

linear equations. The algorithmic foundation of this 

method is based on the Krylov subspace. This 

subspace is built using a basis: 

    [          (     ) ]                             … (1) 

where (      ( )) is the gradient of the objective 

function at the current point x,   is the Hessian-

vector product, and   denotes the dimension of 

problem. The basis on which the method operates 

is the combination of two important components: 

directional gradient descent, which points to the 

steepest descent of the objective function, and an 

immediate stopping point when the true Hessian is 

used, accelerating the optimization. The method 

encapsulates both benefits: the magnitude of the 

descent increment is gradually improved, and after 

at most n iterations, the conjugate gradient method 

becomes exact for quadratic functions with SPD 

Hessians. Moreover, in cases where the 

optimization problems must guarantee  ( ) 

behavior, the conjugate gradient methods iterate 

tend to become perpendicular to the steepest 

directions, in which case the memory requirements 

are very low, hence making it a perfect choice for 

solving large-scale linear systems 
(4-8)

. 

The main notion behind the CG method is to 

update the descent direction in a conjugate way 

with respect to those in the previous iterations, 

disregarding the steepness of the current gradient. 
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The first descent direction is simply the adverse 

gradient, which is the steepest descent direction, 

denoted by (      ). The first iterates are found 

by carrying out a line search in this direction. For 

the conjugate directions to remain conjugate, we 

update the descent direction by the following 

scheme, which is known as the Polak-Ribiere 

formula
 (9)

: 

 ( )      ( )        (     )                  … (2) 

This new descent direction  ( )  is the steepest 

descent direction from the point  ( ) and also it is 

the steepest descent direction with respect to the 

previous descent direction  (     )  The 

parameter    can be computed by using the 

following expressions as in Table (1). 
 

Table 1: The conjugacy parameters for Slandered 

Conjugate Gradients. (10-12) 
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 Hestenes-Stiefel Formula  

The Hestenes-Stiefel formula has previously 

appeared in the literature, though none have been 

proposed to handle the issue in the optimization 

problem. This subsection will walk through the 

derivation of the Hestenes-Stiefel CG formula in 

detail and will establish its relevance, invoking its 

application in various scenarios. While the original 

CG method offers several attractive properties—

most notably, converging to the exact solution after 

at most n search directions (where n is the number 

of variables)—it does require the objective 

function to be quadratic (or closely approximated 

thereby). The Hestenes-Stiefel case allows for the 

introduction of gradient-specific properties that 

result in a more optimized choice of search 

direction. These gradient-specific properties look 

to balance a descent direction with a gradient-

based correction, which in an optimization problem 

leads to desirable properties. Given this connection 

with optimization, the question to this point has not 

been ―does the HS-CG formula work?‖ but rather 

if and how it might be possible to build a more 

specialized formula to exploit optimization-

relevant problem structures. In light of the 

proposed anti-progress results, we can answer in 

the affirmative; different properties of the 

optimization problem are both learnable and 

exploitable. These derived, optimization-balancing 

results align with previous literature: for example, 

it was suggested to adapt the Hestenes-Stiefel 

formula by allowing the coefficient to be greater 

than (1) if progression did not occur. We go further 

than this concept, however, by abandoning 

standard mechanistic enhancements altogether, 

thereby further divorcing our update formula from 

the mechanical updates of descent. Allowing for 

gradient-sensitive, scale-dependent, and multi-term 

adjustments simultaneously demonstrates a new 

level of tailored specialty. This analytical 

presentation successfully highlights our need for an 

update: The Hestenes-Stiefel method offers 

interesting, gradient-sensitive experimental 

opportunities since it has traditionally functioned 

well with adaptability. This suggests a solid 

starting point alongside justification for our 

proposed HS-CG improvement. Furthermore, this 

framework has been designed with both the 

presented results and specific choice of 

improvements in mind 
(1, 16-21)

 .
 
 

PROPOSED OPTIMIZATION 

The         Formula: The HS-CG update 

formula contains a term that allows the search to 

"slide" along the gradient change with a certain 

modest proportionality constant. This has been 

shown experimentally to help search in several 

cases. Here we use this idea to develop an 

improved HS-CG update formula. We address the 

annoying features of common HS policies and 

replace the common approximate parameter 

estimation with a more direct and robust approach 

that increases its property of "slide" search. The 

amount of correction term that we suggesting 
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(  
     )

 

  
   

(  
     )

  
   

  to embody the planned direction 

in its form: 

           ,
  
     

  
   

 
(  
     )

 

  
   

(  
     )

  
   

-     
… (3) 

Modification Steps: We show gradual 

modifications that improve the two HS-CG 

policies. Thus, step by step, we go from the 

original HS-CG up to our developed HS-CG+η 

update formula. We then use the developed 

expression with a simple algebraic manipulation to 

obtain our proposed update formula for the 

conjugate direction and the step size parameters. 

Proof of concept and free parameters estimation. 

Theorem; Consider the search direction defined by 

(3) and assume that the line search     computed 

by the wolfe conditions then the search directions 

are descent. 

Proof: the proof is by induction, for k=0 we have:  

                   
     ‖  ‖

           … (4) 

Assume that    
     , then, for k+1 we have 

    
      

 ‖    ‖
  {
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 … (5) 

By Couchy shwartz inequality  
       

       ‖    ‖
  

‖  ‖‖  ‖‖    ‖
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                                            … (6) 

       
       

(  
     )

 

  
   

(  
     )

 

  
   

                … (7)                  

Since (   
     ) by Wolfe condition, hence 

    
                                                        … (8) 

ANALYSIS OF GLOBAL CONVERGENCE 

Assumption (CG)  

(i): The level set (Ω  *      ( )   (  )+) is 

bounded. 

(ii): Within a certain neighborhood N of Ω,    is 

continuously differentiable and its gradient 

satisfies Lipschitz continuity. Specifically, there 

exists a positive constant L such that 

‖ ( )   ( )‖      ‖   ‖                 … (9) 

With these presumptions on  ( )  there exists a 

constant   such that (‖  ( )‖    for all    ). 

The following general result is applicable to any 

conjugate gradient method that employs a robust 

Wolfe line search. 

Proposition A1. Assume that the condition CG is 

satisfied. Examine a conjugate gradient method (3) 

wherein, for every iteration  , the search direction 

   constitutes a descent direction, and the step-

length    is established according to the Wolfe line 

search criteria. If:                    
∑

 

‖  ‖
 

 
                                                  … (10) 

Afterward, the way the algorithm converges is 

      ‖  ‖
   

                                              … (11) 

For functions that are uniformly convex, we can 

demonstrate that the norm of the direction     , 

calculated as in (10), is confined above. 

Consequently, based on proposition (A1), we can 

establish the subsequent result. 

Theorem A2. Suppose that the assumptions (i) and 

(ii) hold. Consider the algorithm (A),    is a 

descent direction, and     is computed by the 

strong Wolfe line search. Suppose that f is a 

uniformly convex function on S i.e. there exists a 

constant     such that 

                  … (12) 

for all       Then 

                                                      …(13) 

Proof: From Lipschitz continuity we have ‖  ‖  

 ‖  ‖  On the other hand, from uniform convexity 

it follows that   
     ‖  ‖

        

 from (3) we have 

                         … (14) 
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  By Couchy Shwartz inequality, convexity of 

objective function and Lipschitz condition, we 

have 

                           … (15) 

             … (16) 

Therefore ‖    ‖ is bounded, showing that (10) is 

true. By proposition A1 it follows that (11) is true, 

which for uniformly convex functions is equivalent 

to (13).   

EXPERIMENTAL TESTS 

Properties and Superiority: We make the 

proposed update formula match the needed 

properties and qualify its superiority to the original 

and to further developed HS-CG update formulas. 

Our modifications overcome the trouble created by 

the long-distance iteration’s termination after 

which the spectral technique becomes inefficient, 

and the iterations are simply gradient-based, 

following the first conjugate gradient update step. 

The updates themselves balance between causing 

the search to slide along the gradient direction with 

a proportionality factor and being steered along the 

search space eigenvectors as in Figure (1). 

Experiments Object: We seek to confirm the 

convergence, efficiency, and any potential 

drawbacks of our novel update formula. We also 

assess the connectivity of the updates to verify the 

utility of our equation in practice. 

Experiments: This section details the performance 

of FORTRAN representations of our newly 

updated conjugate gradient algorithms 

(                 ) on a series of 

unconstrained optimization test problems derived 

from 
(22-24)

. We selected seventy large-scale test 

problems in extended or generalized formats; for 

each function, we conducted numerical tests with 

varied counts of (n = 100, 1000, and 10,000) as in 

Figure (2). We assessed the efficacy of these 

algorithms against the optimal modified CG 

approach (Andrei, 2007a), as suggested by Andrei. 

These techniques employ standard Wolfe line 

search conditions with (       ) and (     ), 

where represents the step size 

(        (‖    ‖ ‖  ‖) ), and serves as the 

starting estimate for further iterations (    

  ‖  ‖   at (k > 1)). The stopping criterion is 

established, with a maximum iteration limit of 

2000. The codes are authored in double precision 

FORTRAN (2000) and compiled with the default 

settings of the F77 compiler. 
 

 

Fig. 1: The initial criterion for comparisons between the 

classical (HS and Hg) and the proposed algorithm 

(       ) is the number of iterations 
 

 

Fig. 2: The initial criterion for comparisons between the 

classical (HS and Hg) and the proposed algorithm 

(       ) is the number of   evaluation 
 

Comparative analysis method Dolan-More 

benchmark tests were used to determine 

whether or not our technique outperforms 

competitors 
(8)

: It turns out that (       ) 

outperforms the classic {HS(Hestanse & Stefel) 
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and Hg (Hager & Zhange)) 
(25)

. Indeed, the results 

for the criteria (iterations number and function 

number calculations with derivative) are 

encouraging. 

CONCLUSION 

This paper presented a new modification to the 

Conjugate Gradient (CG) method, improving its 

descent characteristics using a novel direction 

update formula. The proposed method shown 

enhanced performance over conventional CG 

algorithms by adeptly balancing gradient and step 

projections, especially in high-dimensional and 

large-scale optimization challenges. The 

experimental results highlighted the method's 

ability to achieve faster convergence while 

reducing computational costs, making it a valuable 

tool for complex optimization challenges. These 

findings underscore the potential of the modified 

HS-CG+η method against (HS and Hg) to address 

the growing demands of modern optimization 

problems. 
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