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ABSTRACT  

Urban regions are commonly plagued by traffic congestion, which results in substantial 

economic losses and a diminished quality of life. Accurate prediction of traffic flow and 

effective management of congestion are important in reducing the impacts of traffic. This 

paper presents a new approach using hybrid neural network models to enhance the 

accuracy of traffic predictions and improve strategies for congestion management. The 

proposed Materials and methods integrates Diffusion Convolutional Recurrent Neural 

Network (DCRNN) with graph-based models, allowing information to be shared among 

related sensors over large distances. The METR-Los Angeles (METR-LA) dataset 

consists of traffic data collected from 207 loop detectors located on highways in Los 

Angeles. Validation is done through various methods that prove the practicality and 

efficiency of the developed deep learning methodologies for real-time congestion 

monitoring and management systems. 
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 استخدام الشبكات العصبية الهجينة لتحسين التنبؤ المروري وإدارة الازدحام 

 علي عبد سمير 

 العراق  ،تكريت ،شركة توزيع المنتجات النفطية فرع صلاح الدين

 الملخص 

. يعد التنبؤ الدقيق  في جودة الحياةتعاني المناطق الحضرية عادة من الازدحام المروري، مما يؤدي إلى خسائر اقتصادية كبيرة وانخفاض  

اسة طريقة  بأنماط حركة المرور والتحكم الفعال في الازدحام أمرًا بالغ الأهمية للحد من الآثار السلبية الناجمة عن حركة المرور. تقدم هذه الدر 
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ري  جديدة تستخدم الشبكات العصبية الهجينة لتحسين دقة التنبؤ بحركة المرور وتعزيز أساليب إدارة الازدحام. يدمج النهج المقترح بشكل تآز 

مع النماذج التقليدية القائمة على الرسم البياني لالتقاط التبعيات المكانية   (DCRNN)  مزايا الشبكات العصبية المتكررة التلافيفية الديناميكية

، التي تشتمل على قياسات حركة المرور  METR-LA والزمانية الموجودة في بيانات حركة المرور بشكل فعال. تم استخدام مجموعة بيانات

كاشفًا لحلقات الطرق السريعة في لوس أنجلوس، للتدريب والتحقق من صحة النموذج. تشير النتائج إلى فعالية الشبكات العميقة في    207من 

 . ء أنظمة مراقبة وإدارة الازدحام المروري في الوقت الحقيقيإنشا

INTRODUCTION 

The enormous increase in the multitude of vehicles 

has placed a major problem within the urban. 

Intelligent Transportation Systems (ITS) is in smart 

cities a wise traffic control system that offers good 

answers to the problems of city street traffic. This 

study focuses on the analysis of traffic predictions 

that are considered large spatial-temporal forecasts. 

Traffic (1) flow refers to different types of motion on 

the road also involving pedestrians, moving 

vehicles, and road infrastructure. Traffic flow 

prediction uses past data related to traffic flow 

collected by sensors to predict future circumstances 

(2). This assists people in being able to avoid 

congestion and choose their routes based on 

information that would be convenient and safe.  

The enormous growth in the number of vehicles has 

posed a main trouble within the urban. The 

functioning of traffic forecast as initiation is 

explained by spatial-temporal predictions 

considered an autonomous vehicle related model to 

create vehicle-to-vehicle and infrastructure-to-

vehicle trajectories. Intelligent Transportation 

Systems (ITS) are typically advanced traffic 

management systems, and this study focuses on its 

role in smart cities for good solutions to city street 

traffic issues. ITS will provide custom designs that 

relate to various types of motion on the street, 

pedestrian information services (in motion), 

automotive environmental observations, and road 

infrastructure.  

The tremendous boom in the car population has 

posed a main issue throughout the urban. Intelligent 

Transportation Systems (ITS) are synthetic site 

visitors control systems in smart cities that provide 

pleasant approaches to city road site visitors issues. 

This study makes a specialty of traffic forecasting, 

which is considered huge spatial-temporal 

prediction. Traffic goes (1) refers to the diverse types 

of movement at the avenue along with pedestrians, 

automobiles on the cross and street infrastructure 

space. Traffic Flow Prediction is primarily based on 

sensor gathered beyond records on traffic glide to 

make predictions for destiny occasions (2); this will 

help individuals in preventing congestion and 

deciding on their routes — via facts which might be 

each handy and secure. 

BACKGROUND 

To address this, some approaches learnable node 

embeddings and base model parameters for the 

adjacency matrix while others generate the 

adjacency matrix with a possibility based on. Such 

an approach allows the network to adapt 

dynamically depending on the specific details at 

hand. Further improving over Diffusion Graph 

Convolutional Recurrent Network (DGCRN), does 

this by generating a self-adaptive dynamic 

adjacency matrix at every time step.  

The purpose of the spatial topology embedding is to 

condense the structural facts of the traffic network 

into properly described graph data preparations, 

which could be later used for extracting spatial 

relationship. The original proposal for 

Convolutional Neural Networks (CNN) based 

methods (3) included dividing maps into grids of 

equal size and treating them like images, then using 

convolution to capture relationships between 

neighboring grids. GNNs provide a more flexible 

representation of the traffic network, allowing more 
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sophisticated processing of non-Euclidean 

correlations. The creation of a good adjacency 

matrix is pivotal to GNNs. A common way is by 

defining some predefined measure on pairs that 

indicate proximity between nodes such as 

geographic distance or connectivity (4). However, 

this predetermined adjacency matrix is static and 

has limited ability to capture high variability in 

spatial relationships among traffic data. To address 

this problem, some approaches learnable nodes 

embeddings and use them to produce the adjacency 

matrix while others treat the adjacency matrix as 

parameters and implement it by implementing it as 

part of the model. We consider information at each 

time step, which makes learning a dynamic graph 

more reachable—allowing the network to adapt in 

terms of different traffic conditions. In this way, the 

Dynamic Graph Convolutional Recurrent Neural 

Network (DGCRNN) (5) goes one further by 

learning its own self-adapting dynamic adjacency 

matrix for each individual point in time. 

Although this method provides great flexibility in 

representing data, the resulting dynamic graphs are 

not easily understandable in real-world situations. 

This restricts their capacity to be used to other traffic 

analysis scenarios. 

Recurrent neural networks are commonly used to 

record temporal dependencies between portions of 

the sequence. GRU (Gated Recurrent Unit) and 

LSTM (Long -short-term memory) (6) are further 

proposed to increase the ability to simulate long-

term dependencies by introducing a gate mechanism 

to control the ratio of preserving long-term 

information. In traffic prediction, to add spatial 

information, one intuitive way is to use the outputs 

of spatial modules as input to Recurrent Neural 

Network (RNN) Additionally, certain works 

enhance the computation of gates in GRU and 

LSTM by including graph convolution (7). In order 

to decrease the computing expense of RNN, CNN 

can be used to describe temporal relationships by 

applying one-dimensional convolution along the 

time axis (8). 
For traffic prediction, spatio-temporal neural 

networks trained using graph convolution have 

shown remarkable performance across a variety of 

tasks, all because to the presence of clearly defined 

graphs. But it's not easy to predict the relationships 

between nodes with any degree of certainty due to 

the complexity of the topology of a real road 

network. To grasp intricate interdependencies, the 

authors of (9) suggest an adaptable graph learning 

method (AdapGL) that is based on convolutional 

networks. To start, a new graph learning module can 

be built to adaptively capture additional possible 

connections between nodes during training. 

Secondly, the parameters of the prediction network 

and graph learning modules are optimized using 

surrogate training, drawing inspiration from the 

Expectation Maximization (EM) technique. A two-

way recurrent neural network turned into created in 

(10) employing GRUs to extract and categorize 

traffic as both congested or non-congested. The 

utilization of real-time data from sensors and related 

equipment facilitated the more efficient 

management of traffic. Essential metrics to consider 

include predicting traffic variables such as velocity, 

meteorological conditions, current situation, and 

likelihood of accidents. The performance of 

congestion prediction has been enhanced by 

extracting additional information, including traffic, 

road, and weather conditions. A novel Bayesian 

framework called Variable Graph Recurrent 

Attention Neural Networks (VGRAN) is introduced 

in (11) to enhance the accuracy of traffic 

prediction. This model uses dynamic graph 

convolutions to report time-various street sensor 

signals and analyze latent variables associated with 

sensor representation and traffic sequences. The 

suggested probabilistic technique is a versatile 

generative model that takes into account the 

stochastic nature of sensor information and the 

temporal correlations of motion. Furthermore, it 
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allows for effective estimation of differences and 

precise representation of the fundamental patterns in 

traffic data, which often exhibit irregularities, 

geographical correlations, and many temporal 

aspects. 

RELATED WORK 
This section compares strategies used to predicate 

traffic in previous research, that is one of the 

fundamental tasks inside the field of smart 

transportation systems Table 1. Statistical methods, 

artificial intelligence and data mining techniques 

were used to evaluate road traffic data and predict 

future traffic indicators. In many studies, machine 

learning models such as the regression model in (12) 

have been used to predict traffic data for the next 

year based on traffic data for previous years. In (13), 

the prediction accuracy of four ML models was 

examined using investigation data collected from 

the road network in Thessaloniki, Greece and the 

focus was on prediction accuracy and real-time 

speed. In (14), several algorithms were evaluated to 

predict traffic flow at an intersection, thus laying the 

foundation for adaptive traffic control, either by 

remote control of traffic signals or by implementing 

an algorithm that adjusts the timing according to the 

expected flow. 
Deep learning and deep neural networks have been 

used in many studies due to their ability to 

effectively extract features and handle large 

volumes of data.  In (15), the main objective was to 

predict trip duration using neural networks such as 

color clustering algorithm (K-Means algorithm) 

along with several parameters to calculate and 

estimate travel duration while using a dataset 

obtained from Waze Live Map Application 

Programming Interfaces (APIs). In (16), a Materials 

and methods for direct traffic status prediction based 

on spatiotemporal graph using CNN was 

established. The spatiotemporal graph is fed directly 

into the traffic prediction model, which uses a CNN. 

The model was trained using simulated data and a 

real dataset. However, this study did not investigate 

the effects of lane changes on the dynamic behavior 

of traffic flow and prediction accuracy. A traffic 

situational awareness ensemble technique with a 

graph implementation on a network of traffic 

detectors extracted spatial patterns in traffic flow in 

(17). After recovering the features, a weight matrix 

was created to group the underlying models' 

predictions by performance under given conditions. 
The efficient real-time traffic flow big data 

prediction network has important application 

importance and the main challenge has been how to 

build an adaptive model based on historical data. 

Long short-term memory (LSTM) is a special 

recurrent neural network (RNN) that can learn 

temporal relationships from sequences of time 

series due to the memory cells built into it.  In (18), 

LSTM was applied to real-world traffic big data 

from a benchmark system. In (19), a path-based 

framework was proposed which can produce better 

city-scale traffic speed prediction in which the road 

network is divided into critical paths and each 

critical path is modeled by Bidirectional Long 

Short-Term Memory Neural Network (Bi-LSTM 

NN). In the traffic prediction phase, the spatial and 

temporal features captured from these processes are 

fed into a fully connected layer. Finally, the results 

of each path are aggregated to predict network-level 

traffic speed. Convolutional Pose Machine (CPM-

Conv) LSTM, a spatio-temporal model for short-

term prediction of the congestion level on each road 

segment, was proposed in (20). The model is built on 

a spatial matrix that includes both the congestion 

propagation pattern and the spatial correlation 

between road segments. In (21), a deep, embedded 

learning approach (DELA) is proposed that can 

help, explicitly learn from fine-grained traffic 

information, road structure and weather conditions. 

In particular, DELA consists of an embedding 

component, a CNN component and an LSTM 

component where the embedding component can 

capture categorical feature information and identify 

associated features while the CNN component can 

recognize 2D traffic flow data while the LSTM 
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component has the benefits of maintaining long-

term memory for historical data. 

In order to leverage both the spatial and temporal 

characteristics of traffic data, the researchers 

initiated the construction of a hybrid model. This 

involved the integration of two or more distinct 

models into a single entity. The K-Nearest 

Neighbors (KNN) LSTM model in (22) uses both 

spatial data through the selection of the most 

relevant neighbor and temporal variability to 

accurately predict the flow. In (23), an Autoencoder-

LSTM fusion model was used to capture the internal 

relationship of traffic flow using an Autoencoder. 

The LSTM network was then employed to forecast 

the complex linear traffic flow. The researcher 

introduced a new model named Letter of Credit 

(LC) RNN in (24) to forecast road traffic speed. This 

model comprises a look-up convolutional layer and 

recurrent layers. The look-up operation retrieves all 

the neighboring road segments, the convolutional 

operation captures the spatial relationships, and the 

recurrent layers acquire the long-term temporal 

patterns. In addition, the researcher introduced a 

deep learning model called SCRN in (25), which 

combines CNN and LSTM. Initially, CNN analyses 

the spatial characteristics of the traffic network for 

each time period. Subsequently, the LSTM network 

acquires knowledge of the temporal relationship in 

the time-series data to forecast the speed of 278 road 

links. 

The hybrid neural network outperforms both simple 

neural networks and traditional approaches by 

effectively extracting spatial and temporal 

information from the traffic data. Despite the 

promising outcomes of the hybrid model in traffic 

prediction, there is a scarcity of research on traffic 

congestion prediction using deep neural networks. 

This is mostly because there is a lack of reliable city-

wide congestion data. The Autoencoder model was 

trained by the researcher in (26) using artificially 

compressed samples of traffic photos obtained from 

an open-source website. The purpose of the training 

was to anticipate traffic congestion. The anticipated 

photographs lack visual intuitiveness due to 

significant loss of road information during image 

reduction. In (27), the researchers used bus driving 

time data during peak periods in order to train the 

LSTM network to forecast the duration of traffic 

congestion on six specific road segments. The 

researchers in (28) employed machine learning 

algorithms (logistic regression, random forest, and 

neural networks) on vehicle trajectory data obtained 

via connected car technologies to detect and forecast 

the occurrence of traffic congestion. The study 

contains prediction horizons of (10 and 20 sec), 

specifically designed to alert drivers of imminent 

traffic conditions. In (29), the city-level transport 

picture data from TOPIS was used to forecast city-

level traffic congestion in the short and medium 

term using a hybrid architecture that incorporates 

CNN, LSTM, and transposed CNN. 

The rise of hybrid deep neural network approaches 

paved way for the study of alternative architectures 

that could also be able to learn graph-like structure 

data, which ultimately led to formulation of Graph 

Neural Networks (GNNs). GNNs are an entirely 

new kind of deep learning algorithms appropriate 

for tasks with graph data structures. With respect to 

this task, it is very important to not only capture the 

spatial graph-like structure of road networks but 

also the temporal dimension and its corresponding 

information. The idea was first introduced by Yu et 

al. in 2018 when they proposed their Spatio-

Temporal Graph Convolutional Neural Network. It 

integrates graph convolutions and gated temporal 

convolutions in the use spatio-temporal 

convolutional blocks (8).  

Compared to other techniques to traffic prediction, 

this model performed far better. As a result, it paved 

the path for other researchers to investigate these 

networks and served as a baseline model for 

comparisons in future works. In (30), a different GNN 

method was used a residual recurrent structure to 

effectively capture spatial dependencies and 
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temporal dynamics inside graphs. Specifically, it 

focused on identifying periodic temporal 

correlations. GNN model was introduced in (31), 

which includes external factors. The first 

convolution layer of the graph captures the spatial 

correlations, and this is followed by subsequent 

convolution layers that learn the temporal dynamics. 

The merging module considers both social factors 

and road infrastructure. The occurrence of accidents 

can affect traffic predictions, so a model was 

developed to capture the impact of traffic accidents 

on traffic flow and speed in (32), and show the extent 

to which this affects predictions. Another 

architecture, known as the encoder-decoder, is 

proposed and used in reference (3). This architecture 

comprises an encoder and a decoder consisting of 

numerous spatiotemporal attention blocks that 

capture the influence of spatio-temporal elements 

on traffic conditions. The encoder analyses the input 

traffic characteristics, while the decoder generates 

the output sequence. An intermediary attention 

layer, known as a transform attention layer, is 

positioned between the encoder and decoder. Its 

purpose is to turn the encoded traffic features into 

the input required by the decoder. The transformer 

attention technique is designed to capture the direct 

connections between previous and future time steps, 

hence reducing the problem of error propagation 

between prediction time steps.  Another approach, 

described in (33), uses Recurring Gates Units (GRU) 

to overcome the constraints of GCN in capturing 

global spatial correlations. This method leverages 

GRU and focusses on simultaneously analyzing 

local and global temporal correlations. To address 

the neglect of node properties, a dynamic spatio-

temporal graph convolutional network (DSTGCN) 

was proposed in (34), which includes a dynamic 

graph generation module that adaptively integrates 

geographic proximity and spatial heterogeneity 

information, and a graph convolutional cycle 

module that captures local temporal dependencies. 

 

Table 1: Comparison of previous studies in traffic forecasting. 

Ref. Dataset Method Findings 
(10) Two Kaggle datasets. Some 2016 

data includes date, time, number of 

cars, and number of intersections and 

2017 traffic data. 

Regression Mode More traffic management elements 

should be considered. 

(11) Data from the road network in 

Thessaloniki, Greece. 

Random Forest (RF), Support 

Vector Regression (SVR), 

Multilayer Perceptron (MLP), 

and Multiple Linear Regression 

(MLR) 

The SVR model works best in stable 

settings with little changes, whereas 

the MLP model adapts better to 

greater changes and has the fewest 

mistakes. 

(12) A Road Traffic Prediction Dataset 

from the Huawei Munich Research 

Center. 

Linear Regression, MLP 

Regressor, Gradient Boosting 

Regressor, RF Regressor, and 

Stochastic Gradient Descendent 

Regressor 

Multilayer Perceptron Neural 

Network obtained better results but 

took less time to train. 

(13) Dataset obtained using Waze Live 

Map APIs. 
K-Means algorithm Factors such as weather conditions 

were not considered. 

(14) Simulated data and a real-world 

dataset 

CNN Predicting traffic conditions based on 

time and space diagram. 

(15) Caltrans PeMS dataset. Support Vector Regression 

(SVR), Long Short-term Memory 

(LSTM) 

There is a need to improve the 

network architecture and parameter 

choices. 
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(16) Real-world traffic big data of PeMS. Long Short-term Memory 

(LSTM) 

The training time needs to be 

regulated and the number of 

optimized parameters needs to be 

expanded. 

(17) Automated vehicle identification 

detectors data in the core area of 

Xuancheng, China. 

Bidirectional Long Short-Term 

Memory Neural Network (Bi-

LSTM NN) 

The model was reasonable and 

interpretable. 

(18) Data of Helsinki, Finland collected 

using HERE Traffic API. 

ConvLSTM Places of interest, weather, and the 

environment should be considered. 

(19) Traffic flow information for 

approximately 3 months provided by 

KDD CUP 2017. 

CNN and LSTM A limited learning ability of the 

embedded component. 

(20) Real-time traffic flow data provided 

by the Transportation Research Data 

Lab (TDRL) at the University of 

Minnesota Duluth (UMD) Data 

Center. 

KNN-LSTM model The proposed model can achieve an 

accuracy improvement of 12.59% on 

average. 

(21) Caltrans PeMS dataset. AutoEncoder Long Short-Term 

Memory (AE-LSTM) 

Mean Relative Error MRE was 

reduced by 0.01. 

(22) Two datasets from Beijing and 

Shanghai. 

LC-RNN The fusion with other information, 

including periodicity and context 

factors, is also considered to further 

improve accuracy. 

(23) Beijing transportation network with 

278 links. 

Spatiotemporal Recurrent 

Convolutional Networks 

(SRCNs) 

The spatial dependencies can be 

captured by DCNNs, and the 

temporal dynamics can be learned by 

LSTMs. 

(24) A dataset was created based on 

traffic congestion map snapshots 

from the Washington State 

Department of Transportation's 

traffic service provider. 

Autoencoder-based neural 

network mode 

Photographs lack visual intuitiveness 

due to the loss of road information 

during image reduction. 

(25) A total of 66,228 bus driving records 

were collected from 50 buses over 66 

working days in Guangzhou, China. 

Method based on bus driving 

time (TCP-DT) and LSTM 

The method can provide a driving 

path with the least congestion time. 

(26) Vehicle trajectory data obtained via 

connected car technologies. 
Logistic Regression, Random 

Forest, and Neural Network 

10- and 20-second predictive 

horizons were obtained. 
(27) Caltrans PeMS dataset. CNN, LSTM, and Transpose-

CNN 

More data from multiple sources is 

needed for more accurate forecasts. 

(28) Two datasets: BJER4 and PeMSD7. Spatio-Temporal Graph 

Convolutional Networks 

(STGCN) 

The model achieves fast training and 

fewer parameters. 

(29) Two datasets: METR-LA and PEMS-

BAY. 

Residual Recurrent Graph Neural 

Networks (Res-RGNN) 

Spatial and temporal features should 

be investigated for better 

interpretation. 

(30) Two Caltrans PeMS datasets 

(PEMSD7 and PEMSD4). 

Temporal Graph Convolutional 

Networks (GTCN) 

MAE: 0.64 
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(31) Two real-world urban traffic datasets 

of San Francisco and New York city. 
Deep Incident-Aware Graph 

Convolutional Network (DIGC-

Net) 

Effectiveness in extracting accident 

features. 

(32) Two datasets: Xiamen and PeMS. Graph Multi-Attention Network 

(GMAN) 

4% improvement in MAE. 

(33) METR-LA and PeMS-Bay Graph Convolutional Recurrent 

Attention Network (GCRAN) 

Extract local and global spatial 

correlations simultaneously. 

(34) PEMS-Bay, NE-BJ, 

PEMSD4, PEMSD8 

Dynamic Spatial-Temporal 

Graph Convolutional Network 

(DSTGCN) 

Prediction of flow and speed. 

 

Anticipating and forecasting traffic flows is crucial 

due to the potential risks of traffic congestion, 

particularly in densely populated areas. 

Consequently, there is a requirement for practical 

and efficient road traffic prediction methods. Key 

issues are around the absence of computationally 

streamlined approaches and algorithms. 

Furthermore, there are constraints when it comes to 

obtaining training data of superior quality. The lack 

of use of dynamically acquired spatio-temporal 

correlations in deep learning is a significant 

challenge, as it fails to account for the intricate 

relationship between road sections and traffic 

congestion patterns or crowded areas. 

MATERIALS AND METHODS 
A hybrid deep neural network is proposed for traffic 

forecasting by predicting future road speeds based 

on previous speeds measured by the sensor at the 

same location using a hybrid model that combines 

two types of models. 

• First, distinguish between basic road 

characteristics and sensor locations along the path 

using the unique ability of convolutional networks 

to extract features and use graphical input provided 

via the network.  

• Second, transfer the output to recursive neural 

networks, which are known for their ability to work 

with sequential data to predict future speeds. 

Figure 1 shows the outline of the Materials and 

methods to be followed. The raw traffic time series 

data is processed and transformed into graph-

structured data and then the graph data is fed into a 

hybrid deep learning model that handles temporal 

and spatial dependencies. The proposed model is 

trained and its performance in traffic prediction is 

evaluated. 

 
Fig. 1: Proposed Materials and methods for traffic 

forecasting. 
 

The primary programming language used is Python. 

This was chosen because of the wide usage and 

popularity plus the availability of numerous 

libraries for data analysis and machine learning 

tasks. Python is a well-known programming 

language for machine learning of research because 

of its large amount and focused community of 

developers and users, in addition to its user-friendly 

nature, easy syntax (35).  

The programming language has an extensive 

collection of libraries and tools specifically created 

for machine learning. These resources offer a 

diverse selection of algorithms, models, and tools 

for processing data. Python is a versatile and 

scalable programming language that can efficiently 

handle extensive datasets and intricate models. 

Moreover, it offers compatibility with many 

languages and technologies, enabling the 

combination of their respective capabilities. The 
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prediction algorithm was implemented on an 

NVIDIA T4 GPU with a 585MHz GPU which can 

be increased to 1590MHz and also contains 2560 

NVIDIA cores and RAM capacity is 16 MB. 

Dataset 

The METR-LA dataset, consisting of 207 loop 

detectors, gives information on the flow and 

occupancy observed from the Los Angeles County 

Road network freeway. The data had been collected 

at five-minute intervals (36).  

The predominant time frame in this dataset spans 

from March 1 to June 30, 2012. Figure 2 displays 

the positions of detectors in the road network using 

red pins. The dataset uses a non-directional graph 

with edge weights to create the adjacency matrix. 

 

 

Fig. 2: Locations of loop detectors in METR-LA dataset (36). 
 

The distances between detectors are calculated 

pairwise, and then an adjacency matrix is 

constructed using a thresholded Gaussian Kernel 

based on the method described  (37). The edge 

weights are determined using the equation 1 

provided below: 

𝑊𝑖,𝑗 = 𝑒
− 𝑑𝑖𝑠𝑡  (𝑖,𝑗)2

2𝑄2   𝑖𝑓  𝑑𝑖𝑠𝑡(𝑖, 𝑗) <

𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑒𝑑  , 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒                               ... (1) 

Where the real physical road distance between 

nodes i and j in the road network is represented by 

dist (i, j), and Wi,j is the edge weight between nodes 

i and j. The initial distance is represented by 

dthreshold, and the standard deviation of those 

distances is σ. Figure 3 shows the structure of the 

data set where each row represents a 5-minute 

interval, and each column represents a sensor. The 

value in each cell corresponds to the average 

harmonic speed for that period, which is measured 

in miles per hour (mph). 

 

 
Fig. 3: Structure of the METR-LA dataset. 

 

After downloading and analyzing the data set, it was 

found that each sample contains data for 207 nodes 

with two features for each node (speed and time) 

across 12-time steps. The goal is to predict the 

normalized velocity for the next 12-time steps for 

each node, and edges are identified based on the 
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distances between threshold sensors. Figure 4 

displays a single data point that mimics the structure 

of the data set and prints the values of the first 

sample. where x are the features (207 nodes, 2 

features per node, 12-time steps) and edge labels 

with the shape indicate connections between nodes) 

and there are edge features and labels y of the shape 

[207, 12] (the normalized speed of 207 nodes for the 

next 12-time steps). 

 

 

Fig. 4: First sample. 
 

Data Processing 

The time series forecasting problem can be 

considered a supervised learning problem. We can 

do this by using the previous time steps as input 

features and using the next time step as the output 

for the prediction. Then, the question of spatio-

temporal prediction can be formulated as predicting 

the value of a feature in the future, given the 

historical values of the feature for that entity as well 

as the feature values of entities “connected” to the 

entity. For example, in a speed prediction problem, 

the historical speeds of sensors are time sequences 

and the distance between sensors is an indicator of 

connectivity or proximity to the sensors. 

The first stage involves collecting traffic data and 

importing it into the system using a specialized data 

loader. In order to ensure stable and effective 

training, the data undergoes Z-score normalization, 

which standardizes the data by adjusting it to have a 

mean of 0 and a uniform deviation of 1. Next, the 

data undergoes conversion to a histogram format, 

where the adjacency matrix depicts the correlation 

between sensors. This graph represents the spatial 

connections between sensors. 

In order to generate the training dataset, sequences 

of traffic data are retrieved as both features and 

targets. The feature sequences comprise a 

predetermined number of input time steps, while the 

target sequences encompass the succeeding output 

time steps. This is further refined by a specialized 

processing function that prioritizes the speed aspect 

and modifies the data to align with the input 

specifications of the model. The completed dataset, 

which includes these characteristics such as 

features, targets, edges, and edge weights, is 

organized into a Static Graph Temporal Signal 

object. The pre-processing pipeline guarantees the 

efficient conversion of raw traffic data into a 

structured format that is appropriate for training the 

model, enabling precise prediction of traffic 

patterns. 
Modeling 

Graph neural networks have proven to be an 

effective solution for predicting traffic tasks due to 

their ability to capture the complex spatio-temporal 

dependencies of traffic data. In the past few years, 

different types of graph neural networks have been 

developed, one of which is graph convolutional 

networks (GCN)(38). GCNs perform similar 

operations to CNNs where the model learns features 

by examining neighboring nodes. The main 

difference as shown in Figure 5 is that CNNs are 

specifically designed to work on regular structured 

data, while GNNs are the generalized version of 

CNNs where the number of node connections varies 

and the nodes are unordered.
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Fig. 5: 2D Convolutional Neural Networks (left) and Graph Convolutional Networks (right). 
 

RNNs excel at processing time-dependent data by 

retaining the state or memory of prior inputs. RNNs 

are specifically built to handle sequential data, 

where the input order has significance. This renders 

it appropriate for tasks like as time series prediction, 

speech identification, language modelling, and 

other similar applications. RNNs incorporate 

internal loops that enable the retention of 

information. This allows the network to recall past 

inputs and utilize that information during the 

processing of the current input. 
The Convolutional Recurrent Neural Network 

(DCRNN) efficiently integrates the advantages of 

GCNs and RNNs for processing spatiotemporal 

data. Figure 6 depicts the network architecture, 

which is segregated into encryption and decoding 

components (39). The model begins by utilizing time-

series input graph signals, which depict data across 

a temporal dimension. The encoder comprises 

convolutional recurrent layers that are propagated. 

The geographical dependencies in these layers are 

captured using graph convolutions that consider 

bidirectional information flow, while the temporal 

dependencies are captured using recurrent units. 

Following each propagated recurrent convolutional 

layer, the Rectified Linear Unit (ReLU) activation 

function is used to introduce nonlinearity and 

enhance the learning capability. The encoder 

analyses the input sequence and advances the 

hidden states in a forward direction across time, 

efficiently condensing the temporal information up 

to the present time step. After the encryption phase 

concludes, the hidden states are duplicated in order 

to initialize the decoder. This transition guarantees 

that the temporal context, which is collected by the 

encoder, is accessible during the decoding phase. 

The decoder, like the encoder, is comprised of 

convolutional recurrent layers that utilize the hidden 

states of the encoder to forecast future histogram 

signals. Additionally, the decoder applies ReLU 

activation after each layer to maintain nonlinearity 

in the decoding process. The decoder generates 

forecasts for future time intervals by using the 

acquired spatiotemporal relationships. The ultimate 

result comprises projected graph signals for next 

time intervals, encompassing spatial and temporal 

patterns in the data. 
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Fig. 6: DCRNN structure (39). 
 

DCRNN effectively integrates GCNs and RNNs to 

process spatiotemporal data. It uses diffusion 

convolution to capture spatial dependencies and 

recurrent layers to simulate temporal dynamics. 

While it does not incorporate conventional CNNs, it 

applies convolution procedures to graph data. 

DCRNN is highly effective in situations like traffic 

prediction, where spatio-temporal patterns play a 

vital role.  Figure 7 depicts the suggested model 

design of a graph-based temporal convolutional 

network, which aims to enhance traffic prediction 

by utilizing the advantages of graph convolutional 

networks (GCNs) and RNNs, notably the diffuse 

convolutional recurrent neural network (DCRNN).

 

 

Fig. 7: Proposed model layers. 
 

▪ Raw Time-Series Data: Provide input data that 

represents the traffic readings obtained from sensors 

over a specific period of time. Every row represents 

a sensor measurement taken at various points in 

time. 

▪ Graph Time-Series Data: The unprocessed time 

series data is converted into a sequence of graphs, 

with nodes representing sensors and edges 

representing the connections between them. This 

transformation enables the model to incorporate the 

spatial relationships between sensors. 

▪ Graph Input: The model is fed with time series 

data in the form of graphs, with each graph 

representing the traffic circumstances at a particular 

time. The model analyses and handles one graph 

throughout each time period, allowing it to acquire 

knowledge about temporal patterns spanning many 

time periods. 

▪ Feature Extraction: The DCRNN layer is 

specially designed to detect both the temporal and 

geographical dependencies found in traffic 

information. The system analyses the incoming 

network data over a period of time, considering the 

interactions between nodes (sensors). DCRNN 

integrates the concepts GCNs with RNNs. The GCN 

module processes spatial interactions by graph 

convolutions, while the RNN module handles 

temporal dependencies by preserving the hidden 

state over time. This layer generates a transformer 

sequence by updating the characteristics of each 

node based on its own historical data and the data 

from its neighboring nodes. 
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▪ Activation Function: Rectified Linear Unit 

(ReLU) activation feature introduces nonlinearity 

into the model, so allowing it to acquire a deeper 

understanding of intricate patterns. It aids in 

capturing non-linear correlations in data, which are 

frequently seen in real-world traffic situations. 

ReLU function returns the input value as is if it is 

positive; else, it returns zero. This straightforward 

procedure helps mitigate the issue of gradient 

vanishing, hence facilitating the training of deep 

neural networks. 

▪ Flattening Layer: The flattening layer converts 

the output, which is in multiple dimensions, into a 

tensor that has just one dimension. This 

transformation is essential for establishing a 

connection between the recurrent layers and the 

fully linked (linear) layer. 

▪ Fully Connected Layer: It bridges the extracted 

features, which are in a high-dimensional space, to 

the final output space. This mapping involves a 

linear transformation of the input data using the 

weights and biases that have been learned. This 

transformation integrates data from all preceding 

layers to get the ultimate forecast. 

▪ Output: Represents the expected traffic 

conditions for the next time steps for traffic 

management and congestion forecasting. 

Figure 8 depicts the hierarchical structure of the 

proposed model, which is a sophisticated neural 

network design that combines a Diffusion 

Convolutional Recurrent Neural Network 

(DCRNN) layer with multiple subsequent 

processing stages. The initial element, DCRNN-1, 

comprises of an LSTM layer followed by a 

linearization layer. The LSTM has an input 

dimension of 207 and a hidden dimension of 250, 

leading to a substantial parameter count of 125,000. 

The weights and biases used in LSTM gates and 

recurrent connections are represented by it. 

Furthermore, the LSTM linear layer generates a 

single value for every time step, contributing 251 

parameters to the model, encompassing both 

weights and biases.  After passing through the 

LSTM and linear layers, the output is processed by 

the ReLU activation function. Next, the output from 

a 3D tensor [1, 207, 1] is normalized to a 2D tensor 

[1, 207], preparing it for the final fully connected 

layer. The final stage is the linear layer, which 

performs the transformation from 207 features to 

207 output features. This layer provides 42,441 

parameters, calculated from the product of input and 

output sizes plus biases. This linear transformation 

is crucial for mapping the high-dimensional 

representations learned by the network to the 

desired output space. 

 
Fig. 8: Hierarchical structure of the proposed model 

layers. 
 

Training 

The dataset was partitioned between training and 

testing subsets using an 80/20 ratio, guaranteeing 

that the model was trained on one portion and 

validated on another. The data set contains 34,249 

samples, of which 27,408 samples were allocated 

for training and 6,852 samples for testing.  The loss 

function employed was the mean squared error 

Mean Squared Error (MSE), which quantifies the 

average squared difference between the projected 

and actual traffic speeds. The Adam optimizer was 

employed to update the model parameters, reducing 

the loss function by modifying the weights during 

backpropagation. The training process is iterated 

over numerous epochs, wherein the model at each 

epoch processes the training data, computes the loss, 

and adjusts the weights. This method is iterated till 

the model attains the most reliable solution.  
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All through each training generation, the loss is 

saved and monitored so as to tune the model's 

learning progress. These metrics were visually 

depicted in real-time using Tensor Board, giving an 

insight into whether the model can memorize rather 

than learn from a pattern. Visualization across 

epochs of loss values is also implemented for 

spotting patterns and possible problems to do with 

vanishing or bursting gradients, and making sure 

where the model starts converging. This perception 

ensures that any irregularities in the learning process 

are detected immediately and resolved. Figure 9 

Training logs show a very great improvement as 

regards model performance: MSE values decrease 

progressively from one epoch to another. The hybrid 

neural network successfully captures both the 

temporal and spatial connections in traffic data, 

resulting in precise traffic predictions. 
 

 

Fig. 9: Training logs. 
 

The plot depicted in Figure 10 facilitates the visual 

assessment of the model's performance by 

comparing the projected traffic speeds with the 

actual traffic speeds. The x-axis depicts the temporal 

intervals in the dataset, spanning from around (0 to 

7000). The y-axis indicates traffic speeds that have 

been normalized and standardized using Z-score 

normalization. The range of normalized speeds is 

from (-2.5 to 1.0). The blue line depicts the traffic 

speeds forecasted by the model, while the orange 

line reflects the traffic speeds actually measured by 

the sensors.  The model effectively reflects overall 

patterns in actual traffic speeds and somewhat 

captures significant decreases in speeds, which are 

indicative of traffic congestion. This suggests that 

the model possesses a certain level of capability in 

forecasting congestion events, and the strong 

agreement between the anticipated speeds and 

actual speeds for the majority of time intervals 

indicates that the model is working adequately in its 

present condition. 

 

 

Fig. 10: Comparing the predicted traffic speeds to the true traffic speeds. 
 

Evaluation  
Following the training process, the model is 

assessed on the test dataset to determine its capacity 

for generalization after training the model in one 

hour. MAE measures the average magnitude of 

errors in a set of predictions, without considering 

their direction. Root Mean Squared Error (RMSE) 

evaluates the square root of the average squared 

differences between predicted and actual values, 

emphasizing larger errors. The model is configured 

to operate in evaluation mode, guaranteeing that 

layers such as dropout and batch normalization 

function correctly during the inference process. The 

evaluation loop iterates through the test dataset, 

where for each snapshot, the model makes 

predictions about node attributes based on the input 
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graph's structure. The predictions then compared to 

the actual values with a view to calculate the Mean 

Absolute Error (MAE) and Root Mean Square Error 

(RMSE) step by step. The labels and actual 

predictions are then added to their appropriate lists 

to assist with additional statistical calculations. 

Upon completion of the processing of the whole test 

data set, the average  MAE and RMSE are computed 

by dividing the accumulated mistakes by the 

number of shots. These average values are then 

converted into numerical values for simpler reading, 

as illustrated in Figure 11. 
 

 

Fig. 11: Evaluation results. 
 

The proposed model demonstrates notable 

performance, attaining an Mean Absolute Error 

(MAE) of (0.4751) and RMSE of (0.6806). This 

surpasses the performance of the original models 

presented in Table 2, so confirming the enhanced 

model's efficacy in delivering more precise traffic 

forecasts. These models play a crucial role in using 

deep learning to comprehend and forecast intricate 

spatiotemporal patterns, rendering them highly 

effective in domains like transportation 

management and urban planning. STGCN (Spatio-

temporal Graph Convolutional Network) is 

specifically developed to process spatio-temporal 

graph data. ASTGCN (Attention-Based Spatio-

temporal Graph Convolutional Network) improves 

upon STGCN by integrating attention processes. 

This enables the model to preferentially concentrate 

on significant nodes and edges within the graph 

structure.  GCRNN (Graph Recurrent Neural 

Network) is a model that integrates graph 

convolutional layers with recurrent neural networks, 

much like DCRNN. 

Table 1: Comparing the performance of the proposed prediction model with other models. 

 Proposed Model DCRNN STGCN ASTGCN GCRNN 

MAE 0.4751 3.60 4.59 6.51 3.70 

RMSE 0.6801 7.59 9.40 12.52 8.16 
 

The improved performance was attributed to the 

integration of linear layers, which improved the 

model's ability to capture underlying patterns in 

traffic data.  The model is stored for future 

utilization, enabling its deployment in real-time 

traffic management systems. When it comes to 

improving the accuracy of traffic float estimates, 

hybrid solutions have typically been proven to be 

helpful. These approaches are able to represent the 

complexities of traffic patterns and the impact of 

external variables because they combine the 

benefits of many models. It should be mentioned 

that hybrid approaches have the potential to enhance 

traffic flow predictions, but they could also be more 

expensive to compute and necessitate more data and 

resources for maximum performance. 

CONCLUSION 
Accurate traffic forecasting and congestion control 

are now critical elements of city planning and 

transportation systems. These practices enable more 

informed decision-making, cut travel time, and 

enhance overall road safety. Conventional 

approaches frequently struggle to accurately 

represent the intricate spatial and temporal patterns 

that are inherent in traffic data.  A novel hybrid 

neural network model was created and assessed to 

enhance the precision of traffic prediction and 

facilitate the implementation of efficient congestion 

management strategies. This was achieved by 

integrating DCRNN with conventional graph-based 

models, enabling the model to effectively capture 

both spatial and temporal dependencies in 

predictive traffic data. The METR-LA dataset was 

used for both training and validating the model. The 
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hybrid model exhibited reduced MAE and RMSE 

compared to conventional techniques in traffic 

forecasting, demonstrating superior predicted 

accuracy and dependability. An important 

contribution of this research is to showcase the 

efficacy of the hybrid approach in facilitating real-

time traffic management systems. Precise and 

accurate traffic predictions empower transportation 

authorities to proactively implement steps to 

alleviate congestion, thereby enhancing traffic 

movement and diminishing the related economic 

and environmental burdens. Future efforts will 

concentrate on enhancing the model to a greater 

extent, investigating additional datasets, and 

incorporating real-time data sources to augment the 

predictive powers and practical utility of the hybrid 

neural network model. 
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