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Abstract. The goal of this paper is to define β-distance on a non-empty set if it meets the conditions. A pair (X, 𝛽)  is called  𝛽-approach 

space and  we will also discuss solve various problems. The relationship between metric space and β-app-space is clarified. We define the 𝛽- 

contraction function and discuss some of its properties. The convergent sequence in 𝛽-approach space and sequentially convergent are 

discussed. We introduce the definition of β –semigroup, β –group in β –approach space, β –vector space and β –topological approach vector 
spaces. In addition, we identify corresponding between convergent and sequentially convergent with new results.  

Keywords: distance, β-approach group, β-approach vector space, β-approach topological space.  

1. Introduction  

       The concept of a topological vector space is central to modern functional analysis, and in recent years, applications in 

various other fields of mathematics have been studied in order to find and compare their properties. Approach space theory is 

important in quantitative domain theory; there are many examples of approach structure in functional analysis, measure theory, 

probability space, and approximation theory. As in the metric case. If an approach space is generated by a topological space, it 

is said to be "topological," and if it is generated by a metric space, it is said to be "metric." " The AP-product carries only that 

portion of the numerical data that is present," which can be retained if compatibility with the topological product of the family 

of underlying metric topologies is desired." The fundamental difference in existence There is a difference between approach 

and metric spaces. " in the fact that in an approach space, all the distances between the points are defined," where such a point-

set distance does not have to bring the two together infimum over the considered set of all the point distances "As in the metric 

case, an approach space is defined. Lowen [13] found definition approach spaces were introduced in 1987. Lowen's 

monographs [14] can be used to set up an overall realization of approach spaces. The theory of approach spaces, a 

generalization of metric and topological spaces, is based on point-to-set distances rather than point-to-point distances. The 

most important motivation was to solve the problem of an infinite product of metric spaces. Another reason for introducing 

approach spaces is to unify metric, uniformity, topological, and convergence theories. Barn and Qasim [5, 6] characterized 

local distance-approach spaces, Approach spaces", and gauge-approach spaces and compared them with usual , approach 

spaces. Colebuders, Sion,… etc [1] show that some considerable consequences on real valued contractions. Martinez-Moreno1, 

Rpld'an2, …etc[3] found definition the concept of fuzzy approach spaces as spaces generalization of fuzzy metric spaces and 

demonstrate some Properties of fuzzy approach. Gutierres, Hofmann [2] calculated the concept of completeness for approach 

spaces and calculated some properties in completeness approach spaces. Van Opdenbosch [4] set up new isomorphic 

characterizations of approach spaces, pre-approach spaces", convergence approach spaces", uniform gauge spaces, topological 

spaces", and convergence spaces, pretopological spaces", metric spaces, and spaces that are consistent. Baekeland and Lowen 

[7] institute the measures of Lindelof and separability in approach spaces. Lowen and Verwulgen [14] institute define 

Approach vector spaces. Lowen and Windels [10] defined an approach groups spaces, semi-group spaces, and uniformly 

convergent. Lowen [16] detail of this book approach theory completely" disband this by" presentation properly those two new" 

kinds of numerically" form spaces which are" wanted: approach spaces on the local level" and uniform gauge spaces" on the 

uniform" level.   

       Lowen and Sion [12, 13] introduced the definitions of some separation axioms in" the approach spaces and set up the 

correlation the axiom, the axiom, regular and completely regular and also calculated of normed linear spaces and from a 

normed real vector space (𝑋,‖ ‖),we a uniform approach structure on 𝑋."Lowen, Van Olmen, …etc "[17] introduced Functional 

Ideas and Topological Theories. Lowen and C. Van Olmen [11] explained some concepts and correlation in approach Theory. 

Lowen [15] studied the development of essential theory of approximation. Abbas and Hussein [9, 8] introduced topological 

approach space and found completion if the completeness is not satisfies. W. Li, Dexue Zhang [18] introduced the Smyth 

complete.         

     The goal of this paper is two - fold: first, we want to put approach group checking space in the proper perspective when 

approach vector spaces, and second, we want to use this topological approach structure, as we will call it, to create a canonical 

counterpart of the classical topological vector space. Both metric spaces and preorders are generalized in extended pseudo-

quasi metric spaces. 

         This paper is divided into six sections: In Section 1, weintroduces the research and Preliminaries with basic definitions. 

In Section 2, we  introduce new definition which is called β –distance and explains the relationship between metric space and - 

approach space; we proved that every metric space is -approach space but not the converse; and we proved that every 

symmetric - β -approach space is metric space. In Section 3, we demonstrated some properties of β -contractions. Section 4. 

We discuss convergent sequence in  β –approach sepace with new results. Section 5 introduced the definitions of -approach 
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group, -approach semi-group, -approach sub-group, and solved some examples in β -approach group, as well as introduced the 

definition of β -approach vector space and proved some examples in -approach vector space. Section 5 presented the 

definitions of topological vector space, -approach sub-space, and show that a new definition of convergent in -approach space, 

and sequentially - contraction 

Definition 1.1[13]:  Let 𝑋 be a non-empty set. A function 𝛿 ∶  𝑋 ×  2𝑋  →  [0,∞] is said to be distance on 𝑋 if it satisfies the 

conditions: 

(D1) ∀ 𝑚 ∈  𝑋: 𝛿(𝑚, {𝑚}) = 0, 
(𝐷2) ∀ 𝑚 ∈ 𝑋: 𝛿(𝑚, Ø) = ∞, 
(𝐷3) ∀ 𝑚 ∈  𝑋:  ∀ 𝐴, 𝐵 ∈ 2𝑋 ∶ 𝛿 (𝑚, 𝐴⋃𝐵) = min {𝛿(𝑚, 𝐴), 𝛿(𝑚, 𝐵)}, 
(𝐷4) ∀𝑚 ∈  𝑋: ∀ 𝐴 ∈ 2𝑋  , ∀𝜀 ∈  [0,∞]: 𝛿(𝑚, 𝐴) ≤  𝛿(𝑚, 𝐴(𝜀)) + 𝜀. 
A pair (X, δ) is called an approach space and denoted by app. spaces. 

 

2. Structre of β-Approach space 

We benefit from the definition of distance in Lowen’s paper in 1987 for a new definition: 

Definition 2.1: Let 𝑋 be a non-empty set. A function β: 2𝑋× 2𝑋 →[0 , ∞] is called β- distance on 𝑋 if it is satisfies the 

conditions:  

1) For all 𝑀,𝑁 ∈ 2𝑋, 𝑖𝑓 𝑀 ∩ 𝑁 ≠ ∅,  then 𝛽 (𝑀,𝑁)  = 0  
2) For all 𝑀,𝑁, 𝑃 ∈ 2𝑋, 𝛽 (𝑀,𝑁 ∪  𝑃)  =  𝑚𝑖𝑛 {𝛽 (𝑀,𝑁), 𝛽 (𝑀, 𝑃)}  

3) 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑀, 𝑁 ∈  2𝑋 , 𝑖𝑓 𝑀 =  ∅ 𝑜𝑟  𝑁 = ∅ , 𝑡ℎ𝑒𝑛 𝛽 (𝑀,𝑁)  = ∞     
4) 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑀, 𝑁 ∈  2𝑋, ɛ ∈  [0 ∞]  𝑎𝑛𝑑 ɤ  ∈  [0 , ∞]  
  𝛽(𝑀 , 𝑁)  ≤  𝛽(𝑀ɛ , 𝑁 ɛ )  +  ɛ +  ɤ,    𝑤ℎ𝑒𝑟𝑒 𝑀ɛ   =  {𝑥 ∈ 𝑋: 𝛽 ({𝑥} , 𝑀 )  ≤  ɛ }.  
A pair (𝑋, β) where β is a distance is called β-approach space and denoted by 

  β-app. space.  

Example 2.2:  The discrete distance approach structure β on 𝑋 is given as for all 𝑥 ∈  𝑋 and 

 𝑀 ⊆  𝑋 and    𝑁 ⊆  𝑋 : by      β (𝑀, 𝑁)= {
0                                        𝑥 ∈ M ∩  N
∞                                 𝑥 ∉ 𝑀 𝑜𝑟 𝑥 ∉ 𝑁

  

Proof:     

1)  If  𝑥 ∈  𝑀 and 𝑥 ∈  𝑁 that is  𝑀 ∩  𝑁 ≠ ∅, then 𝑥 ∈  𝑀 ∩  𝑁. 

So  𝛽 (𝑀,𝑁)  =  0, 𝛽 ({𝑥}, 𝑁)  =  0 and 𝛽 ({𝑥},𝑀)  =  0  

2) let 𝑀 , 𝑁 ∈ 2˟ .Such that  If 𝑀 = ∅ or 𝑁 = ∅ ⇒ 𝑥 ∉ 𝑀 or  𝑥 ∉ 𝑁 ⇒  β (𝑀 , 𝑁) = ∞  

  If 𝑥 ∉ 𝑀 ⇒  β (∅,𝑁) = ∞ or 𝑥 ∉ 𝑁 ⇒  β (𝑀, ∅) = ∞    

3) For all 𝑀,𝑁, 𝑃 ∈ 2˟, 𝑀 ⊆  𝑁, 𝑥 ∈ (𝑀 ∩ 𝑁) ∪ ( 𝑀 ∩  𝑃) ⇒𝑥 ∈  𝑀 ∩ ( 𝑁 ∪  𝑃)  

β (𝑀 , 𝑁 ∪  𝑃) = 0= 𝑚𝑖𝑛{0,0} =𝑚𝑖𝑛 { β (𝑀,𝑁) , β(𝑀,𝑃)} 

If 𝑥 ∉ 𝑀 𝑜𝑟 𝑥 ∉  𝑁 ∪  𝑃 ⇒  𝛽 (𝑀 , 𝑁 ∪  𝑃) =  ∞ 

                 𝛽 (𝑀 , 𝑁 ∪  𝑃) = 𝑚𝑖𝑛{ ∞,∞}   

                                                  =𝑚𝑖𝑛 {β (𝑀,𝑁), β (𝑀,𝑃)}  

4) For all 𝑀 , 𝑁 ∈ 2˟ , for all ɛ ∈ [0 , ∞] , ɛ ∈ [0 , ∞] 

       Where M
ɛ
 = {𝑥 ∈  𝑋: 𝛽 ( {𝑋} , 𝑀)  ≤  ɛ}  

If 𝑥 ∈  𝑀, 𝑥 ∈  𝑁 𝑡ℎ𝑒𝑛 𝑥 ∈  𝑀 ∩  𝑁 ⇒ 𝑀 ∩  𝑁 ≠ ∅  𝑡ℎ𝑒𝑛  β (𝑀 , 𝑁) = 0 

Then β (𝑀,𝑁) ≤ β (M
ɛ
 , N

ɛ
) +ɛ  + Ɣ  

If 𝑥 ∉ 𝑀 𝑜𝑟 𝑥 ∉ 𝑁 𝑡ℎ𝑒𝑛  𝑥 ∉ 𝑀ɛ 𝑜𝑟 𝑥 ∉ 𝑁Ɣ ⇒ 𝛽 (𝑀,𝑁) =  ∞ 𝑡ℎ𝑒𝑛 𝛽 (𝑀ɛ , 𝑁Ɣ )  =  ∞  

𝛽 (𝑀,𝑁)  ≤  𝛽 (𝑀ɛ , 𝑁Ɣ )  + ɛ  +  Ɣ =  ∞   
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Proposition 2.3: Let 𝑋 be non-empty set and 𝛽 ∶  2𝑋 × 2𝑋  → [0 ,∞] is distance on 𝑋. Then the following hold:  

1) for all 𝑀,𝑁∈ 2𝑋, 𝑥 ∈  𝑀 then 𝛽 (𝑀,𝑁)  =  0  
2) for all 𝑀 , 𝑁 ∈ 2𝑋,  for all 𝑥 ∈  𝑀 , 𝑀 ⊂ 𝑁, then 𝛽(Ѧ , 𝑁 ) ≤ β(Ѧ ,𝑀 )  
3) For all Mi ∈ 2𝑋, 𝜓 is set , 𝛽 [Ѧ , 𝑈 𝑀𝑖 ] = sup { 𝑚𝑖𝑛 𝑀𝑖∈𝜓

𝑀 ∈ 2𝑋

 { β (Ѧ, Mi ) }   

             Mi ∈  ,for all 𝑀 , 𝑁 ∈2𝑋, Ѧ ⊂  𝑀  

4) β (𝑀,Ѧ ) ≤  𝛽 (Ѧɛ
 , N

ɛ
) +  { 𝑠𝑢𝑝𝑏∈𝑁   𝑁 ∈2𝑋   𝑠𝑢𝑝𝑐∈𝑀  𝑀∈2𝑋   β ({b} , {c}) } 

Proof:  

1)For all 𝑀 , 𝑁 ∈ 2𝑋 , If 𝑥 ∈  𝑀 and 𝑥 ∈ 𝑁 then 𝑥 ∈  𝑀 ∩  𝑁 ⇒ 𝛽 (𝑀 , 𝑁)  = 0 

If 𝑥 ∈  𝑀 and 𝑥 ∉  𝑁 ⇒  𝑥 ∈ 𝑀 ∩  𝑁ʿ  ⇒  𝛽(𝑀,𝑁ʿ) = 0  ⇒  𝛽(𝑀, {𝑥}) = 0 ,𝑥 ∈  𝑁ʿ  

Similarly, 𝑥 ∉  𝑀 and 𝑥 ∈  𝑁.  

2) Let 𝑀, 𝑁 ∈ 2𝑋, 𝑀 ⊆  𝑁 , β (Ѧ,𝑁) = β (Ѧ,𝑀 ∪  𝑁)  = min {β (Ѧ, M), β (Ѧ, N)}  ≤ β (Ѧ, M)  

3) let 𝜓 ∈ 2𝑋, 𝜓 = {M1, …, M n} , 𝑁 ∈ 2𝑋 , 𝜓 is finite  

   β (N, ∪𝑀𝑖)= 𝑚𝑖𝑛 

𝛽 (𝑁,𝑀1) ,
𝛽 (𝑁,𝑀1 ∪  𝑀2 ∪ … )   =   𝑚𝑖𝑛( 𝛽 (𝑁,𝑀1) , 𝛽 (𝑁,𝑀2 ∪  𝑀3 ∪ … )      =    𝑚𝑖𝑛( 𝛽 (𝑁,𝑀1) , 𝑚𝑖𝑛 𝛽 (𝑁,𝑀2) , 𝛽 ( 𝑁,𝑀3 ∪
 … ) 

 =  …   =  𝑚𝑖𝑛 {(𝛽 (𝑁,𝑀1), … , 𝛽 (𝑁,𝑀𝑛), . }  =  𝑚𝑖𝑛
𝑀∈𝜓

 𝛽 (𝑁,𝑀)  

4) 𝑙𝑒𝑡 𝑀, Ѧ ∈  2𝑋 , ɛ =  𝑖𝑛𝑓 { ɛ ∈  [0 ∞]  , 𝑁 ⊂  Ѧ ɛ }, 

     𝛽 (𝑀, Ѧ)  ≤  𝛽 (𝑀,𝑁)  + 𝑠𝑢𝑝
𝑆∈ 2𝑋

 𝑠𝑢𝑝
Ѧ∈ 2𝑋

𝛽 (𝑆, Ѧ) 

     𝛽(𝑀, Ѧ)  ≤  𝛽 (𝑀, Ѧ ɛ) +  𝛽 (Ѧ ɛ, 𝑁)  +  ɛ  +  𝛾   ≤  𝛽 (𝑀 ɛ, 𝑁 ɛ)  +  ɛ +  𝛾    

        ≤  𝛽 (𝑀,𝑁)  + 𝑠𝑢𝑝 𝑠𝑢𝑝
𝑆 ⊆ 𝑁 

 𝛽 (𝑆, Ѧ) 

Proposition 2.4: Every metric space is β – app. space.  

 Proof: Let  (𝑋, 𝑑) be a metric space, we define: 𝛽𝑑: 2𝑋⨯ 2𝑋 → [ 0, ∞] by  

𝛽𝑑(𝑀, 𝑁)= 

{
 
 

 
 ∞                        ,   𝑀 =  ∅ 𝑜𝑟 𝑁 =  ∅

 
 

𝑖𝑛𝑓
𝑥∈𝑀 
 

 𝑖𝑛𝑓
𝑦∈ 𝑁

𝑑(𝑥, 𝑦), 𝑀 ≠ ∅ 𝑎𝑛𝑑 𝑁 ≠ ∅
 

To prove 𝛽𝑑 is distance on 𝑋  

 1) If 𝑀= ∅ or 𝑁 = ∅ then 𝛽𝑑 (𝑀, 𝑁) = ∞  

 2)  For all 𝑀, 𝑁 ∈ 2˟, 𝑀 ∩  𝑁 ≠ ∅ ⇒ x ∈ 𝑀 and 𝑥 ∈ 𝑁  

              𝛽𝑑 (𝑀, 𝑁) = 𝑖𝑛𝑓
𝑥∈𝑀 
 

 𝑖𝑛𝑓
𝑥∈ 𝑁

𝑑(𝑥, 𝑥) = 𝑖𝑛𝑓
𝑥∈𝑀 
 

{0}=0 

3) For all 𝑀, 𝑁, 𝑃∈ 2˟  

𝛽𝑑 (𝑀 , 𝑁 U 𝑃) = 𝑖𝑛𝑓
𝑥∈𝑀 
 

 𝑖𝑛𝑓
𝑦∈ 𝑁𝑈 𝑃

 𝑑 (𝑥, 𝑦)  =   inf {
𝑥∈𝑀 

min {
 
 

  

 

 𝑖𝑛𝑓
𝑦∈ 𝑁

d (𝑥, y) ,  𝑖𝑛𝑓
𝑦∈ 𝑃

d (𝑥, y) }}  

  =min  {
𝑥∈𝑀 

𝑖𝑛𝑓
 
 

 𝑖𝑛𝑓
𝑦∈ 𝑁

𝑑 (𝑥, 𝑦) , 𝑖𝑛𝑓
𝑥∈𝑀 

𝑖𝑛𝑓
𝑦∈ 𝑃
 

 𝑑(𝑥, 𝑦)}  = min {𝛽𝑑 (𝑀, 𝑁), 𝛽𝑑 (𝑀, 𝑃)}   

If 𝑀 = ∅ or 𝑁 = ∅ ⇒ 𝛽𝑑  (𝑀,𝑁 𝑈 𝑃) =∞    
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If 𝑀 = ∅ ⇒ 𝛽𝑑  (𝑀,𝑁 𝑈 𝑃) =∞ = 𝑚𝑖𝑛 {∞,∞} = 𝑚𝑖𝑛 {𝛽𝑑  (𝑀,𝑁), 𝛽𝑑 (𝑁, 𝑃)}    

If 𝑁 = ∅ ⇒ 𝛽𝑑  (𝑀,𝑁 𝑈 𝑃) =∞ = 𝑚𝑖𝑛 {∞,∞} =  𝑚𝑖𝑛 {𝛽𝑑  (𝑀,𝑁), 𝛽𝑑  (𝑁, 𝑃)}   

4)  For all 𝑀,𝑁 ∈ 2˟  , for all ɛ ∈ [o , ∞] , where M
ɛ
 = {𝑥∈ X | 𝛽𝑑 ( {𝑥} , 𝑀) ≤ ɛ }  

     𝛽𝑑 (𝑀 , 𝑁 ) = 𝑖𝑛𝑓
𝑥∈𝑁 
 

 𝑖𝑛𝑓
𝑎∈ 𝑀

𝑑 (𝑥, 𝑎)   ≤ 𝑖𝑛𝑓
𝑥∈𝑁
 

 𝑖𝑛𝑓
𝑎∈ 𝑀

d (x, y)  + ɛ + 𝛾  ≤ 𝑖𝑛𝑓
𝑥∈𝑁ɛ
 

 𝑖𝑛𝑓
𝑎∈ 𝑀ɛ

d (x, y) + ɛ + 𝛾 

                      ≤ 𝛽𝑑 (M 
ɛ
, N 

ɛ
 )  +ɛ + 𝛾  

Then (𝑋,  𝛽𝑑) is 𝛽 −app. space. A pair (𝑋,  𝛽𝑑) is said to be metric approach space.   

  

Example 2.5:For all 𝑀,𝑁 ∈ 2[0,∞]  

 β (𝑀,𝑁)={

𝑚𝑎𝑥{ 𝑠𝑢𝑝
𝑁∈ 2[0,∞] 

𝑁 − 𝑠𝑢𝑝𝑀∈ 2[0,∞] 𝑀, 0}                               𝑖𝑓 𝑀 ≠ ∅ 𝑎𝑛𝑑 𝑁 ≠ ∅
 

∞                                                                     𝑖𝑓 𝑀 = ∅ 𝑜𝑟 𝑁 = ∅ 
  

Proof:  

1) For all 𝑀,𝑁 ∈ 2
[0, ∞]

  if  𝑀 ≠ ∅ 𝑎𝑛𝑑 𝑁 ≠ ∅ ,𝑀 ∩ 𝑁 ≠ ∅  
⇒ 𝑥 ∈ 𝑀 𝑎𝑛𝑑 𝑥 ∈ 𝑁  

 β (𝑀,𝑁)= 𝑚𝑎𝑥{ 𝑠𝑢𝑝
𝑁∈ 2[0,∞] 
 𝑥∈𝑁  

 {𝑥} − 𝑠𝑢𝑝𝑀∈ 2[0,∞]
𝑥∈𝑀 

{𝑥},0} = 0    o𝑟 𝑠𝑢𝑝𝑀 > 𝑠𝑢𝑝𝑁  ⇒ 𝛽 (𝑀,𝑁) = 0 

2)If 𝑀 = ∅ 𝑜𝑟 𝑁 = ∅   

if M=∅,  𝛽 (𝑀,𝑁) = 𝑚𝑎𝑥{ 𝑠𝑢𝑝
𝑁∈ 2[0,∞]    

𝑁 − 𝑠𝑢𝑝∅∈ 2[0,∞]    
∅, 0} =  ∞  =  𝑚𝑎𝑥{∞ ,0} = ∞. 

If 𝑁 = ∅,  𝛽 (𝑀,𝑁) = 𝑚𝑎𝑥{ 𝑠𝑢𝑝
∅∈ 2[0,∞]    

∅ − 𝑠𝑢𝑝𝑀∈ 2[0,∞]    
𝑀, 0} = ∞  =𝑚𝑎𝑥{0,∞ } = ∞. 

 Then, 𝛽 (𝑀,𝑁)  = ∞.  

2) For all 𝑀,𝑁, 𝑃 ∈ 2[0,∞]  ,if  𝑀∩(𝑁𝑈 𝑃) ≠ ∅ 

β (𝑀,𝑁 𝑈 𝑃) = 𝑚𝑎𝑥{ 𝑠𝑢𝑝
𝑥∈𝑁 𝑈 𝑃

 𝑁𝑈 𝑃 − 𝑠𝑢𝑝𝑥∈𝑀𝑀, 0}  = 0                        

                       

 =𝑚𝑖𝑛{𝑚𝑎𝑥{𝑠𝑢𝑝
𝑥∈𝑁 

 𝑁 −𝑠𝑢𝑝
𝑥∈𝑀

𝑀, 0},𝑚𝑎𝑥{𝑠𝑢𝑝
𝑥∈𝑃 

 𝑃 − 𝑠𝑢𝑝𝑥∈𝑀𝑀, 0}}   =𝑚𝑖𝑛 {𝛽 (𝑀,𝑁), 𝛽 (𝑀, 𝑃)}  

If  𝑀 = ∅ 𝑜𝑟 𝑁 = ∅  

 If 𝑀 = ∅, β (𝑀,𝑁 𝑈 𝑃) = 

 
𝑚𝑎𝑥{ 𝑠𝑢𝑝

𝑥∈𝑁 𝑈 𝑃
 𝑁𝑈 𝑃 − 𝑠𝑢𝑝𝑥∈∅ 𝑀, 0}  = ∞                          

 

      =𝑚𝑖𝑛{𝑚𝑎𝑥{𝑠𝑢𝑝
𝑥∈𝑁 

 𝑁 −𝑠𝑢𝑝
𝑥∈∅

𝑀, 0},𝑚𝑎𝑥{𝑠𝑢𝑝
𝑥∈𝑃 

 𝑃 − 𝑠𝑢𝑝𝑥∈∅𝑀, 0} =  min {β (𝑀,𝑁), β (𝑀,𝑃) } 

 

If 𝑁 = ∅,  β (𝑀,𝑁 𝑈 𝑃) = 

  
𝑚𝑎𝑥{ 𝑠𝑢𝑝

𝑥∈∅ 𝑈 𝑃
 𝑁𝑈 𝑃 − 𝑠𝑢𝑝𝑥∈𝑀 𝑀, 0}  = ∞                          

  =

 

 

 
 min {𝑚𝑎𝑥{𝑠𝑢𝑝

𝑥∈∅ 
 𝑁 − 𝑠𝑢𝑝𝑥∈𝑀𝑀, 0},𝑚𝑎𝑥{𝑠𝑢𝑝

𝑥∈𝑃 
 𝑃 − 𝑠𝑢𝑝𝑥∈𝑀𝑀, 0}} = 𝑚𝑖𝑛 {∞ ,∞} 

  = 𝑚𝑖𝑛 β (𝑀,𝑁), β (𝑀,𝑃)  

3) For all 𝑀,𝑁 ∈ 2[0,∞]and for all ɛ ∈ [0,∞], where M
ɛ
 = {𝑥 ∈ 𝑋 | β ( {𝑥} ,𝑀) ≤ ɛ }  

 If  𝑀 ≠ ∅ 𝑎𝑛𝑑 𝑁 ≠ ∅ ⇒ 𝑀 ∩ 𝑁 ≠ ∅ , x∈ M and x ∈ 𝑁  

β (𝑀,𝑁) =

  
max {𝑠𝑢𝑝

𝑥∈𝑁

{𝑥} − Sup𝑎∈𝑀{𝑎} , 0}  ≤  

  
max {𝑠𝑢𝑝

𝑥∈𝑁
 {𝑥} − sup𝑎∈𝑀 {𝑎}, 0} + ɛ +  Ɣ   

≤ β (M
ɛ
 , N

ɛ
) +ɛ  + Ɣ . Thus β (𝑀,𝑁) is β –app. space. 

 𝑑𝛽(𝑥,𝑦)= β({𝑥},{𝑦})≠β({𝑦},{𝑥})=𝑑𝛽(𝑦, 𝑥). Therefore 𝑋 is not metric space  



    

         Journal of Iraqi Al-Khwarizmi (JIKh)   Volume:6  Issue:1 Year: 2022   pages: 26-38   
 

30 
 

Example 2.6 : Define βḜ (𝑀,𝑁) = {

0             𝑀 ∩ 𝑁 ≠ ∅ ,𝑀,𝑁 unbounded 
∞                𝑀 ∩ 𝑁 =  ∅ ,𝑀, 𝑁 bounded

𝑖𝑛𝑓  𝑖𝑛𝑓𝑦∈𝑁 |𝑥 − 𝑎|       𝑀 < ∞ ,     𝑁 < ∞
  

Ḝ =[0, ∞] 

Proof:  it is clear ( 𝑋,β) is an β-app-space. 

Definition 2.7:  Let (𝑋,β) be A β – app- space. We say that (𝑋,β)  is symmetric if  β( 𝑀,𝑁) = β( 𝑁,𝑀) for all 𝑀,𝑁 ∈ 2𝑋.  

Proposition 2.8 :Every symmetric β – app. space is metric space.  

Proof: Let (𝑋, β) is symmetric β – app. space.  

  𝑑𝛽 (𝑥, 𝑦) =β( {𝑥}, {𝑦} )  

It is clear (𝑋, β) is metric space generated by β – app- space. 

Proposition 2.9: Let (𝑋, β1), (𝑋, β2) be 𝛽 −app. space, then (𝑋 ×  𝑋, β) is 𝛽 −app- space. Where:  

β ((𝑀 × 𝑁), (𝑆 × 𝑇)) = 𝑚𝑖𝑛 {𝛽1(М, 𝑆), 𝛽2 (𝑁, 𝑇)}, for all 𝑆, 𝑇 ∈ 2𝑋  , for all 𝑀,𝑁 ∈ 2𝑋  

Proof:  

1) for all 𝑥, 𝑦 ∈ 𝑋 and  for all 𝑆, 𝑇 ∈ 2˟ , for all 𝑀,𝑁 ∈ 2˟  

( 𝑀 × 𝑁)  ∩  ( 𝑆 × 𝑇) ⇒ (𝑥, 𝑦) ∈( 𝑀 × 𝑁) and (𝑥, 𝑦) ∈( 𝑆 × 𝑇).  

Then,  x ∈ 𝑀 ∩ 𝑆 𝑎𝑛𝑑 𝑦 ∈ 𝑁 ∩ 𝑇 

 

 β (𝑀 × 𝑁, 𝑆 × 𝑇) = 𝑚𝑖𝑛 {𝛽1(М, 𝑆), 𝛽2 (𝑁, 𝑇)},   = min {(0, 0)} = 0 

2) If   𝑆  = ∅  or  𝑇 = ∅  

β ( (𝑀 ×  𝑁), (𝑆 ×  𝑇) = 𝛽 ( (𝑀 ×  𝑁) , ∅ × ∅ )  = 𝑚𝑖𝑛 {𝛽1 (𝑀, ∅ ), 𝛽2 (𝑁, ∅)}  

                                 = min { ∞,∞} = ∞  

3) 𝛽( (𝑀 × 𝑁) , ( 𝑆1 × 𝑆2 ∪ 𝑇1 × 𝑇2)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑆1 , 𝑆2  ∈  2
𝑋𝑎𝑛𝑑𝑇1, 𝑇2  ∈ 2

𝑋  

𝛽( 𝑀 × 𝑁 , 𝑆1  ∪  𝑇1 × 𝑆2 ∪ 𝑇2)  =  𝑚𝑖𝑛 {𝛽1(𝑀, 𝑆1  ∪  𝑇1), 𝛽1 (𝑁 , 𝑆2 ∪ 𝑇2)}  

=    𝑚𝑖𝑛 {𝑚𝑖𝑛{𝛽1(𝑀, 𝑆1), 𝛽1 (𝑀, 𝑇1)},𝑚𝑖𝑛 {𝛽2 (𝑁, 𝑆2), 𝛽2(𝑁, 𝑇2)}}  

=  𝑚𝑖𝑛 {𝛽1(𝑀, 𝑆1), 𝛽2 (𝑁, 𝑆2)},𝑚𝑖𝑛 {𝛽1 (𝑀, 𝑇1), 𝛽2(𝑁, 𝑇2)} 

=  𝑚𝑖𝑛 {(𝛽 ( 𝑀 ×  𝑁 , (𝑆1 × 𝑆2) , 𝛽( 𝑀 ×  𝑁 , 𝑇1 × 𝑇2 )}  

4) 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝑋 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑀 , 𝑁 , 𝑆 , 𝑇 ∈  2𝑋  𝑓𝑜𝑟 𝑎𝑙𝑙 ɛ ∈  [0 , ∞]  

𝛽 (𝑀 ×  𝑁 , 𝑆 ×  𝑇)  =  𝑚𝑖𝑛 { 𝛽1(𝑀, 𝑆), 𝛽2 (𝑁, 𝑇)} ≤  𝑚𝑖𝑛 { 𝛽1 (𝑀, 𝑆
ɛ)  +  ɛ + 𝛾   , 𝛽2 (𝑁, 𝑇 Ɣ )  +   ɛ +  𝛾  }  

  =  𝑚𝑖𝑛 { 𝛽1(𝑀, 𝑆
ɛ), 𝛽2 (𝑁, 𝑇

ɛ)} +   ɛ +  𝛾  =   𝛽 ((𝑀 ×  𝑁), (𝑆ɛ × 𝑇Ɣ )) +  ɛ +  𝛾. 

Thus (𝑋 ×  𝑋 , β ) is β- app. space. 

Proposition 2.10: Let (𝑋i, βi), i ∈ 𝐼 be family of 𝛽 −app- space. Define β : 2∏𝑋𝑖  × 2∏𝑋𝑖     →[0,∞] as follows: 

β(∏ 𝑀𝑖 𝑖∈𝐼 , ∏  𝑁𝑖𝑖∈𝐼 ) =  𝑖𝑛𝑓
 ,𝑁𝑖∈2

∏𝑥𝑖  

 𝑖𝑛𝑓
𝑀𝑖∈ 2

∏𝑥𝑖

   𝛽(𝑀𝑖  , 𝑁𝑖)  for all 𝑀𝑖  , 𝑁𝑖 ∈ 2∏𝑥𝑖  ,   then (∏ 𝑀𝑖𝑖∈𝐼 , β)  is β-app. space.  

Proof:  

1) for all 𝑀𝑖  , 𝑁𝑖 ∈ 2
∏𝑥𝑖   

If    𝑀𝑖  ∩ 𝑁𝑖 ≠ ∅  ⇒ ( 𝑚1, 𝑚2, … ,𝑚𝑛) ∈ 𝑀𝑖   𝑎𝑛𝑑   ( 𝑚1, 𝑚2, … ,𝑚𝑛)  ∈  𝑁𝑖 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐼  

⇒( 𝑚1, 𝑚2, … ,𝑚𝑛)  ∈  𝑀𝑖  ∩ 𝑁𝑖 ⇒ ( 𝑚1, 𝑚2, … ,𝑚𝑛)   ∈  ∏ 𝑀𝑖  ,𝑖∈𝐼  and  

( 𝑚1, 𝑚2, … ,𝑚𝑛)   ∈ ∏  𝑁𝑖𝑖∈𝐼  , 
then β(∏ 𝑀𝑖  ,𝑖∈𝐼 ∏  𝑁𝑖𝑖∈𝐼 ) = 𝑖𝑛𝑓

 ,𝑁𝑖∈2
∏𝑥𝑖  

 𝑖𝑛𝑓
𝑀𝑖∈ 2

∏𝑥𝑖

  𝛽(𝑀𝑖  , 𝑁𝑖)    = 𝑖𝑛𝑓
 ,𝑁𝑖∈2

∏𝑥𝑖  

 𝑖𝑛𝑓
𝑀𝑖∈ 2

∏𝑥𝑖

{0} =0  

2)  β(∏ 𝑀𝑖  ,𝑖∈𝐼 ∏  𝑁𝑖 ∪ ∏ 𝑅𝑖𝑖∈𝐼  𝑖∈𝐼 )=  𝑖𝑛𝑓(𝑚𝑖)∈𝑀𝑖
  inf  (𝑚𝑖)∈ 𝑁𝑖∪𝑅𝑖

𝛽 (𝑀𝑖  , 𝑁𝑖 ∪ 𝑅𝑖)  

 =  min { 𝑖𝑛𝑓(𝑚𝑖)∈𝑀𝑖
  inf  (𝑚𝑖)∈ 𝑁𝑖

𝛽 (𝑀𝑖  , 𝑁𝑖) , 𝑖𝑛𝑓(𝑚𝑖)∈𝑀𝑖
  inf  (𝑚𝑖)∈ 𝑅𝑖

𝛽 (𝑀𝑖 , 𝑅𝑖) } 
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= min { 𝑖𝑛𝑓(𝑚𝑖)∈𝑀𝑖
  inf  (𝑚𝑖)∈ 𝑁𝑖 ,(𝑚𝑖)∈ 𝑅𝑖  

(𝛽 (𝑀𝑖  , 𝑁𝑖) ,  𝛽 (𝑀𝑖  , 𝑅𝑖) ) }  

=  min {β ( ∏ 𝑀𝑖  ,𝑖∈𝐼 ∏  𝑁𝑖𝑖∈𝐼 ) , 𝛽 ( ∏ 𝑀𝑖  ,𝑖∈𝐼 ∏  𝑅𝑖𝑖∈𝐼 )}  

 

3) If    𝑀𝑖 = ∅  or 𝑁𝑖 = ∅   ⇒ (𝑚𝑖)  ∉  𝑀𝑖  𝑜𝑟 (𝑚𝑖)  ∉ 𝑁𝑖      
If 𝑀𝑖 = ∅  ⇒  β(∏ 𝑀𝑖  ,𝑖∈𝐼 ∏  𝑁𝑖𝑖∈𝐼 ) = 𝑖𝑛𝑓(𝑚𝑖)∈ ∅ 

  𝑖𝑛𝑓  (𝑚𝑖)∈ 𝑁𝑖
   𝛽(𝑀𝑖  , 𝑁𝑖) =∞  

If 𝑁𝑖 = ∅  ⇒  β(∏ 𝑀𝑖  ,𝑖∈𝐼 ∏  𝑁𝑖𝑖∈𝐼 ) = 𝑖𝑛𝑓(𝑚𝑖)∈𝑀𝑖  
  𝑖𝑛𝑓  (𝑚𝑖)∈∅ 

   𝛽(𝑀𝑖  , 𝑁𝑖) =∞  

4) For all 𝑀𝑖  , 𝑁𝑖  ∈ 2∏𝑥𝑖  for all ɛ ∈ [o , ∞] and Ɣ∈ [o , ∞]  

 where M 
ɛ
={x∈ 𝑋: 𝛽( {𝑥},𝑀) ≤  ɛ} 

β(∏ 𝑀𝑖  ,𝑖∈𝐼 ∏  𝑁𝑖𝑖∈𝐼 ) = 𝑖𝑛𝑓(𝑚𝑖)∈𝑀𝑖  
  𝑖𝑛𝑓  (𝑚𝑖)∈ 𝑁𝑖

   𝛽(𝑀𝑖  , 𝑁𝑖)  

                                 ≤ 𝑖𝑛𝑓(𝑚𝑖)∈𝑀𝑖  
  𝑖𝑛𝑓  (𝑚𝑖)∈ 𝑁𝑖

   𝛽(𝑀𝑖
ɛ  , 𝑁𝑖

ɛ ) + ɛ +Ɣ  

                                 ≤ β (∏ 𝑀𝑖
ɛ 

𝑖∈𝐼   , ∏ 𝑁𝑖
ɛ  𝑖∈𝐼 )  +  ɛ + Ɣ   

 

Thus (∏ 𝑀𝑖𝑖∈𝐼 , β) is β- app. space. 

 

2.New Results of  β-Contractions on  β-Approach spaces 

Definition 3.1: Let (𝑋, β) and (𝑌, β) be β–app. space. The function  £ ∶ 𝑋 →  𝑌 is said to be β –contraction if βˊ(£ (𝑀) , £(𝑁)) 
≤   𝛽 ( 𝑀, 𝑁) , for all 𝑥 ∈  𝑋 and for all  𝑀, 𝑁 ∈ 2𝑋. 

Proposition 3.2: Let (𝑋, 𝛽) be 𝛽 –app. space and £: (𝑋, 𝛽)  →  (𝑋, 𝛽) then for all  𝑀 , 𝑁 ∈ 2𝑋   

1- I: (𝑋, 𝛽) → (𝑋, 𝛽) is β – contraction.  

2- The constant map is β- contraction.  

Proof: It is clear 

Proposition 3.3: Let (𝑋, 𝛽), (𝑋`, 𝛽`) and (𝑋``, 𝛽``) be 𝛽 –app.spaces. The function £: (𝑋, 𝛽) → (𝑋`, 𝛽`) 

    𝑔: (𝑋`, 𝛽`)  →  (𝑋``, 𝛽``) are β - contraction. Then 𝑔 𝑜𝑓: (𝑋, 𝛽)  →  (𝑋``, 𝛽``) is β – contraction.  

Proof: Let 𝑀,𝑁 ∈ 2𝑋    then β " (𝑔 𝑜 £ (𝑁), 𝑔 𝑜£(𝑀) ≤ βˈ ( £(𝑁), £(𝑀))  

since £ is β- contraction ,so βˈ (£(𝑁), £(𝑀)) ≤ β (𝑁,𝑀).   

Thus    β" (𝑔 𝑜 £(𝑁), 𝑔 𝑜 £(𝑀)) = 𝛽" (𝑔 ( £(𝑁), 𝑔 ( £(𝑀)  ≤ βˈ (£(𝑁), £(𝑀)) ≤ 𝛽 (𝑁,𝑀)  

𝑔 𝑜 £ is β- contraction. 

If the 𝛽 -distance is defined as a function in two sets, we can prove distance functional as follows:  

Proposition 3.4: Let (𝑋, 𝛽) be a 𝛽 −app. space.  For M ⊂ X the distance functional defined as: 

      βM: 𝑋 →  Ḝ = [0 , ∞]   , by: βM(𝑥) =  𝛽 ({𝑥},𝑀  ) is 𝛽-contraction. 

Proof:  We will prove βM is well define :  

𝑥1 =  𝑥2  then {𝑥1 }={𝑥1} and so  ({𝑥1 },𝑀)= ({𝑥2},𝑀).   Therefore 𝛽({𝑥1, 𝑀) =  𝛽({𝑥2, 𝑀)  

Thus βM ( 𝑥1) = βM ( 𝑥2) 

2) It is clear βM is 𝛽-contraction.      

Proposition 3.5 : Let (𝑋, 𝛽) and (𝑋`, β `) be 𝛽 –app. space and £:(𝑋, 𝛽) → (𝑋`, 𝛽`) is 𝛽- contraction. Then the restriction £ | Қ  

is the 𝛽- contraction for Қ ⊂ 𝑋.   

Proof: Suppose £: (𝑋, 𝛽) → (𝑋`, 𝛽`) is 𝛽- contraction and Қ ⊂ 𝑋.  

Define 𝑔: Қ →  𝑋` by 𝑔({𝑚})  =  £({𝑚}) for all 𝑚 ∈ Қ  

𝛽` (𝑔 {m}), 𝑔 (Ѧ)) = 𝛽` (£ ({𝑚}), £ (Ѧ)) ≤ 𝛽 ({𝑚}, Ѧ).    

Proposition 3.6: Let (𝑋i, βi) be a family of 𝛽 –app. spaces that any Қ ∈  𝐼 . Then, the projection 

 𝑝𝑟: Л 𝑥i → 𝑥i     is  β – contraction. 
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Proof:  Let  𝑥𝑖 ∈  𝑋𝑖 , 𝑀 ∈ 2˟ , Pr : Л 𝑥i → 𝑥i projection function .   

β'i (𝑃𝑟 (𝑥𝑖), 𝑃𝑟 (𝑀)) = β'i (𝑃𝑟 (x1, …, xi) , 𝑃𝑟 (𝑀i)) for  𝑘 ∈  𝐼  

β'i ((𝑥𝑖), (𝑀) ≤ (β1 ((𝑥1),𝑀1) × β2 ((𝑥2), 𝑀2) × … × βi((𝑥i),(𝑀i) =  ∏  𝑖 ∈ 𝐼 βi ( ∏  𝑖 ∈ 𝐼 𝑥i, ∏  𝑖 ∈ 𝐼  𝑀i)) 

  =βi (∏  𝑖 ∈ 𝐼 𝑥i , ∏  𝑖 ∈ 𝐼  𝑀i). Hence βi`(𝑃𝑟 (𝑥i), 𝑃𝑟 (𝑀) ) ≤ β (∏  𝑖 ∈ 𝐼 𝑥i, 𝑀). Then 𝑃𝑟 (𝑥) is β - contraction.  

Proposition 3.7:   Let £ : Ϣ → Ϣ` be   𝛽– contraction. Then, the map contraction £ 𝗑 IѴ: Ϣ 𝗑 Ѵ → Ϣ ` 𝗑 Ѵ is 𝛽– contraction.  

Proof: For all w ∊ Ϣ, v ∊ Ѵ and M ∊ 2
x 
  

𝛽′ 
(£ (Ϣ, Ѵ), £ (M, Ѵ))) = 𝛽′ 

(£{w}) 𝗑 IѴ, £ ({m}) 𝗑 IѴ = 𝛽′ 
((£{w} 𝗑Ѵ, £ (M) 𝗑 Ѵ)                                             

= min 𝛽′ ((£{w}), £ (M))), 𝛽″ (Ѵ, Ѵ)} ≤ min {𝛽 ({w}, M), 𝛽″ (Ѵ, Ѵ)}      

    = 𝛽 (({w}, Ѵ), (M, Ѵ)). So  ′ ((£ ({w}, Ѵ), £ (M, Ѵ)) ≤ 𝛽 ({w}, Ѵ), (M, Ѵ)). Thus £ 𝗑 IѴ is 𝛽- contraction. 

 

4. Convergent Results in  β-Approach spaces. 
 

In this section, we define the convergent of sequence in  β –Approach space by start the following definition:   

Definition 4.1: Let (𝑋, 𝑑) be a metric space, then a sequence{ 𝑥𝑛}𝑛=1
∞  in 𝑋 is said to be a right Cauchy sequence if for all ɛ  > 0 

 there exists k ∈ Z
+
 such that  

d( xm , xn) > ɛ for all m, n ≤ 𝑁 ,m≥ n . Left Cauchy sequence if for all ɛ  > 0    there exists k ∈ Z
+
 such that d(xn ,xm) > ɛ for all m 

,n ≤ 𝑁 ,n  ≥ m .  If a sequence is left and right Cauchy is called Cauchy sequence. 

 Definition 4.2: A set 𝑀 ∈ 2𝑋   is said to be a cluster point in an approach space (𝑋, β) if there exists disjoint sequence { 

Ѧ𝑛}𝑛=1
∞  in 𝑋 such that inf𝑥∈𝑀

𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛  },𝑀) 
 = 0,  which is written by 

{ Ѧ𝑛}𝑛=1
∞   → 𝑀. We denoted the set of all cluster point in approach space Ґ(𝑋) .  

Definition 4.3: A sequence { Ѧ𝑛}𝑛=1
∞  in 𝑋  is said to be Cauchy sequence in approach space 𝛽 − Cauchy if for every cluster 

point 𝑀 , lim𝑛→∞  inf𝑥∈𝑀
𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛 }, 𝑀) 
  =0  sequence{ Ѧ𝑛}𝑛=1

∞  in 𝑋 is said to be β- convergent sequence in approach space if 

there exist 𝑥 ∈ 𝑋 for all  

𝑀 ∈  Ґ(𝑋)  ,   𝛽( {Ѧ𝑛 }, 𝑀) 
  = 0. 

Proposition 4.4: Let (𝑋, β) be β-app. space, then the following are equivalent:   

1) β- Convergent sequence in β-app. space.  

2) lim𝑛→∞  𝑖𝑛𝑓𝑥∈𝑀
𝑥𝑖∈Ѧ𝑖

 𝛽( Ѧ𝑛, 𝑀) 
 =0 and lim𝑛→∞  𝑠𝑢𝑝𝑥∈𝑀

𝑥𝑖∈Ѧ𝑖

 𝛽( Ѧ𝑛 , 𝑀) 
 =0  

Proof: Let  { Ѧ𝑛}𝑛=1
∞  be disjoint β- convergent sequence in approach space.  

 There exist 𝑥 ∈  𝑋 for all 𝑀 ∈ Ґ(𝑋) :     𝛽({ Ѧ𝑛},𝑀) 
 =0  

For all 𝑀 ∈  Ґ(𝑋) ∶  
 
 𝑖𝑛𝑓𝑥∈𝑀

𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛},𝑀) 
 =0 and   sup𝑥∈𝑀  𝛽({ Ѧ𝑛},𝑀) 

 =0  

For all 𝑀 ∈  Ґ(𝑋) ∶  
 
𝑙𝑖𝑚𝑛→∞  𝑖𝑛𝑓𝑥∈𝑀

𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛},𝑀) 
 = 0   

And lim𝑛→∞  𝑠𝑢𝑝𝑥∈𝑀
𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛},𝑀) 
 =0  

Conversely, suppose the condition (2) is true.   𝑙𝑖𝑚𝑛→∞  𝑖𝑛𝑓 𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

 𝛽({ 𝑥𝑛},𝑀) 
 = 0   And lim𝑛→∞  𝑠𝑢𝑝𝑥∈𝑀

𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛},𝑀) 
 =0  

Then 𝑀 is cluster point, that is    𝑖𝑛𝑓𝑥∈𝑀
𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛},𝑀) 
 =0  

Then there exist 𝑥 ∈ 𝑋 for all 𝑀  ∈ Ґ(𝑋) ∶    𝛽({ Ѧ𝑛},𝑀) 
 =0  

Thus { Ѧ𝑛}𝑛=1
∞  be β- convergent sequence in β- app. space. 

Remark 4.5: Every β- convergent sequence is 𝛽 − Cauchy ( Cauchy β-app. space ). 

Proposition 4.6: If (𝑋, β) is β –app. Space then following are equivalent:  

1) { Ѧ𝑛}𝑛=1
∞  is β- convergent sequence in 𝛽 –app. space. 

2) 𝑠𝑢𝑝𝑀 𝜖 Ґ(𝑋)  
 
 𝑖𝑛𝑓𝑥∈𝑀

𝑥𝑖∈Ѧ𝑖

 𝑑𝛽({ Ѧ𝑛}, {𝑥}) 
 =0  

Proof: Suppose that { Ѧ𝑛}𝑛=1
∞  is disjoint β- convergent sequence in 𝛽 -app. space. There exist 𝑥 ∈  𝑋  for all   

𝑀 ∈ Ґ(𝑋) :    𝛽({ Ѧ𝑛},𝑀) 
 =0 

And    𝑖𝑛𝑓𝑥∈𝑀
𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛},𝑀) 
 =0,  then  𝑙𝑖𝑚𝑛→∞  𝑖𝑛𝑓𝑥∈𝑀

𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛},𝑀) 
 = 0  
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And   𝑠𝑢𝑝𝑥∈𝑀
𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛},𝑀) = 
 0 𝑡ℎ𝑎𝑡 𝑖𝑠 lim

𝑛→∞
 𝑠𝑢𝑝𝑥∈𝑀

𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛},𝑀) 
 =0  

Then   𝑠𝑢𝑝𝑀 ∈ Ґ(𝑋)  
 
 𝑖𝑛𝑓𝑥∈𝑀

𝑥𝑖∈Ѧ𝑖

 𝑑𝛽({ Ѧ𝑛}, {𝑥}) 
 =0  

Conversely, it is clear.  

 

Proposition 4.7: If (𝑋, 𝛽𝑑) is approach metric space and {𝐴𝑛}𝑛=1
∞  be disjoint  sequence in 𝑋, then it is Cauchy sequence in 

(𝑋, 𝑑) if and only if is  β- Cauchy sequence in (𝑋, 𝛽𝑑) . 

Proof:  

Let {Ѧ𝑛}𝑛=1
∞  be Cauchy sequence in (𝑋, 𝛽𝑑) , then we have that   𝑖𝑛𝑓𝑥∈𝑀

𝑥𝑖∈Ѧ𝑖

 𝛽({Ѧ𝑛  },𝑀) 
 = 0 

 

   𝑖𝑛𝑓𝑥∈𝑀
𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛}, {Ѧ𝑚}) 
 =    𝑖𝑛𝑓𝑥∈𝑀

𝑥𝑖∈Ѧ𝑖

  𝑖𝑛𝑓Ѧ𝑚⊂𝑀
Ѧ𝑛⊂𝑀

 𝛽({ Ѧ𝑛}, {Ѧ𝑚}) 
 =0  

That is 𝑑 ({ Ѧ𝑛}, {Ѧ𝑚}) 
 =0  

Then {Ѧ𝑛}𝑛=1
∞   is left Cauchy sequence. 

Also   𝑖𝑛𝑓Ѧ𝑚⊂𝑀
Ѧ𝑛⊂𝑀

 𝛽({ Ѧ𝑚}, {Ѧ𝑛}) 
 =    𝑖𝑛𝑓𝑥∈𝑀

𝑥𝑖∈Ѧ𝑖

   𝑖𝑛𝑓Ѧ𝑚⊂𝑀
Ѧ𝑛⊂𝑀

 𝛽({ Ѧ𝑚}, {Ѧ𝑛}) 
 =0  

That is 𝑑 ({ Ѧ𝑚}, {Ѧ𝑛}) 
 =0. Then {Ѧ𝑛}𝑛=1

∞  is right Cauchy  sequence. 

Thus {Ѧ𝑛}𝑛=1
∞  is Cauchy  sequence in (𝑋, 𝑑). 

Conversely, if  {Ѧ𝑛}𝑛=1
∞  is Cauchy  sequence in (𝑋, 𝑑). 

Then it is left and right Cauchy sequence, for all ɛ<0, there exists k∈ Z
+
 such that 𝑑 ({ Ѧ𝑚}, {Ѧ𝑛}) 

 < ɛ , for all m, n ≤ N ,m ≥

n  and for all  ɛ < 0  there exists 𝑘 ∈  𝑍 + such that 𝑑 ({ Ѧ𝑛}, {Ѧ𝑚}) 
 < ɛ , for all m, n ≤ N , n ≥  m  

   𝑖𝑛𝑓𝐴𝑛⊂𝑀
𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛},𝑀) 
 =    𝑖𝑛𝑓𝑥∈𝑀

𝑥𝑖∈Ѧ𝑖

    𝑖𝑛𝑓Ѧ𝑚⊂𝑀
Ѧ𝑛⊂𝑀

 𝛽({ Ѧ𝑚}, {Ѧ𝑛}) 
 =0  

Hence  {Ѧ𝑛}𝑛=1
∞  is β- Cauchy  sequence in approach space. 

 

Theorem 4.8: Let (𝑋, β) be an approach space, { Ѵ𝑛} and { 𝑈𝑛}  is an β – converge Sequence in (𝑋, β) to {Ѵ} , { 𝑈}  

Respectively, then:  

1) { Ѵ𝑛 + 𝑈𝑛}  is an β – convergence to {Ѵ + 𝑈 } 

2) {𝜆Ѵ𝑛}   is an β – convergence to {𝜆Ѵ} 

3) { Ѵ𝑛 .   𝑈𝑛}  }   is an β – convergence to {Ѵ . 𝑈} 

 

Proof (1)  

Since { Ѵ𝑛 } , { 𝑈𝑛}  β – convergence to {Ѵ} , {𝑈 }. 

Thus lim𝑛→∞  infѴ⊂𝑀  𝛽({ Ѵ𝑛},𝑀) 
 = 0 and lim𝑛→∞  supѴ⊂𝑀  𝛽({ Ѵ𝑛},𝑀) 

 = 0  

So lim𝑛→∞  inf𝑈⊂𝑀  𝛽({ 𝑈𝑛},𝑀) 
 =0 and lim𝑛→∞  sup𝑉⊂𝑀  𝛽({ 𝑉𝑛},𝑀) 

 = 0  

Then so lim𝑛→∞  𝛽({ 𝑈𝑛}, {𝑈}) 
 =0 that is lim𝑛→∞  𝑖𝑛𝑓  𝑑({ 𝑈𝑛}, {𝑈})=

 0 

lim𝑛→∞  𝑖𝑛𝑓  𝑑({ Ѵ𝑛}, {Ѵ}) 
 = 0  

There for , lim𝑛→∞  inf{Ѵ},{𝑈}⊂𝑀  𝛽({ Ѵ𝑛 + 𝑈𝑛},𝑀) 
  

= 𝑙𝑖𝑚  infѴ,Ս⊂𝑀  𝛽({ Ѵ𝑛+𝑈𝑛}, {Ѵ} ∪ {𝑉}) 
  

 = lim𝑛→∞  infѴ,𝑈⊂𝑀min{ 𝛽({ Ѵ𝑛}, {Ѵ}), 𝛽( {𝑈𝑛}, {𝑈}) 
  = 0  

= lim𝑛→∞  infѴ,𝑈⊂𝑀 𝛽({Ѵ𝑛 + 𝑈𝑛} , 𝑀) = 0  
  

= lim  infѴ⊂M  β({ Ѵn}, M) + lim
n→∞

  infU⊂M  β({ Un}, M) 
 )  
  

And  lim  sup  β({ Ѵn+ Un}, M) 
  

=  lim  supѴ⊂M  β({ Ѵn}, M) + lim supU⊂M  β({ Un}, M) 
 
 
 = 0 

  lim  inf  β({ Ѵn+ Un}, M) = 0 
  

and lim𝑛→∞  supѴ,𝑈⊂𝑀 𝛽({Ѵ𝑛 + 𝑈𝑛} , 𝑀) = 0  
  

= 𝑙𝑖𝑚  𝑖𝑛𝑓  𝛽({ Ѵ𝑛+𝑈𝑛},𝑀) = 0  
  and lim𝑛→∞  supѴ,𝑈⊂𝑀 𝛽({Ѵ𝑛 + 𝑈𝑛} , 𝑀) = 0  

  

Then {Ѵ𝑛 + 𝑈𝑛} is β-approach convergence sequence to {Ѵ+ U}  

Proof (2):  

Since {Ѵ𝑛} approach convergence sequence  

To {Ѵx} , 𝜆 ∈ Ғ  

So  lim𝑛→∞  infѴ⊂𝑀  𝛽({ Ѵ𝑛},𝑀) 
 = 0 and  lim𝑛→∞  supѴ⊂𝑀  𝛽({ Ѵ𝑛},𝑀) 

 = 0 

if  𝜆 ∈ Ғ , 𝜆 . lim𝑛→∞  infѴ⊂𝑀  𝛽({ Ѵ𝑛},𝑀) 
 = 0 

and 𝜆  . lim𝑛→∞  supѴ⊂𝑀  𝛽({ Ѵ𝑛},𝑀) 
 = 0 then   lim𝑛→∞  infѴ⊂𝜆 𝑀  𝛽({𝜆 Ѵ𝑛}, 𝜆𝑀) 

  

= lim𝑛→∞  infѴ⊂𝑀  𝑑({𝜆 Ѵ𝑛}, {𝜆Ѵ}) 
  

Therefore, there exist Ѵ ⊂  𝑀 for all  , 𝛽({𝜆 Ѵ𝑛}, 𝜆𝑀) 
 = 0 

Thus there exist Ѵ ⊂ M  for all M such that inf
Ѵ⊂𝑀

  𝑑({𝜆 Ѵ𝑛}, {𝜆Ѵ}) 
 = 0  

And    lim𝑛→∞  supѴ⊂𝜆𝑀  𝛽({𝜆 Ѵ𝑛}, 𝜆𝑀) 
 = lim𝑛→∞  supѴ⊂𝑀 𝑖𝑛𝑓 𝑑({𝜆 Ѵ𝑛}, {𝜆Ѵ}) 

 =0 

Then {𝜆Ѵ𝑛} β-app- convergence sequence to{𝜆Ѵ} 
   

Proof (3)  
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Let {Ѵ𝑛 } , {𝑈𝑛} 𝛽 –app. convergent sequence to {Ѵ }, {U}. 

 for all  ∈  𝑀. There exists 𝑀 ∈  Ґ (𝑀)  such that 𝛽({Ѵ𝑛},𝑀) 
 =0. For all 𝑥 ∈  𝑁 there exists 𝑁 ∈  Ґ (𝑁) such that 

𝛽({𝑈𝑛}, 𝑁) 
 =0. Let 𝐶 =  𝑀𝑁 and Ѵ , 𝑈 ⊆ 𝐶 such that 𝛽({Ѵ𝑛 𝑈𝑛}, 𝐶) 

 = 𝑖𝑛𝑓
Ѵ⊂𝑀

  d({Ѵ𝑛 𝑈𝑛}, {Ѵ𝑛 }) 
  =0. Thus 𝛽({Ѵ𝑛 𝑈𝑛}, 𝐶) 

 =0 

Then {Ѵ𝑛 𝑈𝑛} 
  𝛽 −app. convergence sequence to {Ѵ , U}.  

5. New Structure of β-Approach vector space 

Definition 5.1: We say (𝑋, β, *) is an  β –app. semi group if and only if:  

1) (𝑋, β) is 𝛽 –app. space. 

2) (𝑋, *) is a semi – group. 

* : 𝑋 ×   𝑋 →  𝑋   ,( 𝑥, 𝑦) = 𝑥* 𝑦 is β- contraction .  

Definition 5.2: We say (𝑋, β, *) is an  β –app. group if it satisfies:  

1) (𝑋, β) is approach space. 

2) (𝑋, *) is group.  

3) * : 𝑋 ⊗  𝑋 → 𝑋   , 𝑥 + 𝑦  is β – contraction .  

4) -: 𝑋 →  𝑋, 𝑥 → − 𝑥     is β – contraction. 

Example 5.3: Let ℝ be set of real number and (Rⁿ, β) is approach space with usual distance  

Proof: (Rⁿ, β, +) is 𝛽 −approach group with usual distance and addition  for 𝑖 =  1, … , 𝑛  

For all 𝑋 ∈ Rⁿ, for all M ∈ 2
Rⁿ

 

β: 2𝑅ⁿ × 2𝑅ⁿ→
 [ 0, ∞] define as:  

β: ( 𝑀 , 𝑁) =  { 
inf𝑥𝑖 ∈𝑀 inf𝑦 ∈𝑁

𝑑 (𝑥𝑖 , 𝑦𝑖)    ,          𝑀 ≠  ∅  𝑎𝑛𝑑 𝑁 ≠ ∅
 

∞                                            𝑀 =  ∅ 𝑜𝑟 𝑁 =  ∅ 
      

 

Example 5.4:  Let M2 is denoted the set of all orthogonal 2× 2 matrixes .  M2 subset of R
4
 with the Euclidean metric, then (M2, 

β(d), ʘ) is approach group.  

d (M, N) = [∑ (aij −  bij) 2] ½     4
 i,j= 1  = d ([

𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑥
𝑠𝑖𝑛𝑥 −𝑐𝑜𝑠𝑥

], [
𝑐𝑜𝑠𝑦 𝑠𝑖𝑛𝑦
𝑠𝑖𝑛𝑦 −𝑐𝑜𝑠𝑦

]) 

=
 
2

 √1 − cos(𝑥 − 𝑦)  

And d (M
-1

 , N
-1

)= d  ([
−𝑐𝑜𝑠𝑥 −𝑠𝑖𝑛𝑥
−𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑥

], [
−𝑐𝑜𝑠𝑦 −𝑠𝑖𝑛𝑦
−𝑠𝑖𝑛𝑦 𝑐𝑜𝑠𝑦

]) 

                           = [ 4 –  4 (𝑐𝑜𝑠 𝑥  𝑐𝑜𝑠 𝑦 −  𝑠𝑖𝑛𝑥  𝑠𝑖𝑛 𝑦)]½   =  2 √1 − 𝑐𝑜𝑠(𝑥 − 𝑦) 

Thus 𝑑 (𝑀,𝑁)  =  𝑑 (𝑀−1, 𝑁−1) 

a- (𝑀2, 𝛽) is 𝛽 −app. space where 𝛽 −distance defined as followes:  

1) β (M, N)= {

∞        if  M = ∅ or N₂ = ∅ 

infT∈ N  |M − T|    𝑖𝑓 𝑀 ≠ ∅ 𝑎𝑛𝑑 𝑁 ≠ ∅             
 

                              = β (N, M) 

b) let M, N ∈M₂: (𝑀 𝑁) (𝑀 𝑁)−1  =  𝑀 𝑁𝑁−1 𝑀−1  =  𝐼 

 Hence (M N)
-1

 which makes (𝑀,𝑁) element of M₂, so 𝑀₂ is closed under matrix multiplication.   
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It is clear (M₂, ʘ) is a group  

c) for all M, N, P ∈ M₂  

𝑑 (𝑀,𝑁)  =  𝑑 (𝑀−1, 𝑁−1)  and for all  (𝑀,𝑁, 𝑍,𝑊)  ∈  𝑀₂  

𝑑 (𝑀 𝑁, 𝑍𝑊)  ≤  𝑑 (𝑀𝑁, 𝑍𝑁)  +  𝑑 (𝑍𝑁, 𝑍𝑊) =  𝑑 (𝑀, 𝑍)  +  𝑑 (𝑁,𝑊)  

So ʘ is 𝛽 −contractive.  

d) 𝑑 (𝑀−1, 𝑋−1)  =  𝑑 (𝑀, 𝑋), invention is contractive. Then (M₂, β(d), ʘ) is approach group.  

Definition 5.5: Let (X, β, *) be a β –app. group and Y⊂X. Then, (𝑌, 𝛽,∗) is called β –app. sub- group, if satisfy: 

1) (𝑌, 𝛽𝑌) is 𝛽 −app space. 

2) (𝑌,∗) is sub- group. 

3) £: 𝑌 × 𝑌 → 𝑌 with £ (𝑥, 𝑦)  = 𝑥 ∗ 𝑦−1 is β-contraction. 

Example 5.6: Let Ƶ be the set of all integer numbers and sub set of R with usual distance β ,  

β(M,N) = {

∞                        if  M = ∅ or N = ∅ 

infx ∈ M   inf
y ∈ N

 |x − y|     𝑖𝑓 𝑀 ≠ ∅ 𝑎𝑛𝑑  N ≠ ∅            
 

Then (Ƶ, β, +) is 𝛽 −app. sub- group. 

Definition 5.7: Let X be a non-empty set with binary operations: addition and scalar multiplication, β is distance on X. We 

said (X, β, *, ʘ) to be  𝛽 −approach vector space if satisfy:  

1- (X, β, *) is approach group. 

2- ɤ. x ∈ X   

3- ɤ (x+ y) = ɤ x + ɤ y         for all ɤ ∈ Ғ   for all x, y ∈ X 

4- (x+ y) ɤ = x ɤ + y ɤ          for all  ɤ ∈ Ғ   for all x, y ∈ X 

5- (𝜆. ɤ).x= 𝜆 (ɤ. x), for all x ∈ X and 𝜆, ɤ ∈ Ғ     

6- ʘ: Ғ × X → X, ʘ (ɤ, x) = ɤ. x is 𝛽 -contraction  

7- 1.x = x, x ∈ X 

Example 5.8: Let R be set of all real numbers. (R, 𝛽, +, ⨀) with usual distance 𝛽, addition and scalar multiplication ⨀ is 𝛽 − 

approach vector space.  

Proposition 5.9: If ℣ is 𝛽 −app- vector space, then ℣ is vector space.  

Proof: The proof is straight forward. According to definition of 𝛽 −App vector space, ℣ satisfy the condition of vector space.  

Remark 5.10: The convers of Proposition (5.9) is not true, the following example is show this.   

Example 5.11: Let (S, +,.) be vector space of real numbers with usual distance β and scalar multiplication, such that  

β(M, N) = {
0                if  𝑥 ∈ 𝑀 𝑎𝑛𝑑 𝑥 ∈ 𝑁                     
2              𝑖𝑓 𝑥 ∉ 𝑀 𝑜𝑟 𝑥 ∉ 𝑁                            

                                                      
 

𝛽 (𝑀,𝑁) is not  β –app. space since β(M, ∅)  ≠ ∞ thus ( S, β, +, .) is not App – vector space. 

Definition 5.12 (β -Approach sub – space): A subset Y of approach vector space over the field Ғ is called approach subspace if 

satisfy the following  

1) Y subspace of vector space (X, +,.)  

2) (Y, β y) 𝛽 −app. space  

Theorem 5.13: β –App. topological space is a topological space (X, Ƭ) that associated with natural 𝛽 -approach space, we 

define a function 
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 βƬ : 2𝑋 × 2𝑋   → [0,∞] by: βƬ  ( 𝑀 , 𝑁 ) =

{
 
 

 
 

   
 

 

0             if x ∈ CL(M)and x ∈ CL(N)
 

∞       if  x ∉ CL(M) or x ∉ CL(N)
 

  

for all x ∈ X, M, N ∈ 2𝑋, (X, Ƭ, βƬ) for topology Ƭ on X is  called a topological 𝛽 –app. space, and   βƬ is called topological 𝛽 -

distance. 

Definition 5.14: Let (X, β) be app- space. For x∈ X the center at x and of radius  r >  0 is the set 

 Dr(x)={ t∈ X ,β( {t} ,{x}) < r } the set Dr is called β – open ball.  

Definition 5.15: Let ℣  β –app. vector space on field Ғ. Then a topological  β –app. vector space Ƭ℣  be satisfy:  

1) The map + :  ℣ ×  ℣ → ℣ ,( x, y) → x+ y  is β –contraction .  

2) The map: Ғ × ℣ →℣ is β –contraction.  

When it is written as (℣, Ƭ℣).     

Proposition 5.16: Let (X, Ƭ) be a topological space, then the function 

 βƬ: 2𝑋× 2𝑋 → [0,∞]  

Defined by :    βƬ ( M , N ) ={
0             if x ∈ CL(M)and x ∈ CL(N) 

 
 ∞          if  x ∉ CL(M)  or x ∉ CL(N)  

  

is 𝛽 -distance on X. 

Proof:  

1) 𝑆𝑖𝑛𝑐𝑒  𝑀 ⊂  𝐶𝐿 ( 𝑀 ) , 𝑀 ∩  𝑁 ≠  ∅ , 𝑥 ∈  𝐶𝐿 ( 𝑀 )  𝑎𝑛𝑑 𝑥 ∈  𝐶𝐿 ( 𝑁 ) 
, 𝑁 ⊂  𝐶𝐿 (𝑁)      ⇒  𝛽 (𝑀,𝑁)  = 0  

2) 𝑋 ∈  𝐶𝐿(𝑀)  ∩  𝐶𝐿 (𝑁), 𝐶𝐿 (𝑀 ∩ 𝑁)  ⊂  𝐶𝐿(𝑀)  ∩  𝐶𝐿(𝑁)   
  𝐼𝑓 𝑀 = ∅    𝑜𝑟  𝑁 =   ∅  𝑎𝑛𝑑 𝐶𝐿( ∅)  =  ∅ , 𝑥 ∉  𝐶𝐿(𝑀)  ⇒  𝛽 (∅  , 𝑁)  =  ∞  

𝐼𝑓 𝑁 = ∅ ⇒  𝑥 ∉  𝐶𝐿(𝑁)  ⇒  𝛽 (𝑀, ∅)  = ∞  
3) 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑀, 𝑁 ∈ 2ˣ, 𝑠𝑖𝑛𝑐𝑒 𝐶𝐿 (𝑁 ∪  𝑃)  = 𝐶𝐿(𝑁) ∪  𝐶𝐿(𝑃)   =  𝑚𝑖𝑛 {𝛽 (𝑀,𝑁), 𝛽 (𝑀, 𝑃)} 

   =  𝑚𝑖𝑛 {𝐶𝐿 (𝑀), 𝐶𝐿(𝑁) ∪  𝐶𝐿(𝑃)}   = 𝑚𝑖𝑛 {𝐶𝐿 (𝑀), 𝐶𝐿 (𝑁 ∪ 𝑃)} =  𝑚𝑖𝑛 {𝛽 (𝑀,𝑁), 𝛽 (𝑀, 𝑃)}. 
4) 𝐹𝑜𝑟 𝑎𝑙𝑙  𝑀 , 𝑁 ∈ 2ˣ 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 Ɣ , ɛ  ∈  [0 , ∞]  

 𝑠𝑖𝑛𝑐𝑒 𝑀ɛ =  { 𝑥 ∈  𝑋 ∶  𝛽 ( { 𝑥} , 𝑁 ) ≤ ɛ } , 𝑥 ∈  𝑀  
 And x ∈ M

ɛ
 since M

ɛ
 ⊂ 𝑐𝑙 (Mɛ

) ⇒ x∈ CL (M
ɛ
) and if x ∈ N

ɛ
, , N

ɛ
 ⊂ CL (N

ɛ
)  

        𝑇ℎ𝑎𝑡 𝑖𝑠  𝑥 ∈  𝐶𝐿 (𝑁ɛ)  𝑡ℎ𝑒𝑛  𝛽 ( 𝑀 , 𝑁 )  ≤   𝛽 ( 𝑀ɛ , 𝑁Ɣ )  +  ɛ +  Ɣ   
𝐼𝑓 𝑥 ∉  𝑀 𝑜𝑟 𝑥 ∉  𝑁 𝑡ℎ𝑒𝑛 𝛽 (𝑀,𝑁)  = ∞ 
𝐼𝑓 𝑥 ∉  𝐶𝐿 (𝑀ɛ) 𝑜𝑟 𝑥 ∉  𝐶𝐿 ( 𝑁ɛ)  ⇒  𝛽  ( 𝑀ɛ , 𝑁Ɣ )  = ∞ 
𝛽 ( 𝑀,𝑁)  ≤  𝛽 ( 𝑀ɛ , 𝑁Ɣ )  +   ɛ  +  Ɣ =  ∞ . 𝐼𝑓 𝑥 ∈  𝐶𝐿 (𝑀ɛ)  ⇒  𝛽 ( 𝑀ɛ , 𝑁Ɣ )  =  0 
𝛽 (𝑀,𝑁) ≤  𝛽 ( 𝑀ɛ , 𝑁Ɣ ) +   ɛ  +  Ɣ =  0. 𝐻𝑒𝑛𝑐𝑒β𝑇(𝑀,𝑁) 𝑖𝑠 𝛽 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑛 𝑋. 
Theorem 5.17: Let ( ℣ , β℣) be 𝛽 −app. vector space , 𝑀 is Closed approach sub space of 𝑋 . then     (℣/M, β`℣/M ) is 𝛽 -app- 

vector space , we define  β`℣/M  : 2℣
/M

 ×  2℣
/M

 → [0 ,∞] as follows :  

β`℣/M (D, N) = β` (𝐷 +  𝑀 , 𝑁 +𝑀 )  = 𝛽 (𝐷, 𝑁)  
Proof: We will prove β` satisfy distance condition:  

1) β` (𝐷 +  𝑀 , 𝑁 +𝑀 )  = 𝛽 (𝐷 , 𝑁 ) 
2) 𝐼𝑓 𝐷 = ∅   𝑜𝑟 𝑁 = ∅  ⇒  𝑖𝑓 𝑁 = ∅  , 𝛽` (𝐷 +  𝑀 , ∅) = 𝛽 ( 𝐷 , ∅)  = ∞ 

𝐼𝑓 𝐷 = ∅ ⇒  𝛽` (∅ , 𝑁 +  𝑀 )  =  𝛽(∅ , 𝑁) =  ∞ 
3) 𝐼𝑓 𝐷 ≠  ∅ 𝑎𝑛𝑑 𝑁 ≠  ∅ ⇒  𝑁 ∩  𝐷 ≠  ∅  𝑡ℎ𝑒𝑛 𝛽 ( 𝐷 , 𝑁)  = 0 , 𝑥 ∈  𝐷 𝑎𝑛𝑑 𝑥 ∈  𝑁 

𝛽`( 𝐷 + 𝑀 , 𝑁 + 𝑀 )  =  𝛽`({𝑥 + 𝑀} , {𝑥 + 𝑀})  =  𝛽 (𝐷, 𝑁)  = 0 
4) 𝛽`(𝐷 + 𝑀 , 𝑁 + 𝑀 ∪  𝑃 +𝑀 )  = 𝛽 (𝐷 , 𝑁 ∪ 𝑃) 

≤  𝑚𝑖𝑛 { 𝛽(𝐷, 𝑁) , 𝛽(𝐷, 𝑃) } 
5) 𝛽`( 𝐷 + 𝑀 , 𝑁 + 𝑀 )   =   𝛽 (𝐷 , 𝑁 ) 

                               ≤  β ( D
ɛ
 ,N

ɛ
) +ɛ +Ɣ  

                               =β (D
ɛ
 + M ,N

ɛ  
+ M) + ɛ + Ɣ  

Definition 5.18: Let ( X , β ) be 𝛽 -app-space a sequence and {An} is the convergent sequence in the 𝛽 -app .space to A ∈ X  if   

lim𝑛→∞   inf
𝐴⊆𝑀

 β ({An},M)=0  and  lim𝑛→∞   Sup
𝐴⊆𝑀

 β ({An},M)=0   

Definition 5.19: Let ( X , β ) and ( Y , β` ) are β -app . spaces. The function £ : X→ Y is called sequentially contraction if 

lim𝑛→∞  β ({£(x𝑛)}, £(M)) = 0 Whenever   lim𝑛→∞  β ({xn},M)=0  
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Definition 5.20:  Let ℣ and Ϣ be two β –app. vector spaces on app-space over the same field Ғ, a mapping:    Ω: ℣ → Ϣ  is said 

to be approach linear transformation if the following hold :  

1) Ω(𝑎 + 𝑏)  =  Ω(𝑎) ∗  Ω(𝑏)  
2) Ω ( ɤ 𝑎)  =  ɤΩ(𝑎)   𝑓𝑜𝑟 𝑎𝑙𝑙  ɤ ∈  Ғ , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  ℣  

Definition 5.21: Let Ω: ℣ → Ϣ  be a β –app. linear transformation. Then the set  β − 𝑘𝑒𝑟 (Ω)  = { 𝐴 ⊆ ℣ ∶ £(𝐴) = {0}   }  =
 £−1({0} ) is called the β –app. kernel of Ω. 

  Theorem 5.22: Let (℣, 𝑇℣, 𝛽) 𝑎𝑛𝑑 (Ϣ , 𝑇Ϣ , 𝛽′) be a topological  β –app. vector spaces and the  β –app. linear transformation 

£ : ℣→Ϣ  is contraction. Then ker(£) is closed .  

Proof: Suppose £ is the β-contraction.  

To prove Ker(£) is closed set, let {An} be a disjoint sequence that convergent to A in Ker(£) such that lim𝑛→∞ inf𝑥𝜖𝑘𝑒𝑟£  𝛽 

({An}, M) =0 andlim𝑛→∞ sup𝑥𝜖𝑘𝑒𝑟£   β({An},M)=0      

Since £ is  β- contraction, that is β`( £({An}), £(M   ≥ (( β({An},M ).  

Then, 0=lim𝑛→∞ inf𝑥𝜖𝑀  𝛽 ({An}, M) ≥ lim𝑛→∞ inf𝑥𝜖𝑀    β`( £({An}), £(M))  

   ≥      lim𝑛→∞ sup𝑥𝜖𝑀      β`( £({An}), £(M))  ≥     lim𝑛→∞ sup𝑥𝜖𝑀   β({An},M)=0    

lim𝑛→∞ sup𝑥𝜖𝑀   β`( £({An}), £(M))=0 and lim𝑛→∞ inf𝑥𝜖𝑀    β`( £({An}), £(M))=0  

( £({An}) =0 , lim
𝑛→∞

𝛽`( £({𝐴𝑛}), £(𝑀)) = 0  then £({A}) =0 , A ⊆ Ker (£)  

Conversely, suppose Ker (£) is closed set, let {An} be disjoint sequence convergent to A in  β -Ker (£), to prove £({An}) 

convergent to £({A}) , since  β -Ker (£) is closed, x∈  β -Ker (£) , assume that £({An})  is not convergent to  £({0}) in M, that 

is  £ 𝑖𝑠 not  β − contraction.  
Then lim𝑛→∞ sup𝐴⊆𝑀    β`( £({An}), £(M)) ≠ 0 or  lim𝑛→∞ inf𝐴⊆𝑀    β`( £({An}), £(M))≠0  

  If lim𝑛→∞ sup𝐴⊆𝑀    β`( £({An}), £(M)) ≠ 0 or  lim𝑛→∞ inf𝐴⊆𝑀    β`( £({An}), £(M))=0  

lim𝑛→∞ inf𝐴⊆𝑀  𝛽 ({An}, M)  >  lim𝑛→∞ inf𝐴⊆𝑀    β`( £({An}), £(M))  

⇒ β`( £({An}), £(M)) < 0 ,this impossible  

If limn→∞ supx∈M    β`( £({An}), £(M)) =0 or  lim𝑛→∞ inf𝐴⊆𝑀    β`( £({An}), £(M))≠0  

0=lim𝑛→∞ sup𝐴⊆𝑀   β({An},M) < limn→∞ sup𝐴⊆𝑀    β`( £({An}), £(M)) =0  

this impossible.  

If lim𝑛→∞ sup𝐴⊆𝑀    β`( £({An}), £(M)) ≠ 0 and lim𝑛→∞ inf𝑥𝜖𝑀    β`( £({An}), £(M))≠0  

But, £({xn }) ∈  β -Ker(£) then  lim𝑛→∞ sup𝑥𝜖𝑀    β`( 0, £(x))≠ 0 and  

lim𝑛→∞ inf𝑥𝜖𝑀    β`( 0, £(x)) ,that is β`( 0, £(x)) ≠ 0 , £(x) ≠ 0  

So A ⊈  β -Ker (£) this impossible.  Hence £ sequentially contraction, then £ is β- contraction. 

6. Conclusion  

      We investigated several problems in the theory of approach spaces: a topological space called topological approach 

structure and generalization of metric spaces, which means we need to define some concepts in approach spaces as approach 

vector spaces, approach topological vector spaces, an approach subspace, and we solved some examples in an approach space, 

an approach vector spaces, and an approach group. We clarify that every approach space is metric space, but the converse is 

not true, as demonstrated by an example. We established some new properties of contractions, defined convergent and 

sequentially convergent in approach spaces, and demonstrated that contraction is a necessary and sufficient condition for 

obtaining a linear sequentially convergent. 
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