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Abstract. The goal of this paper is to define p-distance on a non-empty set if it meets the conditions. A pair (X, B8) is called B-approach
space and we will also discuss solve various problems. The relationship between metric space and B-app-space is clarified. We define the -
contraction function and discuss some of its properties. The convergent sequence in S-approach space and sequentially convergent are
discussed. We introduce the definition of B —semigroup,  —group in  —approach space, f —vector space and 3 —topological approach vector
spaces. In addition, we identify corresponding between convergent and sequentially convergent with new results.
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1. Introduction

The concept of a topological vector space is central to modern functional analysis, and in recent years, applications in
various other fields of mathematics have been studied in order to find and compare their properties. Approach space theory is
important in quantitative domain theory; there are many examples of approach structure in functional analysis, measure theory,
probability space, and approximation theory. As in the metric case. If an approach space is generated by a topological space, it
is said to be "topological," and if it is generated by a metric space, it is said to be "metric." " The AP-product carries only that
portion of the numerical data that is present,” which can be retained if compatibility with the topological product of the family
of underlying metric topologies is desired.” The fundamental difference in existence There is a difference between approach
and metric spaces. " in the fact that in an approach space, all the distances between the points are defined,” where such a point-
set distance does not have to bring the two together infimum over the considered set of all the point distances "As in the metric
case, an approach space is defined. Lowen [13] found definition approach spaces were introduced in 1987. Lowen's
monographs [14] can be used to set up an overall realization of approach spaces. The theory of approach spaces, a
generalization of metric and topological spaces, is based on point-to-set distances rather than point-to-point distances. The
most important motivation was to solve the problem of an infinite product of metric spaces. Another reason for introducing
approach spaces is to unify metric, uniformity, topological, and convergence theories. Barn and Qasim [5, 6] characterized
local distance-approach spaces, Approach spaces , and gauge-approach spaces and compared them with usual , approach
spaces. Colebuders, Sion,... etc [1] show that some considerable consequences on real valued contractions. Martinez-Morenol,
Rpld'an2, ...etc[3] found definition the concept of fuzzy approach spaces as spaces generalization of fuzzy metric spaces and
demonstrate some Properties of fuzzy approach. Gutierres, Hofmann [2] calculated the concept of completeness for approach
spaces and calculated some properties in completeness approach spaces. Van Opdenbosch [4] set up new isomorphic
characterizations of approach spaces, pre-approach spaces , convergence approach spaces , uniform gauge spaces, topological
spaces , and convergence spaces, pretopological spaces , metric spaces, and spaces that are consistent. Baekeland and Lowen
[7] institute the measures of Lindelof and separability in approach spaces. Lowen and Verwulgen [14] institute define
Approach vector spaces. Lowen and Windels [10] defined an approach groups spaces, semi-group spaces, and uniformly
convergent. Lowen [16] detail of this book approach theory completely disband this by presentation properly those two new
kinds of numerically form spaces which are wanted: approach spaces on the local level and uniform gauge spaces on the
uniform level.

Lowen and Sion [12, 13] introduced the definitions of some separation axioms in the approach spaces and set up the
correlation the axiom, the axiom, regular and completely regular and also calculated of normed linear spaces and from a
normed real vector space (X,I I),we a uniform approach structure on X Lowen, Van Olmen, ...etc [17] introduced Functional
Ideas and Topological Theories. Lowen and C. Van Olmen [11] explained some concepts and correlation in approach Theory.
Lowen [15] studied the development of essential theory of approximation. Abbas and Hussein [9, 8] introduced topological
approach space and found completion if the completeness is not satisfies. W. Li, Dexue Zhang [18] introduced the Smyth
complete.

The goal of this paper is two - fold: first, we want to put approach group checking space in the proper perspective when
approach vector spaces, and second, we want to use this topological approach structure, as we will call it, to create a canonical
counterpart of the classical topological vector space. Both metric spaces and preorders are generalized in extended pseudo-
quasi metric spaces.

This paper is divided into six sections: In Section 1, weintroduces the research and Preliminaries with basic definitions.
In Section 2, we introduce new definition which is called p —distance and explains the relationship between metric space and -
approach space; we proved that every metric space is -approach space but not the converse; and we proved that every
symmetric - B -approach space is metric space. In Section 3, we demonstrated some properties of B -contractions. Section 4.
We discuss convergent sequence in 3 —approach sepace with new results. Section 5 introduced the definitions of -approach
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group, -approach semi-group, -approach sub-group, and solved some examples in B -approach group, as well as introduced the
definition of B -approach vector space and proved some examples in -approach vector space. Section 5 presented the
definitions of topological vector space, -approach sub-space, and show that a new definition of convergent in -approach space,
and sequentially - contraction

Definition 1.1[13]: Let X be a non-empty set. A function § : X x 2% — [0, 0] is said to be distance on X if it satisfies the
conditions:

(DO vm € X:8(m,{m}) =0,

(D2) Vm € X: §(m, @) = oo,

(D3)Vm € X: YA,B €2%: 6 (m,AUB) = min{6(m, A), §(m, B)},

(D4)vm € X:V A €2%,ve € [0,00]: 5(m, A) < §(m, A®) +&.

A pair (X, 6) is called an approach space and denoted by app. spaces.

2. Structre of -Approach space
We benefit from the definition of distance in Lowen’s paper in 1987 for a new definition:

Definition 2.1: Let X be a non-empty set. A function B: 2¥x 2% —[0, oo] is called B- distance on X if it is satisfies the
conditions:

1) Forall M,N € 2%,if M NN # @, then 8 (M,N) =0

2) Forall M,N,P € 2X, B (M,N U P) = min{B (M,N),B (M, P)}

3) Forall M,N € 2X,if M = @or N =@ ,thenf (M,N) =

4) Forall M,N € 2%, € [0] and¥ € [0, ]

B(M,N) < B(M®,Ne) + € + ¥, whereM® = {x eX:f({x},M) < €}.
A pair (X, B) where B is a distance is called B-approach space and denoted by
[-app. space.

Example 2.2: The discrete distance approach structure  on X is given as for all x € X and

0 xEMNN
oo x @Morx &N

McXad NCX:by B(M, N={
Proof:

1) If x € Mandx € N thatis M N N # @, thenx € M n N.

So B (M,N) = 0,8 ({x},N) = 0and 8 ({x},M) = 0

2)letM ,N €2* .Suchthat fM=@orN=0 =>x&€Mor x&€N= B(M,N)=c0
Ifxe¢M = B(@N)=corx &N = p(MQ) =0

3) ForallM,N,P€2*M € N,xe(MNN)U(M n P)=x€ M Nn(N U P)
B(M,N U P)=0=min{0,0} =min { B (M,N), B(M, P)}
fxgMorx¢ NUP = S8(M,NUP)=
B(M,N U P) =min{ oo, 0}

=min {B (M,N), p (M, P)}
4) ForallM,N €2* foralle € [0, ], g€[0, oo]
Where M ={x € X: B ({X},M) < €}
Ifx € M, xe Nthenx e M N N=M N N+ @ then B(M,N)=0
Then B (M,N) < B (M°,N°) +¢ +Y
Ifxg&MorxgNthen x ¢ Méorx & N¥ = 8 (M,N) = o then § (M?,N¥) = oo

B(M,N) < B(M*,N¥) +& + Y = o
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Proposition 2.3: Let X be non-empty setand g : 2% x 2X — [0, o] is distance on X. Then the following hold:

1) forall M, Ne 2%, x € M then § (M,N) = 0
2) forallM ,N € 2%, forallx € M ,M < N,then S(A,N) <PB(A,M)
3) Forall M; € 2%, yisset, B[A,UMi]=sup{ minmep {B (A M)}

Me2X

Mi€ forallM ,Ne2X, A c M

4) BMA)< B(A" N)+ { suppen yepX SuPcem mex B ({0}, {c})}
Proof:
1)ForallM,Ne2X ,Ifx e Mandx e Nthenx e M n N> (M,N) =0
Ifx e Mandx¢ N >x eMn N > B(M,N)=0 = B(M,{x})=0,x€ N°
Similarly, x ¢ Mandx € N.
2)LetM,N €2¥ M < N,B(AN) =B (AM U N) =min {B (A, M), B (A, N)} <B (A M)
letyp e2X, p={M,, ..., M}, N€2¥ isfinite

B (N, U M;)=min
B (N,M1),

)

= .. = min{(B (N,M1),..,5 (N,Mn),.} = 71&161171}1 B (N, M)

4)let M,A € 2¥ ,e= inf{e € [0] ,N c Ae},
B(M,A) < S (M,N) + sup sup S (S,A)

se2X pe2X
BM,A) < B(M,Ae)+ B(AeN) +e +y < f(MgNeg) +e+y
< B (M,N) +supsup B (S,A)
ScN

Proposition 2.4: Every metric space is  — app. space.
Proof: Let (X, d) be a metric space, we define: B;: 2%¥x 2X — [ 0, o] by

() , M= QorN= 0

Ba(M, N)=1 . .
inf infd(x,y), M#=@and N # 0
kxEM YyEN

To prove 3, is distance on X
1) IfM=9@or N =@ then By (M, N) =
2) ForallM,Ne2* MN N+ @=>xeEMandx €N

Ba (M, N) = inf infd(x,x) = inf {0}=0

XEM x€N

3) Forall M, N, Pe 2*
Ba M ,NUP)=inf inf d(x,y) = inf{min{ infd(x,y), infd(x,vy)}}

XEM yeNUP XEM YEN YyEP

=min {inf infd (x,y), infinf d(x,y)} =min{Bq (M, N), Bq (M, P)}
YEN

XEM XEM y€EP

fM=@orN=0¢=p8; (M,NUP)=c0
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IfM=@= By (M,NUP) =00 =min {o0, 0} = min{By (M,N), B4 (N,P)}
IfN=0=f; (M,N U P) =00 =min {o0,0} = min{B; (M,N), By (N,P)}
4) Forall M,N €2* ,foralle € [0, ], where M* ={xe X|B; ({x},M)<e}

Ba (M ,N)=inf infd (x,a) <inf infd(xy) +te+y <inf infdXy +e+y

XEN a€EM XEN aeM XENE a€ M®

<Ba(M5NT) +e+y
Then (X, B,;) is B —app. space. A pair (X, B;) is said to be metric approach space.

Example 2.5:For all M, N € 2[0>]

max{ sup N — sup,.,ioe« M,0} if M#=Q@and N # @
pM,N)= N
o0 ifM=@orN=¢

Proof:

1) Forall M,N €2V if M #@and N+ @ ,MnNN # @
>x€EMandx € N

B (M, N)=max{ sup {x} — sup,,c ,l001{x},0} =0 orsupM > supN = (M,N) =0

Ne 2[0,00] XEM
XEN

2)ifM=@orN=09
ifM=0, p (M,N) =max{ sup N —supy,iow 8,0} = 0 = max{co,0} = oo.

Ne 2[0,0]

IfN =0, § (M,N)=max{ sup @ — sup,, o~ M,0} =00 =max{0, } = oo,
pe 200,00]

Then, § (M,N) = co.

Forall M,N, P € 2[%°l if MN(NU P) # @
B(M,NUP)=max{ sup NUP — sup,eyy M,0} =0

XENUP

=min{max{sup N — supM 0}, max{sup P — supyey M,0}} =min {f (M,N),B (M, P)}
XEN X€EP

If M=QorN=090
IfM =@,B(M,N U P)=max{ sup NUP—suprQ,MO}_oo

XEN U

=min{max{sup N supM 0}, max{sup P — supyeg M,0} = min{B (M,N),B (M,P)}

XEN XEP

IfN =0, p(M,NUP)=max{ sup NUP — supyey M,0} = oo
XEQ U P

min{max{sup N — supyey M, 0}, max{sup P — supyey M,0}} = min {co ,0}
X€EP XEP

min B (M,N), B (M, P)
3) Forall M,N € 2[%land for all £ € [0, 0], where M*={x € X | B ( {x},M)<¢e}
If M#@and N0 =>MNN+@,Xxe Mandx € N

B (M,N) =max{sup{x} — Supgepia}, 0} < max{sup {x} —supgey{a},0}+e+ Y

XEN XEN

< B(M°,N°) +e +Y . Thus B (M,N) is B —app. space.

dg(x,y)= B({x}{yD#B({y}.{x})=dg (y, x). Therefore X is not metric space
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0 MnN #@,M,N unbounded
Example 2.6 : Define Bz (M,N) ={ ® MnN = @,M,N bounded
inf infyeylx—al M<o, N<e

£ =[0, o]
Proof: itis clear ( X,B) is an B-app-space.
Definition 2.7: Let (X,B) be A B — app- space. We say that (X,B) is symmetric if B( M, N)=B( N, M) forall M,N € 2.
Proposition 2.8 :Every symmetric 3 — app. space is metric space.
Proof: Let (X, B) is symmetric 3 — app. space.
dp (x,y) =p( {x}{y})
Itis clear (X, B) is metric space generated by p — app- space.
Proposition 2.9: Let (X, By), (X, B2) be B —app. space, then (X x X, B) is B —app- space. Where:
B((M XN), (S xT))=min{;(M,S),B, (N,T)}, forall S,T € 2% ,forall M,N € 2%
Proof:

1) forallx,y € Xand forall S,T €2*, forall M,N € 2
(M XN)Nn (S XT)=(x,y)e(M x N)and (x,y) €(S xXT).
Then, XxeMNSandy e NNT

B(M xXN,S XT)=min{,(M,S),B, (N,T)}, =min{(0,0)}=0
2) If S=¢orT=9

B(MX N),(SXxT)=p((M x N),8x0) =min{B (M,0),B, (N,®)}
=min { o, 0} = 0
3) B((M XN),(S; X S,UT; xTy,))forallS;,S, € 2XandT,,T, € 2%
B(M XN,S; UT; X S,UT,) = min{f1(M,S; U Ty),L1(N,S, U T,)}
min {min{B,(M, S,), By (M, T,)}, min {B, (N, S), B2(N, T2)}}
min {B1(M,$,), B (N, S2)}, min {B; (M, T,), B (N, T2)}
min{(f (M X N,(S5; X S3),f(M x N,T; X T,)}

4) Forallx,y € X,forallM,N,S,T € 2X foralle € [0, ]

LM X N,S XT) =min{B,(MS),B, (NT)}< min{B (M,S®) + e+y ,B2(N,T¥) + € + y }
= min{B(M,S%),B, (N,T}+ € +y = B((M X N),(SEXTY))+ & + v.

Thus (X x X, B) is - app. space.

Proposition 2.10: Let (X, By, i € I be family of § —app- space. Define B : 20X % 2M1Xi _[0,00] as follows:

B[Ties M;  ITier N) = inf  inf  B(M;,N;) forall M;,N; € 211, then ([T;e; M;, B) is B-app. space.

Nieallxi e 2llx

Proof:

1) forall M;,N; € 211

If MinN;#0 = (my,m,,..,m,) €EM; and (my,m,,..,m,) € N, foralli €l

=>(my,my,..,m,;) € M;nNN; = (my,my,,...,m,;) € [l M;,and
(my,my,...,my) €[l N;,
then B([[;e; M; , [lie; N) = inf inf BM;,N;) = inf inf {0}=0

NiellXi ;e 2l Nie2llXi ;e 2l
2)  BIlier M Tlier Ni U Ilier Ri)= infimpem; Inf e njur, B (Mi, Ny UR;)
= min{ infimpen; I0f mpen; B M, NY) s infanpen; Inf mper, B (Mi, R;) }
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=min { infimpem, Inf (mye Ni (mper, (B (M;,N), B M;,R;))}
= min {B ([lie; M;, [lies No), B (Tlier M, Ilier R}

3) If Mj=@ orN;,=0 = (m;) € M;or (m;) &N;
IfM; =0 = B(Ilies Mi, [ier Ni) = infompeo  Inf mpen, BM;, Ny) =
IfN; =0 = B(Ilies Mi, [lier ND) = infimpem; Inf mpeo B(M;, Ny) =0
4) Forall M;,N; €21 forall ¢ € [0, o] and Y€ [0, o]
where M “={xe X: B({x},M) < €}
B Iier Mi , ITier Ni) = infampem;  Inf mpen;, BM;i, Ny)
< nfimpem;  f ampen; BME, NF) +e+Y
<PB(lier Mi* ,TLictN*) + € +Y

Thus ([Tie; M;, B) is B- app. space.

2.New Results of p-Contractions on B-Approach spaces

Definition 3.1: Let (X, ) and (Y, ) be B—app. space. The function £: X — Y issaid to be g —contraction if B"(£ (M) ,£(N))
< B(M,N),forallx € Xandforall M,N € 2%,

Proposition 3.2: Let (X, ) be § —app. space and £: (X,8) — (X,p) thenforall M ,N € 2%

1-I: (X, B) — (X, B) is B — contraction.

2- The constant map is B- contraction.

Proof: It is clear

Proposition 3.3: Let (X, 8), (X, 8") and (X, B™") be B —app.spaces. The function £: (X,8) — (X', 8")
g: (X, B) —» (X,B") are B - contraction. Then g of: (X,8) — (X, 8") is B — contraction.

Proof: Let M,N € 2X thenP" (g 0 £ (N), g o£(M) <B' (£(N), £(M))

since £ is B- contraction ,so0 B' (E(N), £(M)) <B (N, M).

Thus B" (g 0 £(N), g 0o £(M)) = B" (g (E(N),g (E(M) <P’ (E(N), £(M)) <B (N, M)

g o £ is B- contraction.

If the B -distance is defined as a function in two sets, we can prove distance functional as follows:

Proposition 3.4: Let (X, 8) be a § —app. space. For M c X the distance functional defined as:

Pw: X — E=[0,00] ,by: fu(x) = B ({x}, M ) is B-contraction.

Proof: We will prove Sy is well define :

x; = x, then {x; }={x;}and so ({x; },M)= ({x,},M). Therefore B({x;, M) = B({x,, M)

Thus Bu (x1) = fu (x2)

2) It is clear By is B-contraction.

Proposition 3.5 : Let (X, B) and (X', B ) be B —app. space and £:(X, 8) — (X", ") is 8- contraction. Then the restriction £ | K
is the 8- contraction for K c X.

Proof: Suppose £: (X, ) — (X", B) is B- contraction and K c X.

Define g: K = X by g({m}) = £({m}) forallm e K

B (g {m}), g (W) =B (£ ({m}), £ (&) < B ({m}, A).

Proposition 3.6: Let (X;, B;) be a family of § —app. spaces that any K € I . Then, the projection

pr: Jl x;— x; is p— contraction.
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Proof: Let x; € X;, M €2*,Pr:JI x; — x; projection function .
B (Pr (x;), Pr (M)) =B (Pr (Xg, ..., Xi) , Pr (M;)) for k € I
Bi ((x:), (M) < (Ba ((x1).M1) X B2 ((x2), M2) X ... X Bi((xi),(Mi) = Tlies Bi ([lies xi [lier M)
=Bi ([Tie; xi,[1;e; M;). Hence Bi’(Pr (xi), Pr (M))<B (Il;; xi, M). Then Pr (x) is B - contraction.
Proposition 3.7: Let£:1J — W' be B- contraction. Then, the map contraction £ x I: W x V — UJ ~ x V' is f— contraction.

Proof: Forallwe I, ve V and M & 2 ’
B (£ (W, V), £(M, V))) = B (E{w}) x Iv, £ ({m}) x Iy = B (E{w} xV, £ (M) x V)
=min g' (E{w}), £ (M))), " (V, V)} <min {B ({w}, M), B" (V, V)}
=B ({w}, V),(M, V). So ' ((£ ({w}, V), £ (M, V) < B ({w}, V), (M, V)). Thus £ x Iy is 8- contraction.

4. Convergent Results in B-Approach spaces.

In this section, we define the convergent of sequence in § —Approach space by start the following definition:
Definition 4.1: Let (X, d) be a metric space, then a sequence{ x, },= in X is said to be a right Cauchy sequence if for all ¢ >0
there exists k € Z* such that

d( Xm, X») <e forall m, n >N ,m<n . Left Cauchy sequence if for all ¢ >0 there exists k € Z* such that d(x, ) < & for all m
,n>N n<m. If asequence is left and right Cauchy is called Cauchy sequence.

Definition 4.2: A set M € 2% is said to be a cluster point in an approach space (X, p) if there exists disjoint sequence {
A= in X such that infxem B({ A, }, M) = 0, which is written by
Xieh;

{ A )=, — M. We denoted the set of all cluster point in approach space I'(X) .

Definition 4.3: A sequence { A, },—; in X is said to be Cauchy sequence in approach space § — Cauchy if for every cluster

point M , lim,,_,,, infxem B({ A, }, M) =0 sequence{ A, }y—; in X is said to be - convergent sequence in approach space if
Xieh;
there exist x € X for all

M eTX) , B({A,}M) =0.
Proposition 4.4: Let (X, ) be B-app. space, then the following are equivalent:

1) B- Convergent sequence in B-app. space.
2) lim,_, infxem B(A, M)=0andlim,_, supxem B(A,,M)=0

xiEAl‘ xiEAi

Proof: Let { A, }n=, be disjoint B- convergent sequence in approach space.

Thereexistx € X forall M eT(X): B A}, M)=0

ForallM € T'(X): infxem B({A,},M)=0and sup,ey B{ Ay}, M)=0
Xieh;

ForallM € T(X): lim, o infxem P{A,M) =0
Xieh;
And lim,,_,,, supxem B({A,}, M) =0

XieA;
Conversely, suppose the condition (2) is true. lim,_. infxem B({x,},M) =0 Andlim,_, supxem B({A,},M)=0
XieA; Xieh;
Then M is cluster point, thatis infxem B({A,}, M) =0
XieA;
Thenthereexistx € X forallM eI (X): B{A,},M)=0
Thus { A,}n=1 be B- convergent sequence in - app. space.
Remark 4.5: Every B- convergent sequence is § — Cauchy ( Cauchy B-app. space ).

Proposition 4.6: If (X, B) is p —app. Space then following are equivalent:
1) { A,}n-, is B- convergent sequence in S —app. space.
2) supmer) inf;;z/:r dp({ An}, {x}) =0

LEA;

Proof: Suppose that { A, },—; is disjoint - convergent sequence in 8 -app. space. There exist x € X for all
MeIX): B{AL,M)=0
And infxem B({ A}, M) =0, then lim,_ . infxem B({A},M) =0

xiEAi xiEAi
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And supxem B({A,}, M) =0thatis lim supxem B({A,},M)=0
n—co X

xiEAi i€A;
Then supy ere inffcc-ef: dg({ An}, {x}) =0
LE i

Conversely, it is clear.

Proposition 4.7: If (X, ;) is approach metric space and {A, }»— be disjoint sequence in X, then it is Cauchy sequence in
(X,d) ifand only if is B- Cauchy sequence in (X, By) .
Proof:
Let {A,}n=, be Cauchy sequence in (X, 84) , then we have that infxem B({A, }, M) =0
XieA;

inf zeM B({An} {Bm}) = infxem infamem B({An}, {An}) =0

ieA; ieA; ApncM
Thatis d ({ A,}, {A,,}) =0
Then {A, }s=; is left Cauchy sequence.
Also  infagmem B({ Ap}. {An}) = inf zEM infamem B{ Ap}, {An}) =0

ApcM Xien; ApcM

Thatis d ({ A}, {A,}) =0. Then {A,, };—, is right Cauchy sequence.
Thus {A,, };=4 is Cauchy sequence in (X, d).
Conversely, if {A,}n=; is Cauchy sequence in (X, d).
Then it is left and right Cauchy sequence, for all e>0, there exists ke Z* such that d ({ A,,}, {A,}) <e,forallm,n <N, m >
n and forall € <0 thereexistsk € Z + suchthatd ({A,}, {A,}) <e,forallm,n<N,n> m

infa,em B({ A}, M) = infzem  infagem B({ Ap} {An}) =0

Xiea; Yiea; ApcM
Hence {A,}n; is B- Cauchy sequence in approach space.

Theorem 4.8: Let (X, B) be an approach space, { V,,} and { U,,} is an § — converge Sequence in (X, B) to {V}, { U}
Respectively, then:

1) {V,+ U,} isan p —convergence to {V + U }

2) {AV,.} isan P - convergence to {1V}

3) {V,. U} } isanp —convergenceto{V.U}

Proof (1)
Since { V. },{U,} B - convergence to {V},{U }.
Thus lim,,_,, infycp B V,}, M) =0andlim,_. supycy B{V,}, M)=0
So limy, e, infycy B({ Un}, M) =0 and limy,,oo supycy B({Vo}, M) =0
Then so lim,, ., B({ U,},{U}) =0 thatis lim,_ inf d{{ U,},{UDN=0
lim,_, inf d{V,},{V})=0
There for, lim,,_ infpyyem BU Vi + Uy}, M)
= lim infy ey B({ VatUn}, {VIU{V})
=limye infyycy min{ B V3, VD, B({Un3, {U}) =0
=limy e irlfV,UCM B({Va+ Uy}, M) =0
=lim infycy B({Va}, M) + lim infycp B({Un} M))
And lim sup B({V,+ Uy}, M)
= lim supycy B({ Va}, M) + lim supycy B({ Up}, M) =0
lim inf B{{ V,+U,},M) =0
and lim, o, supyyey BEVn + Un}, M) =0
=lim inf B{V,+U,}, M) =0 andlim,. supyycy BV, + Uy}, M) =0
Then {V,, + U,}is B-approach convergence sequence to {V+ U}
Proof (2):
Since {V,,} approach convergence sequence
To{Vx},1 €F
So lim,_, infycy B V,} M)=0and lim,_, supycy B V,},M)=0
if A ef,A.lim,_ infycyy B{VLELM)=0
and A .lim,_, supyey B Vn}, M)=0then lim,_, infyc;y B{AV,}, AM)
=limy, o infycy d({4Vy}, {AV})
Therefore, there exist V. M forall ,B({AV,,},AM) =0
Thus there exist V. M for all M such that \}21‘1;1 dfAv,}L{Av) =0

And lim,_ supyciy BUEA V) AM) =lim,_ . Supyey inf d({A V,,},{AV}) =0
Then {4V} B-app- convergence sequence to{AV}
Proof (3)
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Let{V, }, {U.} B —app. convergent sequence to {V '}, {U}.

forall € M. There exists M € T (M) suchthat B({V,,}, M) =0. For all x € N there exists N € I (N) such that
B{U,},N)=0.LetC = MNand V,U < C suchthat 3({V,, U,},C) = inf d({V, U,},{V,,}) =0. Thus B({V, U,},C) =0
veMm

Then {V,, U,,} B —app. convergence sequence to {V', U}.

5. New Structure of p-Approach vector space

Definition 5.1: We say (X, B, *) is an p —app. semi group if and only if:
1) (X, B) is B —app. space.

2) (X, *) is a semi — group.

*:X X X - X ,(x,v)=x*yisp- contraction .

Definition 5.2: We say (X, B, *) is an [ —app. group if it satisfies:

1) (X, P) is approach space.

2) (X, *) is group.

)*:XQ X—X ,x+y isp— contraction .

4)-:X - X,x »> —x is - contraction.

Example 5.3: Let R be set of real number and (R®, B) is approach space with usual distance

Proof: (R, B, +) is B —approach group with usual distance and addition fori = 1,...,n
For all X € Rn, forall M € 2%

B: 28" x 28"~ [ 0, oo] define as:

infy, ey yirellfvd oy M # @ and N # @

B: (M,N) =
I M= @orN=0

Example 5.4: Let M, is denoted the set of all orthogonal 2x 2 matrixes . M, subset of R* with the Euclidean metric, then (M,
B(d), ©) is approach group.

d (M, N) = [X%= 1(aij — bij) ?] *
=2 /T—cos(x —»)
Andd (M*, NY=d ([:

= [4- 4 (cosx cosy— sinx siny)]”? = 2,/1—cos(x —y)

Thusd (M,N) = d (M1, N1

—d ([cosx sinx ] [COS}' siny ])
sinx —cosxl' |siny —cosy

cosx —Sinx] [—cosy —siny])
sinx cosx I'[—siny  cosy

a- (M,,p)is f —app. space where § —distance defined as followes:
o0 if M=@orN,=0
1) BM,N)=
=B, M)
b) let M, N EM,: (M N) (M N)™ = MNN~*M™' = |

Hence (M N)™ which makes (M, N) element of M, so M, is closed under matrix multiplication.
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Itis clear (M, O) is a group
c) forall M, N, P € M,
d(M,N) = d(M™1,N~Y) andforall (M,N,Z,W) € M,
d(MN,ZW) < d (MN,ZN) + d (ZN,ZW) = d (M,Z) + d (N, W)
So O is B —contractive.
dyd (ML, X 1) = d (M, X), invention is contractive. Then (M, B(d), ©) is approach group.
Definition 5.5: Let (X, B, *) be a B —app. group and YcX. Then, (Y, 8,) is called B —app. sub- group, if satisfy:
1) (Y,By) is B —app space.
2) (Y,*) is sub- group.
3) £:YXY - Y with £ (x,y) =x =y~1is p-contraction.
Example 5.6: Let Z be the set of all integer numbers and sub set of R with usual distance 3,
oo ifM=@orN=290

BIM,N) =4 _ .
infy e m lng [x—y|l ifM#=@and N+ 0
y

Then (Z, B, +) is f —app. sub- group.

Definition 5.7: Let X be a non-empty set with binary operations: addition and scalar multiplication, f is distance on X. We
said (X, B, *, ©) to be B —approach vector space if satisfy:

1- (X, B, *) is approach group.

2- ¥».X€eX
3- y(x+ty)=¥yx+yy forallx e ¥ forallx,y € X
4- (X+y)¥=X¥+y¥ forall yet forallx,y € X

5- (A.¥)x=A(x.x),forallxe Xand A,y €F
6- O:FxX—-X, 0 (v, X) =x.XIis S -contraction
7- 1x=x,X€EX

Example 5.8: Let R be set of all real numbers. (R, 8, +, ©) with usual distance £, addition and scalar multiplication © is § —
approach vector space.

Proposition 5.9: If ¥ is B —app- vector space, then ¥ is vector space.
Proof: The proof is straight forward. According to definition of 5 —App vector space, ¥ satisfy the condition of vector space.
Remark 5.10: The convers of Proposition (5.9) is not true, the following example is show this.
Example 5.11: Let (S, +,.) be vector space of real numbers with usual distance 3 and scalar multiplication, such that
0 ifx eEMandx €N
BM, N) =42 ifx ¢Morx &N
B (M,N) isnot p—app. space since p(M, @) # oo thus (S, B, +, .) is not App — vector space.

Definition 5.12 (B -Approach sub — space): A subset Y of approach vector space over the field F is called approach subspace if
satisfy the following

1) Y subspace of vector space (X, +,.)
2) (Y,By) B —app. space

Theorem 5.13: B —App. topological space is a topological space (X, T) that associated with natural § -approach space, we
define a function
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0 if x € CL(M)and x € CL(N)
Br:2%¥ x2X —[0,00] by:Br (M,N)=

s if x € CL(M) orx & CL(N)

forall x € X, M, N € 2%, (X, T, B for topology T on X is called a topological g —app. space, and P is called topological 3 -
distance.

Definition 5.14: Let (X, B) be app- space. For xe X the center at x and of radius r > 0 is the set
D/(x)={ te X ,B({t} .{x}) <r } the set D, is called 3 — open ball.
Definition 5.15: Let ¥ B —app. vector space on field F. Then a topological B —app. vector space T, be satisfy:

1) Themap+: ¥ x V—V,(XYy)— x+y isp—contraction .
2) The map: F x ¥ —¥ is B —contraction.

When it is written as (¥, T,).

Proposition 5.16: Let (X, T) be a topological space, then the function
Br: 2%x 2% — [0,00]

0 ifx € CL(M)and x € CL(N)
Defined by: Br(M,N)=

0 if x ¢ CL(M) orx & CL(N)
is 8 -distance on X.
Proof:

1) Since M ¢ CL(M), MN N# @¢,x € CL(M) andx € CL(N)
,N c CL(N) = B(M,N) =0
2) X € CL(M) n CL(N),CL(MNnN) c CL(M) n CL(N)
IfM =@ or N= @ andCL(®) = @,x& CL(M) = (@ ,N) = o
IfN =¢ = x¢& CL(N) = B (M,0) =
3) For all M,N € 2% since CL(N U P) =CL(N) U CL(P) = min{B (M,N),B (M,P)}
= min {CL (M),CL(N) U CL(P)} = min{CL (M),CL (N UP)}= min{B (M,N),B (M,P)}.
4) Forall M,N €2%and forallY,e € [0,x]
sinceMe = {x€ X: f({x}, N)<e},xeE M
And x € M? since M c ¢l (M) = xeCL (M) and if x €N, , N° ¢ CL (N)
That is x € CL (N®) then B (M,N) < B(ME,N¥) + e+ Y
If x ¢ Morx € NthenfB (M,N) =
If x € CL(Mg)orx & CL(N®) = B (M:,N¥) =
B(M,N) < B(ME,N¥Y) + € + Y = o.If x€ CL(Me) = B (M:,N¥) =0
B(M,N)< B(M?,N¥)+ € + Y = 0.HenceBr(M,N) is f — distance on X.
Theorem 5.17: Let (¥, By) be B —app. vector space , M is Closed approach sub space of X . then  (V/M, Bym) is B -app-
vector space , we define By : 2™ x 2™ — [0 ,00] as follows :
Pym@D,N)=p"(D + M,N+M) =B (D,N)
Proof: We will prove B satisfy distance condition:
H pDO+MN+M)=8(D,N)
2) IfD=Q orN =0 = if N =0,8{D +M,0)=(D,0) =
IfD=¢ = @,N+ M) = B(@ N)= o
3) IfD # @andN+ @ > NNnD # @ thenf(D,N) =0,x€ Dandx € N
B(D+M,N+M) = F({x+M},{x+M}) = B(D,N) =0
4) B(D+M,N+MUP+M)=8(D,NUP)
s min{B(D,N), B(D,P)}
5 B(D+M,N+M) = B(D,N)
< B(D° N +e+y
=AD" +M N +M)+e+Y
Definition 5.18: Let ( X, B ) be B -app-space a sequence and {A,} is the convergent sequence in the 8 -app .space to A € X if
lim,,_, o, jg{,ﬁ({An}'M):O and lim,_,, EEEB({A”}'M)ZO

Definition 5.19: Let (X, B )and (Y, ") are B -app . spaces. The function £ : X— Y is called sequentially contraction if
lim, . B ({EXn)} £(M)) = 0 Whenever lim,,_., B ({x,},M)=0
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Definition 5.20: Let /and &) be two B —app. vector spaces on app-space over the same field F, a mapping: Q: /- (1) is said
to be approach linear transformation if the following hold :

1) Qa+b) = Qa)* Qb)
2) Q(¥a) = ¥Q(a) forall x € F, foralla,b € V

Definition 5.21: Let Q: /— () be a B —app. linear transformation. Then the set B —ker (Q) ={A < V: £(A) ={0} } =
£71({0}) is called the B —app. kernel of Q.

Theorem 5.22: Let (/, T, B) and (®), Ty, , B) be a topological B —app. vector spaces and the B —app. linear transformation
£ : V—® is contraction. Then ker(£) is closed .

Proof: Suppose £ is the B-contraction.

To prove Ker(£) is closed set, let {A,} be a disjoint sequence that convergent to A in Ker(£) such that lim,,_,, inf,cxere B
({An}v M) =0 and]imnaoo SUDxekert B({An},M):O
Since £ is B- contraction, that is B’ ( £({A.}), £(M)) <B({A}M).
Then, O:limn—»oo infxeM .8 ({An}! M) < limn—mo infxeM B( £({An}): £(M))
< limn—mo SUPxem B( £({An})v E’(M)) < limn—mo SUDxem B({An}:M)ZO
lirnn—mo SUPxem B( £({An})v E(M)):O and 1irnn—mo infxeM B( £({An})v E(M)):O
(E{A}) =0, lim B (£({A,}), £(M)) = 0 then £({A}) =0, A S Ker (£)

Conversely, suppose Ker (£) is closed set, let {A,} be disjoint sequence convergent to A in  -Ker (£), to prove £({A.})
convergent to £({A}) , since B -Ker (£) is closed, xe B -Ker (£) , assume that £({A,}) is not convergent to £({0}) in M, that
is £is not 3 — contraction.
Then limy,_,o, supacy P (£({An}), £(M)) # 0 or lim,,o infacy B (£({An}), £(M))#0
Iflimy, e supacy B (£({An}), £(M)) # 0 or lim,,,o infacy  B'(£({An}), £(M))=0
limn—>oo ianEM ﬁ ({An}v M) > lirnn—wo iangM B‘( £({An})1 E(M))
= B'(£({An}), £(M)) < 0 ,this impossible
Iflimy o supxem  B'(£({An}), £(M)) =0 or limy,,o infacy B (£({An}), £(M))#0
O:limn—>oo SUPgecm B({An}vM) < 1irnn—»oo SUPacm B‘( £({An})1 £(IVI)) =0
this impossible.
Iflim,, oo supacy B (£({An}), £(M)) # 0 and lim,_,o, infrepr  B'(£({An}), £(M))0
But, £({x,}) € B -Ker(£) then lim,,_, supyey B'(0, £(x))# 0 and
lim,_, inf,.py B'(0, £(X)) ,thatis B( 0, £(x)) # 0, £(X) # 0
So A € B -Ker (£) this impossible. Hence £ sequentially contraction, then £ is - contraction.
6. Conclusion

We investigated several problems in the theory of approach spaces: a topological space called topological approach
structure and generalization of metric spaces, which means we need to define some concepts in approach spaces as approach
vector spaces, approach topological vector spaces, an approach subspace, and we solved some examples in an approach space,
an approach vector spaces, and an approach group. We clarify that every approach space is metric space, but the converse is
not true, as demonstrated by an example. We established some new properties of contractions, defined convergent and
sequentially convergent in approach spaces, and demonstrated that contraction is a necessary and sufficient condition for
obtaining a linear sequentially convergent.
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