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Abstract

A problem in digital signal transmission occurs when a signal in one
signal interval overlaps the signal in an adjacent interval. This problem is called
inter symbol interfer ence and limits the speed of digital transmission. I nterference
and noise are common in communication channels, and the recovery of
transmitted signals may be a difficult task. The adaptive equalizer which is used
to recover the transmitted signals and LMS algorithm which is one of the most
efficient criteria for deter mining the values of the adaptive equalizer coefficients
are very important in communication systems, but the LM S adaptive equalizer
suffers response degrades and slow conver gence rate under low Signal-to- Noise
ratio (SNR) condition. The present work is concer ned with the development and
application of wavelet transform based denoising technique for improving the
response and convergence rate of LMS adaptive equalizer in digital
communication systems under low SNR.
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1. Introduction

Adaptive signal processing is a
very important part of statistical signal
processing and has applications in
diverse areas including
communications, control, radar, sonar,
and biomedical engineering. A wide
variety of signal processing problems
involve nonstationary signals or time-
varying models, and the standard
approach to resolving them involves
application of adaptive filters. The
number of applications where they
have been successfully employed is
very large, and examples of it are
linear prediction, adaptive equalizer,
beamforming, interference cancellation,
and system identification [1,2].

The data transmission through
communication system is distorted by
the channel, this dispersion results in
intersymbol interference. In principle,
if the channel is known precisely it is
virtually always possible to design an
equalizer that will make the
intersymbol  interference  (at  the
sampling instants) arbitrarily small.
However, in practice a channd is
random in the sense of being one of an

ensemble of possible channels.
Consequently, a fixed equalizer
designed on  average  channd

characteristics may not adequately
reduce intersymbol interference. An
adaptive equalizer is then needed
which can be "trained ", with the
guidance of a suitable training signal
transmitted through the channd, to
adjust its parameters to optimal values.
If the channel is aso time-varying, an
adaptive egualizer operating in a
tracking mode is needed which can
update its parameter values by tracking
the changing channe characteristics

1082

Channel Equalization Usng Wavelet Denoising

during the course of normal data
transmisson. In both cases the
adeptation may be achieved by
observing or estimating the error
between actual and desired equalizer
responses and using this error to
estimate the direction in which the
parameters should be changed to
approach the optimal values. A simple
and effective technique to determine
the values of the coefficients for
adaptive equalizer is least mean square
(LMS) dgorithm [3-5] which is
developed by WIDROW. The main
limitation of the LMS adaptive
equalizer is the SNR of the channd
controls the convergence rate of LMS
adaptive equalizer and its quality. A
low SNR leads to dower convergence
and in item eye pattern (the eye pattern
is constructed by collecting multiple
traces of the signal at the output of the
equalizer) we note the 'eye is close
means that information retrieval is not
possible.

In this paper, the possibility of
using a wavelet transform for
enhancement of the performance
efficient and convergence rate of LMS
adaptive equalizer under weak SNR
environment is explored. The wavelet
transform based on pre-processing is
used to reduce additive noise of data
and then the data is applied to LMS
adaptive equalizer. It is shown that
denoising leads to fast convergence of
LMS adaptive equalizer and opens the
eye pattern (means that information
retrieval is possible) under low SNR
environment.
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2. Principle of
Equlizer

The linear adaptive equalizer
with LMS algorithm (LMS adaptive
equalizer) considered in this paper is
depicted in Fig(1). The linear adaptive
equalizer consists basically of a linear
adaptive transversal filter (transversal
filter are actually FIR discrete time
filters) and the least mean square (LMS)
algorithm is used to update the filter
coefficients.

The LMS adaptive equalizer
transforms the input signal x(t) into the
output signal z(t). The equalizer signal
is sampled at regular intervals T. As
the input signal we consider a PAM
base-band signal

X(t) = & ah(t- (1) +w(t) (1)

n=-¥

LMS Adaptive

where the a, is quantized pulse

amplitudes, h(t) is the channel response,
T is the baud interval, and w(t) is the
adaptive noise. Let ¢, be the vector of
equalizer coefficients, and x, the vector
of tap output signals, both at the nth
sampling instant. These vectors are N-
dimensional, N being the number of
taps. Throughout the paper aprime (')
denotes transposition. At the nth
sampling instant the output signal of
the equalizer reads

Zh = Cn Xn (2)
and update the tap weights c in the
LMS adaptive equalizer according to
the equation
Cnh+1= Cp +A €1 Xn (3)
where c,., is the coefficient vector at
time n+1, c, is the coefficient vector at
time n, D is called the step size
parameter and e, is the error signal at
time n evolving according to
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€ = an - Zy (4)
We choose as the error criterion the
minimization of the expected mean-
square distortion [6],

x? =Ele,’

©)
where E[] denotes expectation.

The step sSize parameter controls the
rate of the convergence of the
algorithm to optimum solution [7]. A
large value of D leads to large step size
adjustments and thus to rapid
convergence, while small value of D
results in  slower  convergence.
However if D is made too large the
algorithm becomes unstable. To ensure
stability, D must be chosen to be in
therang [8]

0<Dx< 1

10NP,

where P, is the power in the input
signal.

But in low SNR, even if Dis selected
according to equation (6), a Sower
convergence is obtained.

(6)

3. Wavelet for Signal Denoising

Waveet is one of the most
powerful tools in digital signal
processing. It is often used in denoising
method because of its energy
compaction ability.

3.1 Wavelet Transform

The wavelet transform (WT)
[9] is a timescale representation
technique, which describes a signal by
using the correlation with trandation
and dilatation of a function called
“mother wavelet”. Wavelet shape can
be sdected to match the shapes of
components embedded in the signal to
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be analyzed. Such wavelets are
excdlent templates to separate those
components and events from the
analyzed signal waveform. The
discrete wavelet transform (DWT) is a
batch method, which analyses a finite-
length time-domain signal into coarse
approximation and detail information.
Approximations represent the slowly
changing features of the signal and
conversely details represent the rapidly
changing features of the signal.

3.2 Wavelet Denoising
The  wavelet denoising
algorithm involves the following steps:
1. Acquire the noisy digital signal.
2. Compute a linear forward discrete
wavelet transform of the noisy signal.
3. Perform a non-linear thresholding
operation on the wavelet coefficients of
the noisy signal.
4. Compute the linear inverse wavelet
transform of the thresholded wavelet
coefficients.
This simple four-step process is known
as waveet thresholding or shrinkage.
A more precise  mathematical
formulation of the above wavelet
denoising procedure is needed.
Wavelet denoising [10-11] for
signal denoising attempts to recover
the discrete-time signal
f(t),t=L2, ..... ,M from the noise-
corrupted observations

y(t)= f{t)+v(t)t=12....M (7
where v(t) is zero-mean white

Gaussian noise of variance s %. If W
represents the Discrete  Wavelet
Transform (DWT), equation (7) inthe
wavelet domain becomes

Yw=Fy+Vy (8)
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whereY,,=W,, F, =W;and V,, = W..
DWT is an orthonormal transform that
compacts the signal into a few large
coefficients in F,, , while v is mapped
onto V,, which likewise is zero-mean
white Gaussian noise with variance
s 2. The process of wavelet denoising
is to threshold the coefficients Y,, to
discard small values most likely due to
the additive noise [12-13]. Then, these
thresholded wavelet coefficients are
applied to inverse discrete wavelet
transform (IDWT) to obtain denoising
signal.

3.3 Thresholding Operators
There are two types of
thresholding operators (thresholding

transform) T(.,| ) associated with the
threshold | , the hard thresholding
operator T, (,1) and the soft

thresholding operator T,(,1 ) which

will be defined.
The hard thresholding operator

is defined as:
Yo, ifYu|3 1,
0 otherwise
9)
The soft thresholding operator
on the other hand is defined as:

S=T,(%,.! )=i
|

s=T,(Y,.l )=

an(Y, (Y - 1) Y, [ >

otherwise
(10)
where S is the thresholded wavelet
coefficients obtained after applying the
thresholding operator T (., 1 ).

s
0

—_) — —
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The transfer functions of the hard and
soft  thresholding schemes are
illustrated in Fig (2). Note that hard
thresholding is a “keep or set to zero”
procedure and is more intuitively
appedling. On the other hand, soft
thresholding shrinks coefficients above
the threshold in absolute value. While
at first sight hard thresholding may
seem to be natural, the continuity of
soft thresholding has some advantages.
Sometimes, pure noise coefficients
may pass the hard thresholding and
appear as annoying “blips” in the
output. However, soft thresholding
shrinks these false structures. Once the

thresholding operator T (.| ) has been

defined, it remains to address the
problem of selecting the corresponding
threshold | .

3.4 Threshold Selection

As one may observe, threshold
determination is a very important
question when applying the wavelet
thresholding scheme. A small threshold
may yield a result close to the input,
but the result may be still be noisy. A
large threshold on the other hand,
produces a signal with a large number
of zero coefficients. This leads to an
overly smooth signal. Paying too much
attention to smoothness generally
suppresses the details and edges of the
original signal and causes blurring and
ringing artifacts.

The most original threshold is
known as the universal threshold.
Originally, Donoho and Johnstone
proposed the use of the universa
threshold [14]:

| v =4/2In(M)’ s

where M is the length of the signal,

(11)
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It has been shown that, when using the
soft thresholding operator T, (1) |,

with | =1 .., the following [15] with
high probability is gotten, which
asymptotically tends to unity as the
signal size M increases, the denoised
signal is at least as smooth as the
original noise-free signal , where
smoothness is measured by any wide
range of smoothness measures.

4. Proposed Model

Having explained the LMS
adaptive  equalizer and wavelet
denoising technique, the proposed
system for adaptive equalizer by using
wavelet denoising is depicted in Fig

).
The main procedure of the
system is described as follows. First,

the origina signal a, is transmitted

through the communications channe
h(t), and subject to noise n(t). Next, the
received signal y(t) is applied to the
three steps involved in the wavelet
denoising process. Then, the output of
the wavelet denoising technique x(t) is
sampled at the symbol rate or twice the
symbol rate, the sampled signal x, is
applied to LMS adaptive equalizer.
Finally, the output of the LM S adaptive
equalizer z(n) is applied to dicer (the
slicer is actually a quantizer) and the

U
output of slicer is quantized signal an.
The flowchart of the proposed modd is
shown in Fig (4).

5. Simulation and Results

In order to compare the
performance of the above proposed
system in a noisy environment, it is
simulated using the  channd
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characteristics shown in Fig(5), the
performance of the proposed models
has been evaluated by computer
simulation using Matlab 7 language.
Through this channel the transmitted
signal consists of values (a,, = +1) at
a SNR of 15 dB and length of the
signal is M=2000. The equalizer
comprises N=31 taps. Initially, set all
tap weights to 0 except the center tap-
weight which is set to 1. The adaptive
filte is working on decision directed
mode and the step parameter of the
adaptation algorithm (the filter) is
A=0.001 (according to equation 6).
The slicer in this smulation is actually
quantizer, the rule of this slicer is that
it quantizes the signal to 1 when the
signal is greater than 0.5 and quantizes
the signal to -1 when the signal is less
than 0.5. In this simulation, we
consider two cases. the fird
corresponds  to  classical  system
(adaptive equalizer without wavelet
denoising processing); and the second
corresponds to modified system (with
applied proposed model). The
parameters are used in second case
include Daubechies wavelet (dbl18),
soft thresholding operator, the noise

variance is s #= 0.5181, the universal
threshold isl ,;, = 2.111 (according to

equation 11). In this work, the degree
of success of adaptive equalization can
be viewed in what is known as an "eye
pattern”. The results after classical
system and after modified system at
SNR of 15 dB are shown in Fig (6).
With classical system, the eye pattern
of Fig (6a) is close, not sharp and
unclear. It shows a wide disparity in
the positive sinc pulses, and a similar
disparity in the negative pulses, thus
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indicate the presence of distortion in
the sinc pulses which is associated with
intersymbol interference and that mean
that egualizer is not efficiency. After
modified system, the pattern of Fig
(6b) is open, sharp and clear. The
positive sinc pulses are tightly
clustered. Intersymbol interference has
been  greatly diminished. The
likelihood of mistaking a positive pulse
for a negative one is reduced, and
sensitivity to random channd noise is
also reduced. The adaptive process
with modified system has forced all
positive pulses to have close to (+1)
amplitudes at their strobe times (at the
center of the image) and forced all
negative pulses to have (-1) amplitudes
a their strobe time. Fig (7) illustrates
the performance of the classical system
and modified system for convergence
rate at a SNR of 15 dB. The
convergence of the classical system is
very slow because of the low SNR
while the convergence of the modified
system is faster than classical system,
because wavelet denoising improves
the SNR.

6. Conclusion

This paper has compared,
through analysis and simulation,
proposed system and classical system
for adaptive equalizer. In the paper, a
new system is proposed for adaptive
equalizer by applying the received
signal at receiver to wavelet denoising
and then wusing LMS adaptive
equalizer. A new agorithm has been
proposed which moderately has three
advantages over the classical algorithm
in low SNR environment. One, it is
more efficient to eliminate intersymbol
interference. The second is its low
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sensitivity to noise because the wavelet
denoising processes improves the SNR.
The third, it offers faster convergence
time.
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