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1. Introduction  

    
    Fractional ordinary differential equation (FODE) is an equation that contains fractional derivatives of 

an unknown function of a single variable, while fractional partial differential equation (FPDE) is an 

equation that contains fractional partial derivatives of an unknown function of several variables. 

Analytical solutions of FODEs and FPDEs are now a available in some special cases. But the solution 

to many FDEs (ordinary and partial) will have to relay on approximate and numerical methods, just like 

their integer-order counterparts. 

Fractional derivatives have been around for centuries but recently they have found new applications in 

many fields of science and engineering. Applications of fractional ordinary derivatives in viscoelasticity 

may be found in (1997) Diethelm [2] and in (1999) Diethelm & Freed [3] . Also, some mechanical 

damping models have been presented in(1998) Yuan & Agrawal [14] as FODEs, in (2001)  Hanyga [4] 

find Multidimensional Solutions of Space - Fractional Diffusion Equations, in (2001) Schmidt & Gaul 

[11] Application of Fractional Calculus to Viscoelastically Damped Structures in the Finite Element 

Method may be found. 

Moreover, fractional ordinary time derivatives have been used in (2000) Tseng, liu &Hsia [13] to 

compute the velocity and acceleration of some applications in signal processing, such as, radar and 

sonar applications. 
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ABSTRACT 

 

This paper presents a modern approach for solving fractional partial 
differential equations (FPDE) which is called the polynomial 
approximation method based on the polynomial approximation  
and on its general fractional derivative formula. By modifying the general 
fractional derivative formula of and with the aid of the linear 
FPDE, another new formula can be found for the approximation . 
This is the basic idea of the proposed method. Furthermore, the 
mathematical proof of the convergence and stability of this method have 
been studied. Some numerical examples show that the proposed method 
exhibits a satisfactory results. 
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Applications of FPDEs are found in physics (2004) Shen & Liu [12], seismology (2002) Hanyga [5], 

hydrology (2005) Meerschaeh & Gaul  [10], and perhaps surprisingly, FPDEs have been linked with 

stable distributions, where a FPDE was introduced in (2003) Lix [8] whose solution gives nearly all the 

stable distributions, In (2000) Meerschaert & Tadjeran [9] use  Finite Difference Approximations for 

Two-Sided Space-Fractional Partial Differential Equations 

This work is focused on solving the linear FPDEs with constant coefficients of the form: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝛽

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
= 𝑔(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝐷                                                                                              (1) 

when the Riemann- Liouville integral operator is invertible,   and D ={(x,t): c  x  d, a  t  b}.  

  

2.   New Formulation of the Approximation  

It is popular to use the approximation 

                                                                                                           (2) 

in the two-dimensional polynomial, orthogonal polynomial, and spline approximations. Many authors 

and researchers used the approximation (2), such as, In (1988) Hopkins [6] which used the above 

approximation in two-dimensional orthogonal polynomial, and spline approximations while In (2001) 

Iglesias [7] used this approximation in two-dimensional spline approximation. It’s popularity was due to 

it’s simple shape, but this simple shape hide several disadvantages, such as, the difficulty in the matrix 

formulation of the used method (if it needed), and the number of additional terms in (2) that add 

worthless work.  

Here a new formulation for the approximation will be derived. This formulation was constructed 

using some ideas given in (1980) Davies [1] as it will be illustrated below. 

It was given in [1] that each one of the approximations of the form 

 

and 

 

 

has the form              u(x,t)  p(x,t) a 

where p(x,t) is a row vector of linearly independent functions, and a is a column vector of constants. For 

example, if we want to approximate the unknown function u(x,t) in the partial differential equation: 

 

one may guess that the following approximation could be used 

 

Particularly, it is not easy to give definite rules which are applicable in all cases. For this reason 

complete polynomials are often favorite. The necessary terms for all possible polynomials up to 

complete quintic are shown below [1]: 
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Thus a complete linear polynomial is of the form 

 

while a complete cubic polynomial is of the form 

 

The above ideas are the outlines that we used to establish the following new formulation  of the 

function u(x,t): 

                                                                      (3) 

where p1 = n1 + n2, pk+1= pk + mk , k = 1, 2,,n3, such that n1, n2, n3, and mk, for k =1, 2,,n3, are given 

nonnegative integers, and N is the number of terms in this approximation, i.e. N is the number of the 

unknowns coefficients aj . Eq. (3) represents the general polynomial approximation that may be used to 

approximate u(x,t). A special case is given when n1 = n2 = n, n3 = n − 1, and    mk = n  k, as follows:  

                                                                      (4) 

where p1 = 2n, pk+1     = pk + (n  k); k = 1, 2,,n 1, and n is a given nonnegative integer. It is obvious 

that eq.(4) represents the complete polynomial approximation for u(x,t). To illustrate this let n = 2, then: 

 

Hence                  

 

which is the complete polynomial of order two. 

 

    First of all, we explore the weak form of the problem in order to build an approximation of the 

finite element. We multiply the first equation by an arbitrary function ) test function ) 𝑣 ∈
𝐻0
1(Ω), integrate the result and then use the Green formula. 

∫ 𝑓𝑣 𝑑𝑥 = ∫ −∆𝑢

ΩΩ

𝑣 𝑑𝑥 + ∫ 𝒃 ∙ 𝛻𝑢

Ω
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∫ 𝑓𝑣 𝑑𝑥 = ∫ ∇𝑢

ΩΩ

∙ ∇𝑣 𝑑𝑥 − ∫(𝑛 ∙ ∇𝑢)

𝜕Ω⏟      
=0

𝑣 𝑑𝑠 + ∫ 𝒃 ∙ 𝛻𝑢

Ω

𝑣𝑑𝑥 

∫ 𝑓𝑣 𝑑𝑥 = ∫ ∇𝑢

ΩΩ

∙ ∇𝑣 𝑑𝑥 + ∫ 𝒃 ∙ 𝛻𝑢

Ω

𝑣𝑑𝑥                                  

The weak formulation of  (1) − (2) and by inner product form is: Find 𝑢 ∈ 𝐻1(Ω) where 

                (∇𝑢, ∇𝑣) + (𝒃 ∙ ∇𝑢, 𝑣) = (𝑓, 𝑣),         ∀ 𝑣 ∈ 𝐻0
1(Ω)                                  (3)  

The bilinear define  𝑎(∙,∙) = 𝐻1(Ω) × 𝐻1(Ω) → ℝ  by 

and               𝑎(𝑢, 𝑣) = (∇𝑢, ∇𝑣) + (𝒃 ∙ 𝛻𝑢, 𝑣)                                                                                     (4) 

Then ,The  FEM is: Find 𝑢ℎ ∈ 𝑉ℎ ⊂ 𝐻
1(Ω) such that  

   (∇𝑢ℎ, ∇𝑣ℎ) + (𝒃 ∙ 𝛻𝑢ℎ, 𝑣ℎ) = (𝑓, 𝑣ℎ),       ∀ 𝑣ℎ ∈ 𝑉ℎ,                                             (5) 
  and                                𝑎ℎ(𝑢ℎ, 𝑣ℎ) = (𝑓, 𝑣ℎ)                                         ∀ 𝑣ℎ ∈ 𝑉ℎ,          (6) 

where the space of finite elements 

𝑉ℎ = {𝑣: 𝑣 is continuous on Ω ; 𝑣|𝐾 ∈ 𝑃1(𝐾), 𝐾 ∈ 𝑇ℎ}. 
Assume  that 𝑢 is approximated over a finite element triangle 𝐾 by 

                             𝑢(𝑥, 𝑦) ≈ 𝑢ℎ(𝑥, 𝑦) =∑𝑢𝑗
𝐾𝜑𝑗

𝐾(𝑥, 𝑦),

3

𝑗=1

                                          (7) 

where 𝑢𝑗
𝐾 is the value of 𝑢ℎ at the 𝑗th node of the element, and 𝜑𝑗

𝐾 is the Lagrange interpolation 

function, such that 

 

𝜑𝑗
𝐾(𝑥𝑖 , 𝑦𝑖) = 𝛿𝑖𝑗 . 

We must compute the following element matrices over each element 𝐾. 

Putting (7) into (5) and test function 𝑣ℎ = 𝜑𝑖
𝐾, 𝑖 = 1,2,3, respectively, 

and the source function 𝑓 is  

𝑓(𝑥, 𝑦) ≈∑𝑓𝑗

3

𝑗=1

𝜑𝑗
𝐾(𝑥, 𝑦),         𝑓𝑗 = 𝑓(𝑥𝑗 , 𝑦𝑗), 

The element diffusion matrix is obtained (stiffness matrix) 

           𝐴𝑖𝑗 ≡ ∫ ∇𝜑𝑗
𝐾 ∙ ∇𝜑𝑖

𝐾

𝐾

 𝑑𝑥 𝑑𝑦,     𝑖, 𝑗 = 1,2,3,                                               (8) 

the element convection matrix 

 

         𝐵𝑖𝑗 ≡ ∫(𝒃 ∙ ∇𝜑𝑗
𝐾)𝜑𝑖

𝐾

𝐾

 𝑑𝑥 𝑑𝑦,     𝑖, 𝑗 = 1,2,3,                                           (9) 

and the element mass matrix 

         𝑀𝑖𝑗 ≡ ∫ 𝜑𝑗
𝐾𝜑𝑖

𝐾

𝐾

 𝑑𝑥 𝑑𝑦,     𝑖, 𝑗 = 1,2,3,                                        (10) 



            Journal of Iraqi Al-Khwarizmi (JIKh)   Volume:7  Issue:1 Year: 2023   pages: 1-15   
 

5 
 

we collect all the elements 𝐾𝑛, 1 ≤ 𝑛 ≤ 𝑁𝐾, of  the grid 𝑇ℎ, We find a set of linear equations for the 

numerical solution 𝑢𝑗 at each node: 

           ∑(𝐴𝑖𝑗 + 𝐵𝑖𝑗)𝑢𝑗

𝑁𝐾

𝑛=1

=∑𝑀𝑖𝑗𝑓𝑗

𝑁𝐾

𝑛=1

∙                                                 (11) 

For a unique of the solution, a(∙,∙) must be coercive provided that  

(−
1

2
∇ ∙ 𝒃 ≥ 0).  Indeed,  

𝑎(𝑣, 𝑣) = (∇𝑣, ∇𝑣) + (𝒃 ∙ 𝛻𝑣, 𝑣) = (|∇𝑣|2) + (−
1

2
∇ ∙ 𝒃) 𝑣2 ≥ 𝐶‖𝑣‖1,Ω

2 , 

Where  𝐶 is a positive constant with |∙|1,Ω be the norm in 𝐻1(Ω). Thus, the Lax-Milgram lemma leads 

to an unique  special solvability. 

 

3.  New General Formula of the Fractional Derivative of   

In this section a new general formula of the fractional derivative of the approximation was  

established. 

Proposition(3.1): 

Let   0 and  be the two dimensional polynomial approximation which was given in eq.(4). The 

fractional derivative of  is given by: 

 

where  

                                  (5) 

and 

                                                                            (6)     

Proof: 

Recall eq.(4): 

 

where p1 = 2n, pk+1= pk + (n  k); for k = 1, 2,,n 1. 

Then the 'fractional derivative' of  ),( txuN is given by 

  



            Journal of Iraqi Al-Khwarizmi (JIKh)   Volume:7  Issue:1 Year: 2023   pages: 1-15   
 

6 
 

Rearrangement the above equation to get  

 (7) 

Since (n + 1 – ) = (n – ) (n – )= (n – ) (n – 1 – ) ··· (3 – ) (2 – ) (1 – ) (1 – ) 

then for any integer i, 0  i < n we have:  

                                                                                                (8) 

Put eq.(8) into  eq.(7) , then using eq. (6) to get: 

 

 

 

Since  , therefore; 

 

 

 

               

 

 

From equations (4) and (5) we conclude that: 

 

 

4.  Construction of the Polynomial Approximation Method 

Our aim is to solve the linear FPDE with constant coefficients (1) when the R-L integral operator is 

invertible. Here, the approximated solution  will have the form  

                                                                         (9) 
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Accordingly, the fractional derivative of  which have been given in proposition (1) will be:  

                                                                                            (10) 

where 

         (11) 

and  is defined in eq.(9). 

Now, recall eq.(1): 

           , (x, t)  D 

where      D = {(x,t): 0  x  d, 0  t  b}. 

Differentiate eq.(9) with respect to x and put the result with eq.(10) into eq.(1) to get:  

                                          

(12) 

Simple arrangements in eq.(12) yield:  

                                                                                                                   (13) 

where 

                                            (14) 

and f (x,t) is defined in eq.(11). 

Now, equations (9) and (13) will be used to find the unknown coefficients aj’s. Let us first consider the 

unknowns jpk
a  , for k = 0,n –m –1; j=0,n–k –m. Since when n = m such terms do not exist in the 

approximated solution , we shall find equations for the unknowns jpk
a   for all n  m + 1. 

It is clear that differentiating both sides of equations (9) and (13) with respect to t , r-times ,and with 

respect to x   s-times, and equating them at a certain point in D will give the unknowns jpk
a  . So, 

differentiate both sides of eq.(13) with respect to t, we obtain 

 

 

 

Repeat differentiation m-times to get: 
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Hence, for r  m we have: 

 

    

 
                                (15) 

Now, differentiate eq.(15) with respect to x, we get  

 

 

 

Continue this process to get: 

 

 
        (16) 

In the same manner we can differentiate eq.(9) with respect to t ,  r-times, r  m, to get: 

                                                           

                                                                                                                                                                (17) 

Then differentiate eq.(17) with respect to x  , s-times: 
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                                                                                                                                                                 (18) 

Now, let (0, t ) be any point in D which satisfies: 

                              0 < t   T ;                                                         (19) 

where 

                                                                              (20)    

Condition (19) in sure the convergence of this method as it will be illustrated later. 

Equate eq.(16) with eq. (18) at the point (0, t ) to get: 

    

 

This implies that: 

 

      (21) 

Dividing both sides of eq.(21) by the coefficient of sp mr
a 

 yield: 

 

 

 
                                                                                         (22) 
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Eq. (22) represents M equations with M unknowns jpk
a  , where 






1

)(
n

mr

rn . 

Our next aim is to find (n – m +1)" equations for the (n – m +1) unknowns'  

aj, j = 0, 1, , n – m. To this end, equate equations (15) and (17) at the points (0, t ) to get: 

 

 
                                                                                                                      (23) 

Put r = n in eq.(23) to get: 

                     (24) 

Hence, for r  n – 1 we get: 

   

 

 

This implies: 

       

 

 

 
                                                                                                                (25) 

Eqs.(22), (24) and (25) are the N equations needed for the evaluation of the N unknowns a0, a1, , aN-1. 

These equations may be written in matrix form as: 

 H a = B                                                                                                                                               (26) 

where  

H = [hij]NN, H = [bi]N ;  i, j = 0, 1, , N-1,         a = (a0, a1, , aN-1)
T
 

and 
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                  (27) 

 

 

Finally, the approximate solution  in eq.(9) can be obtained by solving system (26) for the 

unknowns a0, a1, , aN-1 using the Jacobi or Gauss-Seidel methods. 

The next two parts concerned requirements that must be met if the approximate solution (9) is to be 

fairly reliable approximation to the solution of the FPDE, eq.(1). These conditions are associated with 

two problems, stability and convergence of the approximate solution to the solution of the FPDE 

 

5. Numerical Examples 

Example (5.1): 

Consider the FPDE 

             , 0  x  2, 0  t  4 

where             

while the exact solution is   u(x,t) = 5 x t
2
+ 3 t

3
 

Let n = 3, then     
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, since we may take any value of t  in the interval (0 , 0.528], so let t = 

1/3. The results of the polynomial approximation method are obtained. These results are given by  a0 = 

0, a1 = 3 and a2 = 5. 

 

Example (5.2): 

Consider the FPDE 

             , 0  x  1, 0  t  1 

where    , and the exact solution is u(x,t) = t
3
 e

x
. 

 let n = 7. Since m = 3, then we get: 

 

 

Let t  = 1 10
-15

, or any value in (0 , 1.628810
-15

].  The results of the polynomial approximation 

method with the least square error and the running time are listed in table (1): 

Also, more accurate results may be obtained by increasing the number of the parameters aj’s. Depending 

on the least square error and running time, a comparison has been made in table (2) between the exact 

and approximate solutions, where the approximate solution was obtained with n =10 and t  = 5 10
-35

 (

t   (0,8.77310
-35

]). 
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Table (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x T u(x,t) = t
3
e

x 
Poly. Approx 

0 0 0.00000000 0.00000000 

0.1 0.1 0.00110517 0.00110517 

0.2 0.2 0.00977122 0.00977119 

0.3 0.3 0.03644619 0.03644558 

0.4 0.4 0.09547678 0.09547085 

0.5 0.5 0.20609016 0.20605452 

0.6 0.6 0.39357766 0.39342210 

0.7 0.7 0.69071718 0.69017411 

0.8 0.8 1.13947696 1.13786809 

0.9 0.9 1.79305067 1.78884654 

LSE 0.00002058 

Running Time 0:0:3:14 
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Table (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

A new efficient method, which is called the polynomial approximation method, was introduced to find 

the approximate solution of FPDEs. Several examples were included for illustration. The following 

points have been identified: 

1-This method gives the exact solution the moment the unknown function is a degree polynomial n, 

while for other types of functions, the accuracy of the solution depends on the degree of the used 

approximation. 

2-A disadvantage of this method is the hand evaluation of the partial derivatives of the function G(x t) . 

3-An advantage of this method is the few number of computations which is clear from its short running 

time. 

4-The convergence condition of this method gives us a range of values from which the value of t  may 

be chosen. This range depends on the given values of n and m. 

x T u(x,t) = t
3
e

x 
Poly. Approx 

0 0 0.00000000 0.00000000 

0.1 0.1 0.00110517 0.00110517 

0.2 0.2 0.00977122 0.00977121 

0.3 0.3 0.03644619 0.03644616 

0.4 0.4 0.09547678 0.09547675 

0.5 0.5 0.20609016 0.20609023 

0.6 0.6 0.39357766 0.39357838 

0.7 0.7 0.69071718 0.69072035 

0.8 0.8 1.13947696 1.13948777 

0.9 0.9 1.79305067 1.79308224 

LSE 0.00000000 

Running Time 0:0:6:27 
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