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Abstract In this work, we presented the concept of graded fuzzy topological linear spaces and proved some of the properties related to them.

We also presented the concept of polar and bipolar sets in this spaces, and we proved the properties of these sets. Finally, we proved the
bipolar theorem and the result associated with it.

1- Introduction

Many authors like Felbin [1], Cheng and mordeson [4], Bag and Samanta [5], Sadeqi and Yaqub Azari [7], and so on started to later,
Xiao and Zhu [9], Fang [6], Daraby et.a ([1],[8]) redefined, the idea of Felbin's [2] studied various properties of it is graded fuzzy
topology structure.In this paper, we introduce the concept of graded weak topological space as a generalization of usual weak
topology we prove that the graded weak fuzzy topology is not equivalent with the fuzzy topology. A consequence of the Hahn-
Banach theorem is the classical bipolar theorem which states that the bipolar of a subset of a locally convex space equals its

closed convex hull.

The bipolar theorem is a theorem in functional analysis that characterizes the bipolar (i.e. the polar of the polar) of a set. In
convex analysis, the bipolar theorem refers to a necessary and sufficient conditions for a cone to be equal to its bipolar. The
bipolar theorem can be seen as a special case of the Fenchel-Moreau theorem.

In section 3.intrsction Ming 1991 and puri and Rales 1983 ,Zhang initiated the notion of yin yang Bipolar fuzzy set as any
extension of fuzzy set ,2011 introduce the concept of bipolar fuzzy graphs[11] ,Al gham detail 2018 multi-criteria decision —
making methods in bipolar fuzzy environment[10] .some properties in bipolar in graded fuzzy .

2. Weak Topology on Graded Fuzzy Topological Linear Spaces

Definition (2.1)

Let X be any set. A function 7: [ >Tiscalleda (gradation )fuzzy topology if
1. 7(0)=7() =1

2. (A NB)>min{r(A),z(B)} forall A, Bel”

3. r(gAﬂ) >minz(A,) forall A, el”

e The real number 7(A) will be called the degree of openness of the fuzzy set A.

e The set X together with the fuzzy topology 7 is called a gradation fuzzy topological space and is denoted by (X,7) or

simply X .
Definition (2.2)
Let 7, and 7, be two gradation fuzzy topologies on the same set X ,we say that 7, is stronger than 7, if 7,() > 7, ()

forevery p e I* and denoted by 7,57,.ie
Let 7, and 7, be fuzzy topologies on a set X . Then 7, is finer than 7, denoted by 7, <7, if 7,(A)<7,(A) for all

AcT”
Remark (2.3)
If Tis an ordinary topology on a set X, then the induced gradation fuzzy topology on X is given by

o) ={Acl” ‘A, eTVael}.
Definition (2.4)
Let (X,7;) and (Y,7,) be fuzzy topological spaces . A function f:X —Y s called fuzzy continuous if

7,(f*(A) > 7,(A) forevery Ael'.
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Theorem (2.5)
Let X beaset, (Y, 2'1) a graded fuzzy topological space. Then there exists a graded topology 7, on X such that the function

f:(X,7) > (Y,7,)is a fuzzy continuous.
Proof :
Let G={f"(B):Bel'} .then G isafamily of fuzzy subsets of X .

Foragiven Ac G, let P, ={B el : A= f *(B)} and define 7,(A) =sup{r,(B):BeP,}

Itis obvious that \{P, : Ae 1*}=1" and 7,(f *(B)) > 7,(B) forevery vel"

Now to prove 7, : G — 1 satisfies the axioms of definition (2.1).

1.itisobviousthat 0= f *(0)e G, 1= f (1Y) € G and 7(0) =7 (1) =1

2Let A,A € G, then A=A NA €G and moreover, B, ={B,NB,:B, P, ,B,€P, }

Therefore 7;(A) =sup{z,(B):B e R,}>sup{r,(B,nB,):B P, ,B, P, }

> sup{min{z,(B,),7,(B,)}: B, € P, , B, € P, }=min{sup{z,(B,)}: B, € P, },sup{z,(B,)}: B, € P, }
=min{z,(A), 7, (A)}

a(ANA)=min{z,(A),7(A)}

3.let A, € G . Inasimilar way we can show that rl(U A)= rpi{]{suprz(Bl): B,eP, }= rPIAn 7,(A)
AeA € €

Thus 7, . G — 1 satisfies the axioms of definition (2.1).

Now we extend 7, to a mapping 7, :1* —> I by letting 7,(A) =0 forall Ag G .

It is easy to check that the function 7, thus defined is indeed a graded fuzzy topology.

Moreover, from the construction it is clear that 7; is the weakest fuzzy topology on X making the mapping

f:(X,z,) > (Y,7,) fuzzy continuous.
Theorem (2.6)
Let X be any nonempty set and let{(Y,,o,):a € A}be a family of graded fuzzy spaces and consider for each a€ A , a

function f,: X —Y, .Let 7, :1° —1 be the graded fuzzy topology on X for f,, and let the function 7:1° 51 be

defined by 7(A) =inf{zr,(A): 1 € A} where Ac1” . Then 7 is graded fuzzy topology on X .
Proof :

Let A, A el”
Since 7(A N A) =inf{r,(A N A):aeA}=inf{min{z,(A)7,(A)}:acA}
>min{inf{z, (A):aeA}inf{r,(A):acA}}=min{z(A),7(A)}
2.let A el®
(| JA) =inf{r,(|J A):aeA}=inf{minz,(A): 1 € A}:ae A}=min{inf{r,(A,):ac A}: 1 A}

Since  ieA AeA

=min{r(A,): 1A}

Hence 7 is a graded fuzzy topology on X .

Remark (2.7)
It is clear from theorem (2.5) and from the construction of 7 in theorem (2.6) that it is the weakest fuzzy topology on X for

which all function f, :(X,7) —(X,,7,)are fuzzy continuous. This fuzzy topology 7 will be called the initial fuzzy
topology for the family of mappings {fx X > Xi,ﬂ, € A}. It is called the weak topology on X generated by the
{f ,},., 'sand we denote itby o (X ,{f ,},.,) ordenoted by o(X ,F ) where F ={f ,: X > X ,, AeA}
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Theorem (2.8)
Let{rl}l€A be an arbitrary collection of graded fuzzy topologies on aset X and (Y ,2'*) any anther graded fuzzy topological

space. If the function T (X ,z,) > (Y ,7") is fuzzy continuous for every A e A then f (X ,z) = (Y ,7") is fuzzy

continuous function where 7 =inf 7, .
AeA

Proof :
Let Ael’,since f :(X,7,) > (Y ,7") is fuzzy continuous, then 7, (f (A)) > 7,(A)
for Le A, so inf{z,(f *(A): e A}>1,(A)
Since 7 = Iirll: 7, then 7(f (A)>17,(A) AeAthen f (X ,7)—>(Y ") is fuzzy continuous .
Theorem (2.9)
If has the weak topology induced by a collection {f , : 4 € A} of functions f, : X — X, then f 1Y — X is fuzzy

continuous iff f, o f is fuzzy continuous for each A € A

Proof :
Suppose that f 1Y — X is fuzzy continuous

Since f, : X — X is fuzzy continuous foreach A € A, then f, o f 1Y — X is fuzzy continuous for each A€ A.
Remark (2.10)

Let F, and F, be family of functions from X into X , , A€ A such that F, = F, .Then o(X ,F,) is weaker that
o(X,F,).

Theorem (2.11)

Let (X ,7) be a topological space and F ={f , : X —X ,, 4 € A} be a family of continuous functions from X into
the topological space (X ,,7,). Then (X ,F ) , the weak topology

generated by F is weaker than 7 .

3. Bipolar Sets

Definition (3.1)

Let X,Y and Z be linear spaces over F and a function G : X xY — Z associate to each @ € X andtoeach beY the
functions G, : X > Z and G, :Y — Z by defining G,(b) =G(a,b) =G, (a). We say that G is a bilinear

function if every G, and every G, are linear.

Theorem(3.2)
Let Xand Y be linear spaces over Fand a function G: X xY —F is a bilinear functional. Put

N, ={xe X:G(x,y)=0, VyeY}and N, ={yeY :G(x,y)=0, VxeX}
Then N, isasubspace of X and N, isasubspace of Y . N, and N, are called null spaces.
Proof :
Since G(0,00=G,(0)=0 = 0eNy = Ny #¢
Let X;,X, €Ny and ¢, S € F .Forall yeY
Glax, + %, Y) = G, (%, + ;) = oG, () + BG, (X,) = aG(x,, ¥) + FG(X,, y) = a(0) + 5(0) =0
X, + X, e Ny = N, isasubspace of X . Similarly to prove N, isa subspace of Y .
Definition (3.3)
Let X and Y be linear spaces over F . A bilinear functional G: X xY — F is called a non-degenerate if N, ={O0}
and N, ={0}.

Remarks (3.4)
1. Ny ={0}, ;meansthat: V x#0, xe X, 3y €Y suchthat G(X,y) =0,
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ie.if G(X,y)=0 forall yeY , then x=0
2. A non-degenerate bilinear functional G : X xY — F will be denoted by < , > :
ie. G(X, y) =(XY)
Definition (3.5)
Tow linear spaces X,Y over F are said to be dual spaces, if there is a non-degenerate bilinear functional

G: XxY —>F.
Example (3.6)

Let X be a linear space over F . Showthat X, X' are dual spaces.
Proof :

X'={w:X —>F , w is linear functional }. Define G: X'x X — F by G(y,X) =<l//,X> =w(x) for all
we X andforall Xxe X .
It is clear to show that G is a bilinear functional
N, ={xe X:G(y,x)=0, VyeX}={xeX:w(x)=0, VypeX}
It is clear to show that N, is a subspace of X and N, ={0}
Ny, ={fweX"iy(x)=0, Y xeX} = N, . ={0} = G is a non -degenerate bilinear functional , then
X, X" are dual spaces.
Theorem (3.7)
Let X and Y be dual linear spaces over F. For any element Y €Y, define the functional @, : X — F by

P, (x) = <X, y) forall X e X..
1. @, is linear functional
2. K, ={¢, : y €Y} isasubspace of X'

3Y=F
Proof :
1. Let X,,X, € X and o, f € F

@, (ox, + pX;) = <aX1 + X, y> = 0!<X1, y> +:8<X2’ y> =ap, (%) + B, (X,) = ¢, islinear
2.since 0OeY = ¢ =0 = 0ek = F #¢
Let ¢, @, €F and @, feF
(ag,, + B, Na X +a,X,) = (ad, N X, +a,X,) + (B8, N aX +ayX,)
= o, (%) + ad, ()] + Blasd, () + t,6, (%,)]
— alad, (x)+ 5, ()] + alad, (%,)+ o, (%,)]
=a,(ag, +pé, )(X)+a,(ad, + o, )(X,)
= ag, +pp, €k, = F isasubspaceof X’
3.Define H:Y — F, by H(y) =4, forall yeY
(i) lety,Yy,eY and a,Fe€F Forall Xxe X
H(ay, + B8Y,)(X) = Boy, .y, () = (X y, + By, ) = (X, ¥1) + B(X Y,)
=, (X)+ B9, (x) = (ag,, + P, )(X) = (aH (y1) + BH(Y,))(X)
= H(ay, +fy,) =aH(y,) +pH(y,) = H islinear
(ii) let y,, Y, €Y suchthat H(Y,) = H(Y,)

= ¢, =4, = 4,00=¢,(X)forxeX = (Xy,)=(XY,) for xeX
= G(x,y,)=G(x,y,) for xe X = G(X,y,—-Y,)=0 for xe X
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= Yi—-Y,eNy
Since Ny, ={0} = vy,-y,=0 = y, =y, = H isonetoone
(i) Letp, e, = yeY = H(y)=¢, = H isonto.

Sothat Y = F,
Definition (3.8)
Lea A subset A of a linear space X over F . We say that A is
1. Symmetric if — A=A,
so that AN (— A) is symmetric for any subset A of X

2.Balanced if AAC A forevery A € F with |A]<1

3. Absorbing if for every X € X , there exists 4 > O such that X € AA.
4. Convex if AX+(1—A)y e Aforevery X,y € A, 0< A <1 Orequivalently if AA+(1—A)Ac A
forall 0< A <1,
Definition (3.9)
Let A be asubset of a linear space X over F . The smallest convex set in X which contains A is called the convex hull
(or generated) by A and denoted by COﬂV(A).
It is clear to show that
1. Ac conv(A)
2. conv(A) = intersection of all convex sets of X which containing A
3. A isaconvex iff A= conv(A)
Definition (3.10)
A topological linear space X is called a locally convex if there is a convex local base,
i.e. there is a local base £ at O in X such that every members of [ are convex sets.

(every open setin X is a union of convex open sets)
Definition (3.11)
Let X be areal linear space. A partial order relation < on X is call linear order if the following axioms are satisfied
1. XLy = X+z2<y+z forall X,y,zeX
2.X<y = AXLAy forall x,y eX and A€l]l , 1>0.
e Arreal linear space endowed with a linear order is called an ordered linear space.
e Anelement X of an ordered linear space X is said to be positive if X > 0, and negative if
x<0.
e The set of all positive elements of an ordered linear space X with be denoted by K, i.e.
K =X, ={xe X :x>0},, where 0 denotes the zero element in X .
K is called the positive cone (or simply the cone) of X .
e We write (X, K) to denote an order linear space X with positive cone K .
Theorem (3.12)
1. Let X be an ordered linear space with positive cone K . Then
a. K isaconvex cone (or wedge) of X ,ie. K+ K< K and AK K
b. K~ (—K) ={0}
2. Let K be a convex cone of a real space X such K M (—K) ={0}, then X<y if y—xe K define an order relation <

on X for which X become an ordered linear space with K as positive cone.

Definition (3.13)

A subset A of an ordered linear space X over an ordered field F is called

1. Aconvex cone if A is closed under linear combinations with positive coefficients.

2. A cone (or sometimes called a linear cone ) if for each X € A and positive scalar A € F,
then AX € A.

Note that : A cone A is convex cone if aX+ Yy € A , for any positive scalars o, f and X,y € A.ie. Acone A is
convex cone if A+ AcC A.
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Definition (3.14)
A graded fuzzy topology 7 on a linear space X over F is called a graded fuzzy linear topology if the functions
f : X x X — X ,which defined by f(X,y)=X+Yy forall X,y e X and
g:FxX — X , which defined by g(A4,X)=AX forall Xxe X andforall AeF.

are continuous, when F is equipped with the graded fuzzy topology induced by the usual topology, X x X and F x X are
the corresponding product graded fuzzy topologies.

A linear space X with a graded fuzzy linear topology 7 , denoted by the pair (X, 7) is called graded fuzzy topological
linear space (abbreviated to DFTLS).

Definition (3.15)
Let X and Y be dual graded fuzzy topological linear spaces over F . The weakest topology on X , for which all functional

¢y are continuous ,is called the weak topology

on X and it is denoted by o(X,Y), the member of this topology is weakly open sets. Similarly: one may define the weak
topology o(Y,X)on Y .

Remark (3.16)

o(X,Y) is alocally convex topology as it is defined by the family {Py}er of all seminorms P, (X) = |<X, y>|

It is clear to show that : A subset of X is weakly open if for every X, € A, there is an & >0and there are

Y1, Y, Y, €Y suchthat

n
[MxeX:Re<x—x,y; > <e}c A
i=1
Theorem (3.17)
Let X and Y be dual graded fuzzy topological linear spaces over F . Any weakly continuous linear functional f on X has
a unique representation of the form f (X) = <X, y> forall X e X

Proof :
Thereexists Y; €Y , 1 =1,2,---,n such that

£ (0] <max{|(x, y,)|:i =12,-,n}

Denoting f,(X) = <X, yi>, 1=12,---,n .Wehave f(X)=0 whenever f,;(X)=0 1=12,---,n
Hence f isa linear combinationof f, 1=12,---,n

Definition (3.18)

Let X and Y be dual graded fuzzy topological linear spaces over F ,and let A < X . The polar set of A is denoted by A’
and defined as :

A ={yeY:|<xy><l vxeA={yeY sup|<xy><1}

xeA

while the premolar of subset B Y is ‘B={xe X :|< X,y>|S1, VyeB}={xe X :Sup|< X, y>|§1}.
yeB

The bipolar set of subset A < X , often denoted by A™ is the set
A* = (A") ={xe X :[(x,y)|<1, vy e A}={xe X :sup{[(x,y) | <1}

yeA’
It is clear to show that Ac A™.
In particular, if X is a Hausdorff locally convex space and Y = X ™, then

A ={feX :[f(x)|<1,vxeA} A" ={xex:|f(x)|<1,VfeA}

Theorem (3.19)
Let X be a Hausdorff locally convex space over F ,and let A,B < X

1.1f AcB,then B° < A°
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2.1f AecFand 1 #0,then (1A)° = 1'A°
3.1f A isasubspace of X ,then A’ isasubspace of Y and A° ={y €Y :<X,y>:O vx e A}

a A ={feX:f(X)<n

xeA
5. A’ is convex

6. A’ is weakly closed
Proof :

l.Let feB = feX*and|f(X)|SlforaIIXeB
Since AcB = |f(X)|S1 foral xeA = feA = B cA
2.since f(AX)=Af(x) = [fAX)|=]Af()|=4|f(X)] = [Af(X)|<lforall xe A = AyeA’
Since A0 = A () el'A = yel'A = (A cA'A
Similarly A7A° < (1A)° so that (1A)° = AMA°
3.Since A isabsorbs B = A, € F such that B < AA, whenever | A 2| 4, |
sSinne BcAA = (A cB° = A1'A°"cB° = A ciB° = B’ absorbs A°
a.Take D=[{f eX":[f(0)|<B

xeA

Let feA = feX and|f(X)|<lforal xeA= feD = A cD.

Similarlytoprove D A = D=A
5. Let f,ge A"and 0< A <1,then |f(X)|Sl forall X € A and |g(X)|S1foraII xeA
Since (Af +(1-2)g)(X)=AF(X)+(@—-2)g(X)
|(ﬂ,f +(1—/1)g)(x)|:|lf (x)+(1—/t)g(x)| s;t|f(x)|+(1—/1)|g(x)|s/1+1—/1=1
= Af+(1-A)geA = A isconvex set.

6. Since {f € X" f(X)|Sl} is weak closed , then A = ﬂ{f eX":

XxeA

f (X)| <1} is weak closed

Theorem (3.20)

Let X be a Hausdorff locally convex space over F , and let Ac X, then A™ = CY)(A w{0}) where the closure " —

taken in the weak topology.
Proof :

Let B=co(AU{0}) = B is smallest closed convex set contained A, Since A’ is closed convex set in Y

= A" isclosed convex s setin X contained A= B c A™.We havetoshowthat A — B

Since A" =B° = A" =B”.Toshowthat B* = B

Let us assume that there exists an X, € B™ such that X, & B. By second separation theorem, there exists f, € X such
that |f0(X)| >1 and |f0(X)| <1 forall xe B

Since |f0(x)| <1l for all xeB, ten f,eB", but |f0(xo)| >1, then X ¢ B™. This contradiction

B cB = A"cB = A" =B

Corollary (3.21)
Let X be a Hausdorff locally convex space over F

1. 1f M isasubspace of X ,then M™ =M
2. If Ac X ,then A™ = A°
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Proof :

1.SinceMcX = M” 2(5(M w{0})

Since M isasubspace, then 0cM = M U{0}=M = M~ =co(M)

Since M is asubspace , then M isconvexset = co(M)=M = M~ =M

2.Let B=A° = A =(A%)® =B® =CoB

since A% isconvexset = B isconvexset = CoB=B = A" =B isconvex set

since A® isweakclosed = B isweakclosedset = B=B = A®-B=A°
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