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Abstract In this work, we presented the concept of  graded fuzzy topological linear spaces and proved some of the properties related to them. 

We also presented the concept of polar and bipolar sets in this spaces, and we proved the properties of these sets. Finally, we proved the 

bipolar theorem and the result associated with it. 

 

1- Introduction 

Many authors like Felbin [1], Cheng and mordeson [4], Bag and Samanta [5], Sadeqi and Yaqub Azari [7], and so on started to later, 

Xiao and Zhu [9], Fang [6], Daraby et.a ([1],[8]) redefined, the idea of Felbin's [2] studied various properties of it is graded fuzzy 

topology structure.In this paper, we introduce the concept of graded weak topological space as a generalization of usual weak 

topology we prove that the graded weak fuzzy topology is not equivalent with the fuzzy topology. A consequence of the Hahn-

Banach theorem is the classical bipolar theorem which states that the bipolar of a subset of a l ocally convex  space equals its 

closed convex hull. 

The bipolar theorem is a theorem in functional analysis that characterizes the bipolar (i.e. the polar of the polar) of a set.  In 

convex analysis, the bipolar theorem refers to a necessary and sufficient conditions for a cone to be equal to its bipolar. The 

bipolar theorem can be seen as a special case of the Fenchel–Moreau theorem. 

In section 3.intrsction Ming 1991 and puri and Rales 1983 ,Zhang initiated the notion of yin yang Bipolar fuzzy set as any 

extension of fuzzy set ,2011 introduce the concept of bipolar fuzzy graphs[11] ,Al gham detail 2018 multi-criteria decision –

making methods in bipolar fuzzy environment[10] .some properties in bipolar in graded fuzzy . 

 

2. Weak Topology on Graded Fuzzy Topological  Linear Spaces 

Definition (2.1) 

Let X  be any set . A function : X     is called a )gradation (fuzzy topology if  

 1. (0) (1) 1     

 2. ( ) min{ ( ), ( )}A B A B     for all , XA B   

 3. ( ) min ( )A A 




 




   for all 
XA    

  The real number ( )A  will be called the degree of openness of the fuzzy set A .  

 The set X together with the fuzzy topology  is called a gradation  fuzzy topological space  and is denoted by ),( X  or 

simply X . 

Definition (2.2) 

Let 1  and 2  be two gradation fuzzy topologies on the same set X  ,we say that 1 is stronger than 2  if 1 2( ) ( )     

for every 
X  and denoted by  1 2  . i.e. 

 Let 1  and 2  be fuzzy topologies on a set X  . Then 1  is finer than 2  denoted by 1 2    if 2 1( ) ( )A A   for all 

XA  

Remark (2.3)  

If T is an ordinary topology on a set X , then the induced gradation fuzzy topology on X  is given by 

1( ) { : }XT A A T


      . 

Definition (2.4) 

Let 1( , )X   and 2( , )Y   be fuzzy topological spaces . A function :f X Y  is called fuzzy continuous if  

1

1 2( ( )) ( )f A A     for every  
YA . 
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Theorem (2.5) 

Let X  be a set, 1( , )Y   a graded fuzzy topological space. Then there exists a graded topology 1  on X  such that the function 

1 2: ( , ) ( , )f X Y  is  a  fuzzy continuous. 

Proof : 

Let 
1{ ( ) : }Yf B B G  . then G  is a family of fuzzy subsets of  X . 

 For a given AG , let 
1{ : ( )}Y

AP B A f B    and define 1 2( ) sup{ ( ) : }AA B B P    

It is obvious that { : }X Y

AP A     and 
1

1 2( ( )) ( )f B B    for every  
Y   

Now to prove 1 :  G  satisfies the axioms of definition (2.1). 

1. it is obvious that 
10 (0)f  G , 

11 (1 )f Y G  and (0) (1) 1    

2.Let 1 2,A A G , then 1 2A A A G    and moreover, 
1 21 2 1 2{ : , }A A AP B B B P B P    . 

Therefore 
1 21 2 2 1 2 1 2( ) sup{ ( ) : } sup{ ( ) : , }A A AA B B P B B B P B P         

1 2 1 22 1 2 2 1 2 2 1 1 2 2 2

1 1 1 2

sup{min{ ( ), ( )}: , } min{sup{ ( )}: },sup{ ( )}: }

min{ ( ), ( )}

A A A AB B B P B P B B P B B P

A A

   

 

     


 

1 1 2 1 1 1 2( ) min{ ( ), ( )}A A A A    . 

3. let A G  . In a similar way we can show that 
1 2 1( ) min{sup ( ) : } min ( )AA B B P A

   
 



  
 



    

Thus 1 :  G  satisfies the axioms of definition (2.1). 

Now we extend 1  to a mapping 1 : X     by letting 1( ) 0A   for all AG . 

It is easy to check that the function 1  thus defined is indeed a graded fuzzy topology.  

Moreover, from the construction it is clear that 1  is the weakest fuzzy topology on X  making the mapping 

1 2: ( , ) ( , )f X Y   fuzzy continuous. 

Theorem (2.6) 

Let X  be any nonempty set and let{( , ) : }a aY a A be a family of  graded fuzzy spaces and consider for each aA , a 

function  :a af X Y  . Let  : X

a     be the graded fuzzy topology on X  for af , and let the function : X     be 

defined by ( ) inf{ ( ) : }A A     where 
XA . Then   is graded fuzzy topology on X . 

Proof :  

 Let 1 2, XA A   

 Since 1 2 1 2 1 2( ) inf{ ( ) : } inf{min{ ( ) ( )}: }a aA A A A a A A a        A A  

1 2 1 2min{inf{ ( ) : },inf{ ( ) : }} min{ ( ), ( )}a aA a A a A A      A A  

2. let  
XA   

Since 

( ) inf{ ( ) : } inf{min ( ) : }: } min{inf{ ( ) : }: }

min{ ( ) : }

a a aA A a A a A a

A

   

 



     

 

 

       

 

A A A
  

Hence   is a graded fuzzy topology on X . 

Remark (2.7)  

It is clear from theorem (2.5) and from the construction of   in theorem (2.6) that it is the weakest fuzzy topology on X  for 

which all function  : ( , ) ( , )f X X    are fuzzy continuous. This fuzzy topology   will be called the initial fuzzy 

topology for the family of mappings { : , }f X X    . It is called the weak topology on X generated by the 

{ }f   's and we denote it by  ( ,{ } )X f     or denoted by ( , )X F  where { : , }f X X    F  
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Theorem (2.8)    

Let{ }    be an arbitrary collection of graded fuzzy topologies on a set X and ( , )Y  
any anther graded fuzzy topological 

space. If the function : ( , ) ( , )f X Y    is fuzzy continuous for every  ,then : ( , ) ( , )f X Y    is fuzzy 

continuous  function where inf 


 


 . 

Proof : 

            Let  
YA , since : ( , ) ( , )f X Y    is fuzzy continuous, then 

1

2( ( )) ( )f A A    

for  , so 
1

2inf{ ( ( )) : } ( )f A A      

Since inf 


 


 , then 
1

2( ( )) ( )f A A     ,then : ( , ) ( , )f X Y    is fuzzy continuous . 

Theorem (2.9) 

If  has the weak topology induced by a collection { : }f    of functions :f X X  , then :f Y X  is fuzzy 

continuous iff  f f  is fuzzy continuous for each    

Proof : 

Suppose that :f Y X  is fuzzy continuous 

Since :f X X   is fuzzy continuous for each   , then :f f Y X   is fuzzy continuous for each   . 

Remark (2.10)  

Let 1F  and 2F  be family of functions from X  into X   ,   such that 1 2F F  .Then 1( , )X F  is weaker that 

2( , )X F . 

Theorem (2.11) 

Let ( , )X   be a topological space and { : , }f X X    F  be a family of continuous functions from X  into 

the topological space ( , )X   . Then ( , )X F  , the weak topology  

generated by F  is weaker  than  .  

 

3. Bipolar Sets     

 Definition (3.1) 

Let YX , and Z  be linear spaces over F and a function ZYXG :  associate to each  Xa  and to each Yb  the 

functions ZXGb : and  ZYGa :  by defining )(),()( aGbaGbG ba  . We say that G  is a bilinear 

function if every aG  and every bG  are linear. 

Theorem(3.2) 

 Let X and Y  be linear spaces over F and a function FYXG :  is a bilinear functional. Put  

},0),(:{ YyyxGXxN X   and },0),(:{ XxyxGYyNY   

Then XN  is a subspace of X  and YN  is a subspace of . XN and YN  are called null spaces. 

Proof : 

      Since  XX NNGG 00)0()0,0(   

Let XNxx 21,  and F, . For all Yy  

0)0()0(),(),()()()(),( 21212121   yxGyxGxGxGxxGyxxG yyy

XX NNxx  21   is a subspace of X . Similarly to prove YN  is a subspace of . 

Definition (3.3) 

 Let X and Y  be linear spaces over F . A bilinear functional  FYXG :  is  called a non-degenerate  if }0{XN

and }0{YN . 

 

Remarks (3.4) 

1. }0{XN , ,means that : Xxx  ,0 , Yy  such that 0),( yxG , 

Y

Y
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     i.e. if 0),( yxG  for all Yy , then 0x  

2. A non-degenerate bilinear functional FYXG :  will be denoted by , , 

     i.e. yxyxG ,),(   

Definition (3.5) 

   Tow linear spaces YX , over F  are said to be dual spaces, if there is a non-degenerate bilinear functional  

FYXG : . 

Example (3.6) 

   Let X  be a linear space over F . Show that XX ,   are dual spaces. 

Proof : 

     ,:{ FXX       is linear functional } . Define :G X X F   by )(,),( xxxG     for all 

X   and for all Xx . 

It is clear to show that G  is a bilinear functional 

},0)(:{},0),(:{ XxXxXxGXxNX
   

It is clear to show that XN  is a subspace of X  and }0{XN  

{ : ( ) 0, } {0}X XN X x x X N  
        G  is a non -degenerate bilinear functional , then 

XX ,   are dual spaces. 

Theorem (3.7) 

 Let X  and Y be dual linear spaces over F . For any element , define the functional FXy :  by 

yxxy ,)(   for all Xx . 

1. y  is linear functional 

2. }:{ YyF yY    is a subspace of X   

3. YFY   

Proof : 

1. Let Xxx 21,  and F,  

)()(,,,)( 21212121 xxyxyxyxxxx yyy   y  is linear 

 2.  since    YYy FFY 000   

        Let  Yyy F
2

,
1
  and F,  

))(())((

)]()([)]()([

)]()([)]()([

))(())(())((

2211

222111

22112211

221122112211

2121

2121

2211

2121

xx

xxxx

xxxx

xxxxxx

yyyy

yyyy

yyyy

yyyy

















 

YYyy FF 
21

  is a subspace of X   

3. Define YFYH :  by yyH )(  for all Yy  

(i) let Yyy 21,  and F, . For all Xx  

      
)))(()(())(()()(

,,,)())((

21

212121

2121

21

xyHyHxxx

yxyxyyxxxyyH

yyyy

yy



 



 
       

HyHyHyyH  )()()( 2121    is linear  

 (ii) let Yyy 21,  such that )()( 21 yHyH   

)()(
2121

xx yyyy    for Xx    21 ,, yxyx   for    Xx  

),(),( 21 yxGyxG   for Xx    0),( 21  yyxG   for Xx  

Yy
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YNyy  21    

Since 2121 0}0{ yyyyNY    H  is one to one  

(iii)      Let ( )y Y yF y Y H y H         is onto. 

So that  YFY   

Definition (3.8) 

Lea A subset A  of a linear space X  over F  . We say that A  is 

1. Symmetric if AA  , 

      so that  AA   is symmetric for any subset A  of X  

2.Balanced if AA  for every F  with 1  

3. Absorbing if for every Xx , there exists 0   such that Ax  . 

4. Convex if Ayx  )1(   for every Ayx ,  , 10    .Or equivalently if  AAA  )1(      

    for all 10   . 

Definition (3.9) 

  Let A  be a subset of a linear space X  over F . The smallest convex set in X  which contains A  is called the convex hull  

(or generated) by A  and denoted by  Aconv . 

It is clear to show that 

1. )(AconvA  

2. )(Aconv = intersection of all convex sets of X  which containing A  

3. A  is a convex  iff )(AconvA   

Definition (3.10) 

A topological linear space X  is called a locally convex if there is a convex local base,  

i.e. there is a  local base   at 0  in X such that every  members of   are convex sets.  

(every open set in X is a union of convex open sets) 

Definition (3.11) 

Let X be a real linear space. A partial order relation   on X  is call linear order if the following axioms are satisfied 

1. zyzxyx    for all   , ,x y z X  

2. yxyx       for all ,x y X and   , 0  . 

   A real linear space endowed  with a linear order is called an ordered linear space.      

  An element x  of an ordered linear space X  is said to be positive if 0x , and negative if  

   0x .  

  The set of all positive elements of an ordered linear space X with be denoted by K , i.e.  

{ : 0}K X x X x    , , where 0 denotes the zero element in X . 

    K  is called the positive cone  (or simply the cone) of X . 

  We write ( , )X K  to denote an order linear space X  with positive cone K . 

Theorem (3.12)  

1. Let X  be an ordered linear space with positive cone K . Then  

a. K  is a convex  cone ( or wedge) of X , i.e. K K K    and  K K   

b. ( ) {0}K K    

2. Let K  be a convex cone of a real space X  such ( ) {0}K K   , then x y  if y x K    define an order relation   

on X for which X  become an ordered linear space with K  as positive cone.  

Definition (3.13) 

A  subset A  of an ordered linear space X  over an ordered field F  is called  

1. A convex cone if  A  is  closed under linear combinations with positive coefficients. 

2. A cone (or sometimes called a linear cone ) if for each x A  and positive scalar F ,  

    then x A  . 

Note that : A cone A  is convex cone if x y A    , for any positive scalars ,   and ,x y A . i.e. A cone A  is 

convex cone if A A A  . 
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Definition (3.14) 

  A  graded fuzzy topology   on a linear space X  over F  is called a graded fuzzy linear topology if the functions  

 :f X X X  ,which defined by  ( , )f x y x y   for all ,x y X  and  

 :g F X X   , which defined by  ( , )g x x   for all x X  and for all F . 

are continuous, when F  is equipped with the graded fuzzy topology induced by the usual topology, X X  and F X  are 

the corresponding product graded fuzzy topologies. 

 

 A linear space X  with a graded fuzzy linear topology   , denoted by the pair ( , )X   is called graded fuzzy topological 

linear  space (abbreviated to DFTLS). 

 

Definition (3.15) 

Let X  and Y be dual graded fuzzy topological linear spaces over F .  The weakest topology on X , for which all functional 

y  are continuous ,is called the weak topology 

on X  and it is denoted  by ),( YX , the member of this topology is weakly open sets. Similarly: one may define the weak 

topology ),( XY  on Y . 

Remark (3.16) 

),( YX  is a locally convex topology as it is defined by the family YyyP }{  of all seminorms yxxPy ,)(    

 It is clear to show that : A subset of X   is weakly open if for every Ax 0 , there is an 0 and there are 

Yyyy n ,,, 21   such that   

AyxxXx i

n

i




},Re:{
1

0   

 Theorem (3.17) 

Let X  and Y be dual graded fuzzy topological linear spaces over F . Any weakly continuous linear functional f  on X  has 

a unique representation of the form  yxxf ,)(   for all Xx  

Proof :  

      There exists Yyi   , ni ,,2,1   such that   

},,2,1:,max{)( niyxxf i   

Denoting  niyxxf ii ,,2,1,,)(   . We have  0)( xf  whenever nixf i ,,2,10)(   

Hence f  is a linear combination of nif i ,,2,1    

Definition (3.18) 

Let X  and Y be dual graded fuzzy topological linear spaces over F , and let XA . The polar set of A  is denoted by 
A  

and defined as :  

{ : , 1, } { : sup , 1}
x A

A y Y x y x A y Y x y


             

while the premolar of  subset B Y  is { : , 1, } { : sup , 1}
y B

B x X x y y B x X x y


            .  

The bipolar set of subset XA , often denoted by A  is the set  

0( ) { : , 1, } { : sup{ , 1}
y A

A A x X x y y A x X x y


          

It is clear to show that 
AA . 

 In particular, if X  is a Hausdorff locally convex space and 
 XY , then   

{ : ( ) 1, } { : ( ) 1, }A f X f x x A A x x f x f A           

 

Theorem (3.19) 

 Let X  be a Hausdorff locally convex space over F , and let XBA ,  

1. If BA , then 
 AB   
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2. If F and 0 , then 
 AA 1)(    

3. If A  is a subspace of X , then 
A  is a subspace of Y  and { : , 0 }A y Y x y x A      

4. { : ( ) 1}
x A

A f X f x



    

5. 
A  is convex  

6. 
A  is weakly closed 

Proof :  

 1. Let f B f X     and ( ) 1f x   for all Bx  

       Since  ( ) 1A B f x     for all Ax  f A B A     

 2. Since ( ) ( ) ( ) ( ) ( )f x f x f x f x f x           ( ) 1f x   for all Ax  
Ay   

      Since 
 AAAyAy 1111 )()(0     

       Similarly 
 )(1 AA  

 so that 
 AA 1)(    

3. Since A  is absorbs B F0  such that 0AB   whenever |||| 0   

     Since 
 BABABAAB   1)(    

B  absorbs 
A  

4. Take  { : ( ) 1}
x A

D f X f x



    

Let f A f X     and ( ) 1f x   for all f D A D    .  

   Similarly to prove 
 ADAD   

5. Let ,f g A  and  10    , then ( ) 1f x   for all x A  and ( ) 1g x   for all x A  

Since ( (1 ) )( ) ( ) (1 ) ( )f g x f x g x          

( (1 ) )( ) ( ) (1 ) ( ) ( ) (1 ) ( ) 1 1f g x f x g x f x g x                    

(1 )f g A A        is convex set. 

6. Since { : ( ) 1}f X f x   is weak closed , then { : ( ) 1}
x A

A f X f x



    is weak closed 

Theorem (3.20) 

 Let X  be a Hausdorff locally convex space over F , and let A X , then })0{(  AcoA 
 where the closure ""   

taken in the weak topology. 

Proof : 

       Let BAcoB  })0{(  is smallest closed convex set contained      A , Since 
A  is closed convex set in Y

A  is closed convex s           set in   X  contained A
AB  . We have to show that BA 

             

Since 
 BABA  . To show that BB 

 

Let us assume that there exists an 
Bx 0  such that Bx 0 . By second separation theorem, there exists 0f X   such 

that 0 ( ) 1f x   and 0 ( ) 1f x   for all Bx  

Since 0 ( ) 1f x   for all Bx , then 0f B , but 0 0( ) 1f x  , then 


 Bx  . This contradiction 

BABABB  
 

 

Corollary (3.21) 

Let X  be a Hausdorff locally convex space over F , 

1. If M  is a subspace of X , then MM 
  

2.  If XA , then 
 AA   

 

 

Ax
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Proof : 

1.  Since M X      ( {0})M co M    

Since M  is a subspace , then 0 M  {0}M M    ( )M co M    

Since M  is a subspace , then M  is convex set ( )co M M   M M   

2. Let 
0 000 0 00 00( )B A A A B CoB      

 Since 
0A  is convex set  B  is convex set  

000CoB B A B      is convex set 

 Since 
0A  is weak closed   B  is weak closed set  B B  000 0A B A    
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