PCR-RFLP Analysis of Insulin-Like Growth Factor 2 Gene Polymorphisms in Two Commercial Broiler Chicken Strains (Cobb 500 and Hubbard F-15) and Their Associations with Performance Traits

Ali S. Al-Hassani¹, D. H. Al-Hassani², I. A. Abdul-Hassan³

1, 2 Department of Animal Production / College of Agricultural Engineering Sciences / University of Baghdad / Iraq. 3 Genetic Engineering and Biotechnical Institute for Postgraduate study / University of Baghdad / Iraq.

ali@coagri.uobaghdad.edu.iq

ABSTACT

In two commercial broiler breeds (Cobb 500 and Hubbard F-15), the polymorphisms of the chicken insulin-like growth factor 2 (IGF2) gene were studied. A total of three hundred avian blood samples were obtained. Using a fast salt-extraction technique, genomic DNA was isolated. Using polymerase chain reaction, 1146 bp fragments of the gene were amplified (PCR). The amplified fragments were subjected to restriction enzyme digestion using HinfI endonuclease enzyme, and the digested products were separated on a 2% agarose gel. The findings indicated two alleles T and C for the target locus, with respective frequencies of 73.3% and 26.7%. Three distinct genotype variations, TT, TC, and CC, were found, with genotype frequencies of 59.1 percent, 28.4 percent, and 12.5 percent, respectively. The test based on actual and anticipated frequencies of various genotypic variances of the IGF2 gene revealed that the divergence from Hardy-Weinberg equilibrium was not significant (P≤0.01) in commercial broiler breeds (Cobb 500 and Hubbard F-15) chickens. In addition, it is shown that birds with genotype TC had a greater body mass at 8 weeks of age compared to those with genotypes TT and CC. It was determined that the IGF2 gene exhibited a significant degree of variability and might be regarded a possible selection breeding genetic marker in and programs for poultry.

KEY WORDS CHICKEN; PCR; POLYMORPHISM; IGF2

INTRODUCTION

Insulin like growth factor 2 (IGF2) is a mutagenic polypeptide with an insulin-like structure that controls chicken primary growth. The genes for insulin-like growth factor are situated on chromosome 5, which has two intron and three exon regions [1, 2]. The introns and exons of the chicken IGF2 gene resemble those of the mouse and human IGF2 genes [1]. Composed of 187 amino acids, comprising 24 signal peptides, 67 IGF2 peptides, and 96 amino acids for its C-terminal portion, chicken IGF2 has 33 amino acids in common with its rat counterpart and 82 amino acids with its human counterpart [1]. Numerous studies on various mammalian species have indicated that IGF-1 has a wide effect on growth [3]. Similar to mammals, the function of the IGF system in chickens [3, 4].

Chicken tissues are stimulated to develop and differentiate by insulin-like growth factors. These variables primarily influence the rate of protein synthesis, DNA synthesis, and substrate transition. In addition to and altering chicken body muscle development, insulin-like growth hormones may also impact ovulation rates and ovarian follicle extension [4]. In addition to acting on insulin-like receptors, this gene decreases blood glucose [5]. Compared to embryonic *IGF2* gene transcripts, there are significantly less IGF2 peptides in chicken embryos, as shown by gene expression [6]. Two of the ten kinds of IGF1-binding proteins found in mammals are significantly expressed in chickens. Studies in vitro have shown that

myoblasts and satellite cells in chicken embryos release binding proteins [7]. The chicken IGF-1, IGF-2, and IGF-3 are polypeptide hormones that contribute to their function by binding to particular type 1 receptors [8]. There is evidence that IGF2 gene inheritance is paternal in several placental animals [9, 10]. IGF2 influences the hens' development rate, body composition, and lipid metabolism [3, 11, 12]. Insulin-like growth factors have a significant influence on the embryonic development and differentiation of several animal species. In addition, research has shown that IGF is the primary gene responsible for the overweight of hens [4, 13, 14, 15]. IGFs work in accordance with the paracrine system of the body [16]. Comprised of peptide hormones, cell surface receptors, and binding proteins, the IGF system is a complicated system. IGF-1 and IGF-2 hormones bind to insulinlike growth factor receptor 1 and insulin receptor, respectively, and activate the intrinsic and main actions of tyrosine kinase [16]. IGF2 has also shown to affect the wasting of muscles in rats, pigs, and cows, as well as the lipid metabolism in poultry [17]. IGF2 is a molecular marker for the selection of hens with low abdominal fat [13, 14, 15], since it is the primary gene influencing chicken obesity. In this study, the polymorphism of the promoter region of Insulin-like growth factor in commercial broiler breeds (Cobb 500 and Hubbard F-15) chickens were analyzed using the PCR-RFLP technique, and the allele and genotype frequencies, as well as the association between these polymorphisms and chicken growth traits, were determined.

MATERIALS AND METHODS

A random selection of three hundred chicks was used from the commercial broiler breeds (Cobb 500 and Hubbard F-15) chickens. The breeding facility provided the performance characteristic data, including their weight at 1st to 42 days of age. Blood was extracted from the wing veins of chickens and preserved in EDTA-coated sterile tubes containing 1.5 ml. The blood samples were transported to the college of veterinary medicine's central laboratory. 200 ml of blood were used for genomic DNA extraction. The DNA was extracted using the rapid salt-extraction technique [18]. A primer combination consisting of (IGF2-F) 5'-CCA GTG GGA CGA AAT AAC AGG AGG A-3' and (IGF2-R) 5'-TTC CTG GGG GCC GGT CGC TTC A-3' was used to amplify 1146 bp fragment of the IGF2 gene [18]. PCR was performed in 25 l reaction volume comprising 50 mM of dATP, dTTP, dCTP, and dGTP, 0.5 mM of each primer, 2.5 l of 10X PCR buffer , 2 mM magnesium chloride, 2.5 U of Taq DNA polymerase, and 50 ng of extracted DNA as template. 35 cycles of denaturation at 94°C for 1 minute, annealing at 67°C for 3 minutes, elongation at 72°C for 3 minutes, and final extension at 72°C for 5 minutes comprised the amplification procedure. The PCR products were separated on an agarose gel containing 1.5 percent agarose, and the gel was imaged using UV trans-illumination. With HinfI restriction endonuclease, PCR products were

digested. In 15 1 mixtures comprising 5 1 of PCR product, 5U Hinf I endonuclease, and 1.5 l Hinf I buffer, the digestion process was carried out. The mixes were incubated for two hours at 37 °C. The fragments of digested DNA were then run on a 1.5 percent agarose gel and imaged using UV trans-illumination. Using PopGene32 version 1.23 [19], the allelic and genotypic frequencies and observed and anticipated heterozygosity's were calculated. The Hardy-Weinberg equilibrium test was also conducted using PopGene 32. The homozygosity percentages of and heterozygosity were determined.

Results and Discussion

Using the given primers, PCR products of size 1146 bp were produced satisfactorily. All extracted genomic DNA from chicken blood samples generated a PCR result with a single, specific band and no nonspecific bands. Consequently, the PCR results were used immediately for RFLP analysis. Figure 1 depicts RFLP patterns generated by HinfI digestion of PCR products derived from the *IGF2* gene. Two alleles, T and C, with respective frequencies of 73.3 and 26.7 percent, and three genotypes, TT, TC, and CC, with respective

frequencies of 59.1 percent, 28.4 percent, and 12.5 percent, were found (Table 1). The TT homozygous genotype was discovered to be the most common genotype.

Table 1 displays the genetic variability of IGF-2 exons 2 and 3 in commercial broiler breeds (Cobb500 and Hubbard F-15).

Genetic diversity statistics	Valu e	Allele frequencies	Value	Genotype Frequencies	Value
NA	2	Т	0.733	TT	0.591
NE	1.4	С	0.260	TC	0.284
Observed homozygosity	0.715 9	-	-	CC	0.125
Observed heterozygosity	0.284 1	-	-	-	-
Expected homozygosity	0.606 3	-	-	-	-
Expected heterozygosity	0.393 7	-	-	-	-
Average heterozygosity	0.391 5	-	-	-	-
Nei Heterozygosity	0.391 5	-	-	-	-

NA = observed number of alleles, NE = effective number of alleles

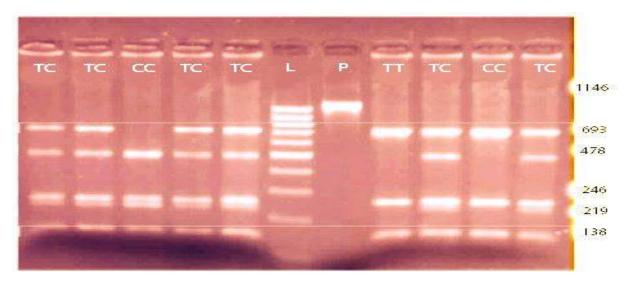


Figure 1 depicts RFLP patterns generated by Hinf1 enzyme cutting and electrophoresed on 2% agarose gel. L the molecular marker for German Ferments (50 bp or more), There are three types of genotype, TT, TC and CC genotypes

Age	Eastan		Genotype			p	
(weeks)	Factors		TT	ТС	СС		
		Cobb	67.0±2.4 b	75.2±1.7 a	67.3±1.8 b	0.05	
	Breed	Hubbar	68.2±2.2 a	65.6±1.0 a	65.3±1.3 a	NS	
		d					
1	р		0.05	0.05	0.05		
	Corr	Male	68.2±2.8 a	70.2±1.6 a	68.2±1.3 a	NS	
	Sex	Female	67.2±2.0 a	64.7±1.3 a	68.2±1.2 a	NS	
	р		NS	NS	NS		
	Breed	Cobb	153.3±6.2 a	152.0±5.4 a	153.4±5.6 a	NS	
		Hubbar	128.2±5.8 b	126.3±5.2 b	127.0±5.3 a	NS	
		d					
2	p		0.05	0.05	0.05		
	Sex	Male	152.0±6.5 a	153.6±5.3 a	152.6±5.3 a	NS	
		Female	128.2±6.6 b	126.4±5.4 b	127.5±5.4 b	NS	
	p		0.05	0.05	0.05		
	1	Cobb	406.4±12.0 b	406.3±12.5 b	407.6±12.5 b	NS	
3	Breed	Hubbar	418.7±12.2 a	420.0±12.0 a	417.5±12.0 a	NS	
		d					
	p		0.05	0.05	0.05		
	G	Male	416.4±12.6 a	420.6±12.5 a	416.3±12.3 a	NS	
	Sex	Female	406.9±12.0 b	408.6±12.9 b	407.0±12.6 a	NS	
	p		0.05	0.05	0.05		

Table 3. The effect of different polymorphisms in 5'UTR of IGF-2 gene on weekly body weight
(gram) in both sexes of Cobb and Hubbard broiler breeds. (Mean ± SE).

I		Cobb	856.2 ± 12.8 b	857.8 ± 12.6 b	854.6 ± 12.3 b	NS
	Breed	Hubbar	876.3 ± 12.7 a	877.3 ± 12.4 a	875.3 ± 12.0 a	NS
		d				
4	р		0.05	0.05	0.05	
l		Male	876.0 ± 12.0 a	878.7 ± 12.5 a	876.5 ± 12.5 a	NS
l	Sex	Female	856.2 ± 12.2 b	$858.6 \pm 12.4 \mathbf{b}$	$855.5\pm12.0~\textbf{b}$	NS
l	p		0.05	0.05	0.05	
		Cobb	1343.2 ± 20.0	1342.2 ± 20.3	1340.0 ± 20.6	NS
	Breed		b	b	b	
	Dieeu	Hubbar	1435.0 ± 20.3	1438.9 ± 20.2	1436.6 ± 20.4	NS
		d	a	a	a	
5	p		0.05	0.05	0.05	
5		Male		1440.3 ± 20.6	1438.2 ± 20.6	NS
	Sex		20.5 a	a	a	
	DUA	Female	1348.6 ± 20.2	1345.2 ± 20.3	1343.7 ± 20.3	NS
			b	b	b	
	p	1	0.05	0.05	0.05	
		Cobb	1775.3 ± 25.6	1774.2 ± 25.5	1773.2 ± 25.5	NS
	Breed		b	b	b	
	Diccu	Hubbar	1822.2 ± 25.4	1828.5 ± 25.3	1826.6 ± 25.3	NS
		d	а	a	a	
6	p		0.05	0.05	0.05	
0		Male	1822.1 ± 25.6	1828.7 ± 25.3	1826.3 ± 25.6	NS
	Sex		a	a	a	
		Female		1774.0 ± 25.0	1776.8 ± 25.2	NS
			b	b	b	
	p		0.05	0.05	0.05	
		Cobb		2366.0 ± 38.2	2363.4 ± 38.0	NS
7	Breed		b	b	b	
		Hubbar	2763.2 ± 38.0	2768.9 ± 38.6	2761.8 ± 38.3	NS
		d	a	a	a	
	p				0.05	110
		Male	2763.2 ± 38.2	2768.2 ± 38.7	2761.3 ± 38.0	NS
	Sex		a	a	a	110
		Female	2362.8 ± 38.8	2359.0 ± 38.5	2360.3 ± 38.2	NS
			1	1		
	p		b 0.05	b 0.05	b 0.05	

IGF-2 =insulin-like growth factor-2; SE= standard error; P= probability; 0.05= significant at $P \le 0.05$; NS= no significant among genotypes within each breed and sex, also, between breeds and sexes within each genotype.

Hubbar 28.0 ± 1.33 a 28.5 ± 1.33 a 28.3 ± 1.32 a 1 p NS NS NS NS NS NS 1 generation Male $28.4\pm 1.33a$ $28.6\pm 1.36a$ 28.2 ± 1.36 1 p NS NS NS NS NS NS (8-14) Breed Cobb 58.5 ± 4.43 b 60.5 ± 4.41 b 55.4 ± 4.42 b 1 p 0.05 0.05 0.05 0.05 Sex Male $76.62\pm 4.47a$ $78.4\pm 4.45a$ $75.5\pm 4.45a$ 1 p 0.05 0.05 0.05 0.05 0.05 0.05 Sex Male $76.62\pm 4.47a$ $78.4\pm 4.45a$ $75.5\pm 4.45a$ 1 p 0.05 0.05 0.05 0.05 0.05 0.05 (15-21) Breed Cobb $256.6\pm 6.32 b$ $258.4\pm 6.32a$ $285.5\pm 6.35 b$ 1 p 0.05 0.05 0.05 0.05	ge	Factors		Genotype			p
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				TT	TC	CC	
$ \begin{array}{ c c c c c c c c c c } \hline \mathbf{d} & \mathbf{NS} & \mathbf$	-7)	Breed	Cobb	25.5±1.32 a	26.6±1.32 a	25.6±1.32 a	NS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				28.0±1.33 a	28.5±1.33 a	28.3±1.32 a	NS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			d				
Female $25.7\pm 1.32a$ $26.5\pm 1.32a$ $25.6\pm 1.33a$ 1 p NS NS NS NS NS (8-14) Breed Cobb $58.5\pm 4.43 b$ $60.5\pm 4.41 b$ $55.4\pm 4.42 b$ 2 Hubbar $76.8\pm 4.47 a$ $78.7\pm 4.45 a$ $75.5\pm 4.45 a$ (15-21) Breed Cobb $256.5\pm 15.5 a$ $256.5\pm 15.5 a$ $257.5\pm 6.35 b$ <t< td=""><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td></t<>			<u> </u>				
p NS NS NS NS (8-14) Breed Cobb 58.5 ± 4.43 b 60.5 ± 4.41 b 55.4 ± 4.42 b 1 Hubbar 76.8 ± 4.47 a 78.7 ± 4.45 a 75.5 ± 4.45 a 1 p 0.05 0.05 0.05 0.05 Sex Male $76.62\pm 4.47a$ a $78.7\pm 4.45a$ a $75.5\pm 4.45a$ a 1 p 0.05 0.05 0.05 0.05 0.05 (15-21) Breed Cobb 256.6 ± 6.32 b $258.4\pm 6.32a$ a 257.5 ± 6.35 b 1 Hubbar $284.8\pm 6.35a$ a $288.8\pm 6.32a$ a $285.4\pm 6.32a$ a		Sex					NS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Female	25.7±1.32a	26.5±1.32a	25.6±1.33a	NS
Hubbar d 76.8 ± 4.47 a d 78.7 ± 4.45 a 75.5 ± 4.45 a f 75.5 ± 4.45 a f 75.5 ± 6.35 b f 75.5 ± 6.35 c f 75.5 ± 6.35 c f 75.5 ± 6.35 c f $75.5\pm6.3\pm10.75$ a f $75.5\pm6.3\pm10.75$ a f $75.5\pm6.3\pm10.75$ a f $75.5\pm6.3\pm10.75$ a f $75.5\pm6.3\pm10.75$ a f $75.5\pm6.3\pm10.75$ a f $75.5\pm6.3\pm15.55$ a f 75.5 ± 15.57 a f 75.5 ± 15.57 a f <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8-14)	Breed					NS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				76.8±4.47 a	78. 7±4.45 a	75.5±4.45 a	NS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p	u	0.05	0.05	0.05	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Male	76.62±4.47a	78.4±4.45a	75. 5±4.45a	NS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							NS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		p					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5-21)	-	Cobb	256.6±6.32 b	258.4±6.32 a	257.5±6.35 b	NS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,			284.8±6.35a	288.5±6.32a	285.15±6.31a	NS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				0.05	0.05	0.05	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							NS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		DUA					NS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		n	1 childre				110
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-28)	-	Cobb				NS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 20)	Diccu					NS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				100.5±11.7 14	101.2±11.73u	105.2±11.7 14	110
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		р		NS	NS	NS	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Sex	Male	460.4±11.74a	464.2±11.75a	463.2±11.74a	0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Female	453.5±11.78a	458.2±11.76a	452.0±11.73a	NS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		p		NS	NS	0.05	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9-36)	Breed	Cobb	480.7±15.52b	482.5±15.53b	557.3±15.56a	0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,		Hubbar	567.5±15.58a	562.2±15.52a	556.3±15.54a	NS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		p		0.05	0.05	NS	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Sex	Male	567.6±15.58a	562.2±15.58a	556.4±15.54a	NS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Female	481.7±15.57b	482.5±15.52b	557.5±15.56a	0.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.05	0.05	NS	
Hubbar 437.7±28.52a 439.7±28.50a 438.8±28.52a d	7-42)	-	Cobb	486.7±28.52a	483.7±28.50a	486.6±28.52a	NS
u	,		Hubbar	437.7±28.52a	-	_	0.05
p NS 0.05 0.05				NS	0.05	0.05	

Table 3. The effect of different polymorphisms in 5'UTR of IGF-2 gene on weekly body weight gain in both sexes of Cobb and Hubbard broiler breeds (gram). (Mean \pm SE).

	Sex	Male	486.7±28.52a	483.7±28.50a	486.7±28.52a	NS
		Female	437.7±28.52b	438.7±28.50b	438. 8±28.52a	NS
	p		0.05	0.05	0.05	
(43-49)	Breed	Cobb	608.0±72.62b	630.3±72.62a	607.2±72.62b	0.05
		Hubbar	773.3±76.62a	810.3±72.60a	770.0±72.65a	0.05
		d				
	p		0.05	NS	0.05	
	Sex	Male	772.3±76.62a	810.4±72.60a	770.2±72.65a	0.05
		Female	608.0±72.62b	630.3±72.62b	607.2±72.65b	0.05
	p		0.05	0.05	0.05	

IGF-2 =insulin-like growth factor-2; SE= standard error; P= probability; 0.05= significant at $P \le 0.05$; NS= no significant among genotypes within each breed and sex, also, between breeds and sexes within each genotype.

0.39 And 1.64 were the allele heterozygosity and allele effective size, respectively. The Chi-square test revealed the absence of the Hardy-Weinberg equation ($P \le 0.01$), showing the existence of allele and genotype frequency transformers between generations. The CC genotype considerably outperformed the TT and TC genotypes in terms of 7th week weight and puberty weight among the genotypes of the study group as shown in table (2) and also in table (3). Growth qualities are among the most significant economic features in poultry, which is why identifying genetic data of growthrelated genes in domestic animals is so useful for genetic selection and improvement through markerassisted selection. In hens, the IGF system induces liver glycogenesis and enhances DNA synthesis and tissue growth [3]. *IGF2* is a polypeptide hormone that regulates the division and differentiation of embryonic cells and is crucial to embryo development. In several animals, the gene is expressed throughout development. Until puberty, the transcriptional activity of the IGF2 gene is constant throughout the main embryonic phase, but diminishes in many organs, which influences growth [20]. Using candidate genes is an effective strategy for examining connections between gene economically variation and significant characteristics of domestic animals [21,22,23]. This research investigates the polymorphism of the IGF2 gene and its connection with growth parameters in commercial broiler chickens. It is demonstrated that

the IGF2 gene may be a candidate gene for growth and body characteristics, and its genotype is connected with phenotype, confirming its substantial effect on growth development findings and [20].Our corroborate the findings of [19] who found no connection between the single nucleotide polymorphism of the IGF2 gene and growth and feeding parameters. In contrast, they discovered a substantial correlation between these polymorphisms and average daily growth at a certain age. PCR-RFLP and DNA sequencing were used to find polymorphism in the exon 2 region of the chicken *IGF*2 gene in a separate investigation by [13, 14, 15]. We revealed that the CC genotype had superior 7-week growth puberty weight records and compared to the TT and TC genotypes. Consequently, the current study and prior research indicated that IGF2 might be a major gene influencing chicken obesity and could be employed as a genetic marker during the selection process.

CONCLUSION:

The polymorphisms of the chicken insulinlike growth factor 2 (*IGF2*) genes were analyzed in two popular broiler breeds. The results showed that the target locus had two alleles, T and C, with frequencies of 73.3% and 26.7%, respectively. There were three

different genotypes identified, each with a frequency 59.1%, 28.4%, and 12.5%. These genotypes were TT, TC, and CC. Comparison of observed and expected frequencies of several IGF2 gene genotype variants indicated that commercial broiler breeds (Cobb 500 and Hubbard F-15) did not significantly deviate from Hardy-Weinberg equilibrium (P>0.01). Furthermore, it is demonstrated that 7 weeks of age, birds of the genotype TC had a bigger body mass than those of the genotypes TT and CC also in the weight gain. Researchers found that there was a fair amount of variation in the IGF2 gene, suggesting that it could be used as a genetic marker in chicken selection and breeding.

REFERENCES

[1] Darling, D.C., P.M. Brickell, 1996. Nucleotide sequence and genomic structure of the chicken insulin-like growth factor II (*IGF*-II) coding region. General and Comparative Endocrinology, 102: 283-287.

[2] Yokomine, T., A. Kuroiwa, K. Tanaka, M. Tsudzuki, Y. Matsuda, H. Sasaki, 2001. Sequence polymorphisms, allelic expression status and chromosome locations of the chicken *IGF2* and MPR1 genes. Cytogenetics and Cell Genetics, 93: 109-113.

[3] McMurtry, J.P., 1998. Nutritional and developmental roles of insulin-like growth factors in poultry. Journal of Nutrition, 128: 302-305.

[4] Duclos, M.J., C. Beccavin, J. Simon, 1999. Genetic models for the study of insulin-like growth factors (*IGF*) and muscle development in birds compared to mammals. Domestic Animal Endocrinology, 17: 231-243.

[5] Froesch, E.R., J. Zapf, 1985. Insulin-like growth factors and insulin: comparative aspects. Diabetologia, 28: 485-493.

[6] Tylor, E.R., E.A. Seleiro, P.M. Brickell, 1991. Identification of antisense transcripts of the chicken insulin-like growth factor-II gene. Journal of Molecular Endocrinology, 7(2): 145-54. [7] Duclos, M.J., 2005. Insulin-like growth factor-I (*IGF-1*) mRNA levels and chicken muscle growth. Journal of physiology and pharmacology, 56(3): 25-35.

[8] Zhou, M., Z. Ma, W.S. Sly, 1995. Cloning and expression of the cDNA of the chicken cation-independent mannose-6phosphate receptor. Proceedings of the National Academy of Sciences, 92: 9762-9766.

[9] DeChiara, T.M., A. Efstradiatis, E.J. Robertson, 1991. A growth deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature, 345: 78-80.

[10] Killian, J.K., C.M. Nolan, N. Stewart, B.L. Munday, N.A. Andersen, S. Nicol, R.L. Jirtle, 2001. Monotreme *IGF2* expression and ancestral origin of genomic imprinting. Journal of Experimental Zoology, 291: 205-212.

[11] Beccavin, C., B. Chevalier, L.A. Cogburn, J. Simon, J.M. Duclos, 2001. Insulin-like growth factors and body growth in chickens divergently selected for high or low growth rate. Journal of Endocrinology, 168: 297-306.

[12] Tomas, F.M., R.A. Pym, J.P. McMurtry, G.L. Francis, 1998. Insulin-like growth factor (*IGF*)-I but not *IGF*-II promotes lean growth and feed efficiency in broiler chickens. General and Comparative Endocrinology, 110: 262-275.

[13] Li, Z.H., H. Li, Q.G. Wang, J.G. Zhao, Y.X. Wang, 2004. The Study on Correlation analysis of Single Nucleotide Polymorphism of *IGF2* Gene and Body Fatness Traits in Chicken. Agricultural Sciences in China, 3: 789-794.

[14] Ali, D. A., Al-Shuhaib, M. B. S., Farhadi, G., Al-Kafajy, F. R., Al-Thuwaini, T. M., & Esmailizadeh, A. (2021). Detection of a novel single nucleotide polymorphism in IGF2 gene with a negative impact on egg production and body weight in Japanese quail (Coturnix japonica). Journal of Genetic Engineering and Biotechnology, 19(1), 1-9.

[15] Vaccaro Lauren A., Porter Tom E. and Ellestad Laura E. 2022.The Effect of Genetic Selection on Somatotropic gene Expression in Broiler: A potential role of Insulin-like growth factor binding's proteins in regulation broiler growth and body composition. Frontiers in Physiology. vol 13.Artical 935311.

[16] Jones, J.I., D.R. Clemmons, 1995. Insulin-like growth factors and their binding proteins: biological actions. Endocrine Reviews, 16: 3-34.

[17] Adam D., L.J. Cosgrove, G.W. Booker, J.C. Wallace, B.E. Forbes, 2005. Molecular interactions of the *IGF* system. Cytokine & Growth Factor Reviews, 16: 421-439.

[18] Goodall, J.J., S.M. Schmutz, 2007. *IGF2* gene characterization and association with rib eye area in beef cattle. Saskatoon, SK S7N 5A8.

[19] Aljanabi, S.M., L. Martinez, 1997. Universal and rapid salt-extraction of high quality genomic

DNA for PCR-based techniques. Nucleic Acids Research, 25: 4692-4693.

[20] Amills, M., N. Jimenez, D. Villalba, M. Tor, E. Molina, D. Cubilo, C. Marcos, A. Francesch, A. Sanchez, J. Estany, 2003. Identification of three single nucleotide polymorphisms in the chicken insulin-like growth factor 1 and 2 genes and their associations with growth and feeding traits. Poultry Science, 82: 1485-1493.

[21] Wang, G., B. Yan, X. Deng, C. Li, X. Hu, N. Li, 2005. Insulin-like growth factor 2 as a candidate gene influencing growth and carcass traits and its bi-allelic expression in chicken. Science in China Series C: Life Sciences, 48(2): 187-194.

[22] Rothschild, M.F., M. Soller, 1997. Candidate gene analysis to controlling traits of economic importance in detect genes. Probe, 8(1): 13-20.

[23] Yeh, F.C., T. Boyle, R. Yang, 1997. POPGENE Version 1.31. Microsoft Window-Based Freeware for Population Genetic Analysis. University of Alberta, Edmonton.